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ABSTRACT 

 

 

 

Rainfall and surface runoff are the driving forces behind all stormwater studies 
and designs.  The relationship is known to be highly non-linear and complex that is 
dependent on numerous factors.  In order to overcome the problems on the non-linearity 
and lack of information in rainfall-runoff modelling, this study introduced the Artificial 
Neural Network (ANN) approach to model the dynamic of rainfall-runoff processes.  The 
ANN method behaved as the black-box model and proven could handle the non-linearity 
processes in complex system.  Numerous structures of ANN models were designed to 
determine the relationship between the daily and hourly rainfall against corresponding 
runoff.  Therefore, the desired runoff could be predicted using the rainfall data, based on 
the relationship established by the ANN training computation.  The ANN architecture is 
simple and it considers only the rainfall and runoff data as variables.  The internal 
processes that control the rainfall to runoff transformation will be translated into ANN 
weights.  Once the architecture of the network is defined, weights are calculated so as to 
represent the desired output through a learning process where the ANN is trained to 
obtain the expected results.  Two types of ANN architectures are recommended and they 
are namely the multilayer perceptron (MLP) and radial basis function (RBF) networks.  
Several catchments such as Sungai Bekok, Sungai Ketil, Sungai Klang and Sungai Slim 
were selected to test the methodology.  The model performance was evaluated by 
comparing to the actual observed flow series.  Further, the ANN results were compared 
against the results produced from the application of HEC-HMS, XP-SWMM and multiple 
linear regression (MLR).  It had been found that the ANN could predict runoff accurately, 
with good correlation between the observed and predicted values compared to the MLR, 
XP-SWMM and HEC-HMS models.  Obviously, the ANN application to model the daily 
and hourly streamflow hydrograph was successful. 
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ABSTRAK 

 

 

 

Hujan dan airlarian permukaan merupakan daya penggerak kepada semua kajian 
dan rekabentuk berkaitