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ABSTRACT 

 
 
 
 
Large genome sequencing projects generate huge number of protein 

sequences in their primary structures that is difficult for conventional biological 
techniques to determine their corresponding 3D structures and then their functions. 
Protein secondary structure prediction is a prerequisite step in determining the 3D 
structure of a protein. In this thesis a method for prediction of protein secondary 
structure has been proposed and implemented together with other known accurate 
methods in this domain. The method has been discussed and presented in a 
comparative analysis progression to allow easy comparison and clear conclusions. A 
benchmark data set is exploited in training and testing the methods under the same 
hardware, platforms, and environments. The newly developed method utilizes the 
knowledge of the GORV information theory and the power of the neural network to 
classify a novel protein sequence in one of its three secondary structures classes. 
NN-GORV-I is developed and implemented to predict proteins secondary structure 
using the biological information conserved in neighboring residues and related 
sequences. The method is further improved by a filtering mechanism for the searched 
sequences to its advanced version NN-GORV-II. The newly developed method is 
rigorously tested together with the other methods and observed reaches the above 
80% level of accuracy. The accuracy and quality of prediction of the newly 
developed method is superior to all the six methods developed or examined in this 
research work or that reported in this domain. The Mathews Correlation Coefficients 
(MCC) proved that NN-GORV-II secondary structure predicted states are highly 
related to the observed secondary structure states. The NN-GORV-II method is 
further tested using five DSSP reduction schemes and found stable and reliable in its 
prediction ability. An additional blind test of sequences that have not been used in 
the training and testing procedures is conducted and the experimental results show 
that the NN-GORV-II prediction is of high accuracy, quality, and stability. The 
Receiver Operating Characteristic (ROC) curve and the area under curve (AUC) are 
applied as novel procedures to assess a multi-class classifier with approximately 0.5 
probability of one and only one class. The results of ROC and AUC prove that the 
NN-GOR-V-II successfully discriminates between two classes; coils and not-coils. 
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ABSTRAK 
 
 
 
 
Projek-projek genome yang berskala besar telah menghasilkan jujukan-

jujukan protein dalam bentuk struktur pertama yang sangat banyak bilangannya telah 
menyebabkan teknik-teknik biasa biologi sukar untuk menuntukan struktur 3D dan 
fungsinya. Peramalan struktur kedua protein diperlukan bagi menentukan struktur 3D 
protein dan fungsinya. Dalam tesis ini, satu kaedah untuk meramalkan struktur kedua 
protein telah dicadangkan dan dilaksanakan bersama-sama dengan kaedah-kaedah 
lain yang berkaitan. Kaedah itu telah dibincangkan dan ditunjukkan di dalam satu 
analisis perbandingan. Tujuh algoritma dan kaedah bagi peramalan struktur kedua 
protein telah dibangunkan dan dilaksanakan. Satu set data perbandingan digunakan 
untuk melatih dan menguji kaedah tersebut. Kaedah yang baru dibangunkan itu 
adalah menggunakan pengetahuan Teori Maklumat GORV dan Rangkaian Neural 
untuk mengkelaskan satu jujukan protein baru kepada salah satu daripada 3 kelas 
stuktur keduanya. NN-GORV-I dibangunkan dan diimplemenkan bagi meramal 
struktur kedua protein menggunakan maklumat biologi yang disimpan dalam bentuk 
keladak yang berhampiran dan jujukan-jujukan yang berkaitan. Seterusnya kaedah 
itu telah diuji dengan kaedah-kaedah lain dan telah mencapai lebih 80% ketepatan. 
Ketepatan dan kualiti peramalan bagi kaedah itu adalah melebihi 6 kaedah- kaedah 
lain yang juga telah dibangunkan dan diperiksa dalam penyelidikan ini. Pekali 
Korelasi Mathews (PKM) telah membuktikan struktur kedua yang telah diramalkan 
oleh NN-GORV-II adalah sangat berkait rapat dengan keadaan struktur kedua yang 
telah dicerapkan. Kaedah NN-GORV-II seterusnya diuji dengan menggunakan lima 
skema potongan DSSP dan disahkan kestabilannya dan boleh dipercayai 
kebolehannya untuk kerja peramalan tersebut. Satu penambahan ujian bagi jujukan-
jujukan yang tidak digunakan dalam prosedur melatih dan menguji dijalankan dan 
hasil-hasil eksperimennya menunjukkan bahawa peramalan NN-GORV-II adalah 
berketepatan tinggi, berkualiti dan stabil. Lengkungan Receiver Operating 
Characteristic (ROC) dan area under curve (AUC) itu telah diaplikasikan sebagai 
satu prosedur baru bagi menilai pengkelas pelbagai kelas dengan anggaran 
kebarangkalian adalah 0.5 bagi satu dan hanya satu kelas. Hasil-hasil bagi ROC dan 
AUC membuktikan bahawa NN-GOR-V berjaya memisahkan 2 kelas; lingkaran dan 
bukan lingkaran.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Introduction 
 
 

Advances in molecular biology in the last few decades, and the availability of 

equipment in this field have allowed the increasingly rapid sequencing of 

considerable genomes of several species. In fact, to date, several bacterial genomes, 

as well as those of some simple eukaryotic organisms (e.g. yeast) have been 

completely sequenced. The Human Genome Project (HGP), aimed to sequence all of 

the human chromosomes, is almost completed with a rough draft announced in the 

year 2000 (Heilig et al., 2003). Known sequencing databases projects, such as 

GenBank, PDB, and EMBL, have been growing significantly. This surge and 

overflow of data and information have imposed the rational storage, organization and 

indexing of sequence information. 

 

Explaining the tasks undertaken in Bioinformatics field in details might be far 

beyond this introductory chapter. However, they fall in the creation and maintenance 

of databases of biological information with nucleic acid or protein sequences cover 

the majority of such databases. Storage and organization of millions of nucleotides is 

essential portion in these databases. Designing, developing, and implementing 

databases access and exchange information between researchers in this field is 

progressing significantly.  

 

The most fundamental tasks in bioinformatics include the analysis of 

sequence information which involves the following the prediction of the 3D structure 



 

 

2

of a protein using algorithms that have been derived from the knowledge of physics, 

chemistry and from the analysis of other proteins with similar amino acid sequences. 

Some researchers refer to this area with the name Computational Biology. 

 
 
 
 

1.2 Protein Structure Prediction 
 
 

Protein structure prediction is categorized under Bioinformatics which is a 

broad field that combines many other fields and disciplines like biology, 

biochemistry, physics, statistics, and mathematics. Proteins are series of amino acids 

known as polymers linked together into contiguous chains. In a living cell the DNA 

of an organism encodes its proteins into a sequence of nucleotides (transcribed), 

namely: adenine, cytosine, guanine and thymine that are copied to the mRNA which 

are then translated into protein (Branden and Tooze, 1991) 

 

Protein has three main structures: primary structure which is essentially the 

linear amino acid sequence and usually represented by a one letter notation. Alpha 

helices, beta sheets, and loops are formed when the sequences of primary structures 

tend to arrange themselves into regular conformations; these units are known as 

secondary structure (Pauling and Corey, 1951; Kendrew, 1960). Protein folding is 

the process that results in a compact structure in which secondary structure elements 

are packed against each other in a stable configuration. This three-dimensional 

structure of the protein is known as the protein tertiary structure. However, loops 

usually serve as connection points between alpha-helices and beta-sheets, they do not 

have uniform patterns like alpha-helices and beta-sheets and they could be any other 

part of the protein structure rather than helices or strands (Appendix A). 

 

In the molecular biology laboratory, protein secondary structure is 

determined experimentally by two lengthy methods: X-ray crystallography method 

and Nuclear Magnetic Resonance (NMR) spectroscopy method. 

 

Since Anfinsen (1973) concluded that the amino acid sequence is the only 

source of information to survive the denaturing process, and hence the structured 
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information must be somehow specified by the primary protein sequence, researchers 

have been trying to predict secondary structure from protein sequence. Anfinsen’s 

hypothesis suggests that an ideal theoretical model of predicting protein secondary 

structure from its sequence should exist anyhow. 

 
 
 
 
1.3 Prediction Methods 

 
 
There are two main different approaches in determining protein structure: a 

molecular mechanics approach based on the assumption that a correctly folded 

protein occupies a minimum energy conformation, most likely a conformation near 

the global minimum of free energy. Potential energy is obtained by summing the 

terms due to bonded and non-bonded components estimated from these force field 

parameters and then can be minimized as a function of atomic coordinates in order to 

reach the nearest local minimum (Weiner and Kollman, 1981; Weiner et al., 1984). 

This approach is very sensitive to the protein conformation of the molecules at the 

beginning of the simulation. 

 

One way to address this problem is to use molecular dynamics to simulate the 

way the molecule would move away from that initial state. Newton’s laws and 

Monte Carlo methods were used to reach to a global energy minima. The approach 

of molecular mechanics is faced by problems of inaccurate force field parameters, 

unrealistic treatment of solvent, and spectrum of multiple minima (Stephen et al., 

1990).  

 

The second approach of predicting protein structures from sequence alone is 

based on the data sets of known protein structures and sequences. This approach 

attempts to find common features in these data sets which can be generalized to 

provide structural models of other proteins. Many statistical methods used the 

different frequencies of amino acid types: helices, strands, and loops in sequences to 

predict their location. (Chou and Fasman, 1974b; Garnier et al., 1978; Lim, 1974b; 

Blundell et al., 1983; Greer, 1981; Warme et al., 1974). The main idea is that a 
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segment or motif of a target protein that has a sequence similar to a segment or motif 

with known structure is assumed to have the same structure. Unfortunately, for many 

proteins there is no enough homology to any protein sequence or of known structure 

to allow application of this technique.  

 

The previous review leads us to the fact that the approach of deriving general 

rules for predicting protein structure from the existing data sets or databases and then 

applies them to sequences of unknown structure appears to be promising. Several 

methods have utilized this approach (Richardson, 1981; Chou and Fasman, 1974a; 

Krigbaum and Knutton, 1973; Qian and Sejwaski, 1988; Crick, 1989).  

 

Artificial Neural networks have great opportunities in the prediction of 

proteins secondary structures. These methods are based on the analogy of operation 

of synaptic connections in neurons of the brain, where input is processed over 

several levels or phases and then converted to a final output. Since the neural 

network can be trained to map specific input signals or patterns to a desired output, 

information from the central amino acid of each input value is modified by a 

weighting factor, grouped together then sent to a second level (hidden layer) where 

the signal is clustered into an appropriate class.  

 

Artificial Neural Networks are trained by adjusting the values of the weights 

that modify the signals using a training set of sequences with known structure. The 

neural network algorithm adjusts the weight values until the algorithm has been 

optimized to correctly predict most residues in the training set. 

 

Feedforward neural networks are powerful tools. They have the ability to 

learn from example, they are extremely robust, or fault tolerant, the process of 

training is the same regardless of the problem, thus few if any assumptions 

concerning the shapes of underlying statistical distributions are required. The most 

promising is that programming artificial neural networks is fairly easy (Haykin, 

1999). 
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Thus, neural networks and specially feedforward networks have a fair chance 

to well suite the empirical approach to protein structure prediction. In the process of 

protein folding, which is effectively finding the most stable structure given all the 

competing interactions within a polymer of amino acids, neural networks explore 

input information in parallel style. 

 

The GOR method was first proposed by (Garnie et al., 1978) and named after 

its authors Garnier-Osguthorpe-Robson. The GOR method attempts to include 

information about a slightly longer segment of the polypeptide chain. Instead of 

considering propensities for a single residue, position-dependent propensities have 

been calculated for all residue types. Thus the prediction will therefore be influenced 

not only by the actual residue at that position, but also to some extent by other 

neighbouring residues (Garnier and Robson, 1989). The propensity tables to some 

extent reflect the fact that positively charged residues are more often found in the C-

terminal end of helices and that negatively charged residues are found in the N-

terminal end. 

 

The GOR method is based on the information theory and naive statistics. The 

mostly known GOR-IV version uses all possible pair frequencies within a window of 

17 amino acid residues with a cross-validation on a database of 267 proteins (Garnier 

et al., 1996). The GOR-IV program output gives the probability values for each 

secondary structure at each amino acid position. The GOR method is well suited for 

programming and has been a standard method for many years. 

 

The recent version GORV gains significant improvement over the previous 

versions of GOR algorithms by combining the PSIBLAST multiple sequence 

alignments with the GOR method (Kloczkowski et al., 2002). The accuracy of the 

prediction for the GOR-V method with multiple sequence alignments is nearly as 

good as neural network predictions. This demonstrates that the GOR information 

theory based approach is still feasible and one of the most considerable secondary 

structure prediction methods. 
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1.4 The Problem 
 
 
The problem of this research focuses on the protein folding dilemma. The 

question is how protein folds up to its three dimensional structure (3D) from linear 

sequences of amino acids? The 3D structure protein is the protein that interacts with 

each other 3D protein and then produces or reflects functions. By solving the protein 

folding problem we can syntheses and design fully functioning proteins on a 

computational machine, a task that may requires several years in the molecular 

biology labs. A first step towards that is to predict protein secondary structures 

(helices, strands, and loops). At the time of writing this chapter, the prediction level 

of protein secondary structures is still at its slightly above the 70% range (Frishman, 

and Argos, 1997; Rost, 2001; Rost, 2003). 

 

Prediction can not be completely accurate due to the facts that the assignment 

of secondary structure may vary up to 12% between different crystals of the same 

protein. In addition, β-strand formation is more dependent on long-range interactions 

than α-helices, and there should be a general tendency towards a lower prediction 

accuracy of β-strands than α-helices (Cline et al., 2002). 

 

To solve the above mentioned problems, or in other words to increase the 

accuracy of protein secondary structure prediction, the hypothesis of this research 

can be stated as: “construction and designing advanced well organized artificial 

neural networks architecture combined with the information theory to extract more 

information from neighbouring amino acids, boosted with well designed filtering 

methods using the distant information in protein sequences can increase the accuracy 

of prediction of protein secondary structure”. 

 
 
 
 
 

1.5 Objectives of the Research 
 
 
The goal of this research is to develop and implement accurate, reliable, and 

high performing method to predict secondary structure of a protein from its primary 



 

 

7

amino acid sequence. However, the specific objectives of this research can be stated 

in the following points: 

 

a. To analyse and study existing methods developed in the domain of 

protein secondary structure prediction to help in the development and 

implementation of a new prediction method. 

 

b. To develop and implement a new accurate, robust, and reliable 

method to predict protein secondary structure from amino acid 

sequences. 

 

c. To assess the performance accuracy of the method developed in this 

research and to compare the performance of the newly developed 

method with the other methods studied and implemented in this 

research work. 

 

d. To study the differences between the secondary structure reduction 

methods and the effects of these methods on the performance of the 

newly developed prediction method. 

 

e. To carry out blind test on the newly developed method. That is to 

analyse the output of the newly developed method with respect to an 

independent data set. 

 

f. To study the performance of the coil prediction of the newly 

developed method using the ROC curve. This is also to examine the 

ability of ROC analysis to discriminate between two classes in a 

multi-class prediction classifier. 

 

1.6 The Scope of This Research 
 
 
Following the goal and objectives of this study is its scope. Since 

Bioinformatics is a multi-disciplinary science, the scope of each study must be stated 
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clearly. The protein sequence data is obtained from the Cuff and Barton (1999) 513 

protein database. The data is prepared from the Protein Data Bank (PDB) by 

Barton’s Group and considered as a benchmark sample that represents most PDB 

proteins. This study focuses on the neural networks and information theory since 

they are found to be effective for the prediction of protein secondary structure. The 

output results of the prediction methods are analysed and tested for performance, 

reliability, and accuracy. The limitation of this research work is the nature of the 

biological data which needs a great effort of pre-processing before the training and 

testing stages. 

 
 
 
 

1.7 Organization and Overview of the Thesis 
 
 
The organization and the flow of the contents of this thesis may be described 

as follows: 

 The thesis begins with Chapter 1 which we are reading now. The 

chapter explains key concepts, introducing the problem of this 

research, list the objectives, and determine the scope of this work.  

 

 Chapter 2 reviews and explains the proteins, sequences, and sequence 

alignments. It also examines amino acids and proteins in terms of 

their nature, formation, and their importance. The chapter reviews 

protein homology and homology detection and types of homologies 

proteins and then explains sequence alignment methods, pair-wise 

alignment, multiple alignments, as well as profile generation methods. 

 

 The following is Chapter 3 which discusses and overviews protein 

structure prediction. The generation of profiles that uses the 

evolutionary information in similar sequences and the multiple 

sequence alignment methods are thoroughly reviewed in this chapter. 

This chapter describes the benchmark data sets conventionally used to 

predict protein structure as well. The chapter also reviews the 

artificial neural networks and the information theory for prediction of 
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protein secondary structure with special emphasis to GOR theory. The 

tools and techniques used in this research as well as prediction 

performance evaluation procedures are introduced in this chapter.. 

 

 Chapter 4 represents a brief and comprehensive methodology of this 

thesis. The chapter outlines and represents the framework followed in 

this research to implement the method proposed and developed in this 

research. 

 

 Chapter 5 represents and explains the modelling of the methodology 

and algorithms used to develop the new method NN-GORV-I and its 

advanced version NN-GORV-II. The data set for training and testing 

the newly developed methods beside the other methods that are 

implemented in this work was described. The implementation of 

PSIBLAST program search of the nr database to generate multiple 

sequences which in turns are aligned by the CLUSTALW program is 

demonstrated in this chapter. The reduction methods used for the 

secondary structure data and the different statistical analysis and 

performance tests are demonstrated in this chapter.  

 

 Chapter 6 discusses the results of the seven different prediction 

methods developed or studied in this research. The Q3 , the segment 

overlap (SOV) measure and the Matthews correlations coefficients 

MCC are discussed and examined in this chapter. 

 

 Chapter 7 discuses the effect of the five eight-to-three secondary 

structure reduction methods on the newly developed method in this 

research and trying to judge the argument that the eight-to-three state 

reduction scheme can alter the prediction accuracy of an algorithm. 

 

 Chapter 8 explores the performance of an independent data set test on 

the NN-GORV-II method. Few protein targets of CASP3 are 
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predicted by the newly developed method to judge its performance 

and quality. 

 

 Chapter 9 introduces the Receiver Operating Characteristics (ROC) 

analysis and area under curve (AUC) to the newly method which is a 

multi-class classifier to estimate the prediction accuracy of the coil 

states. 

 

 Chapter 10 concludes and summarizes this thesis, highlights the 

contributions and findings of this work, and suggests some 

recommendations to further extend work. 

 
 
 
 

1.8 Summary 
 
 

This chapter introduces the problem of predicting protein secondary structure 

which is the core concern of this thesis. The chapter presents a brief introduction to 

bioinformatics, proteins, sequences, protein structure prediction. Known methods 

and algorithms in this domain are briefly introduced and presented. The problem of 

this research is clearly stated in this chapter and the objectives and scope of this 

thesis are thoroughly explained. The chapter ends with a description and overview of 

the organization of the thesis. 
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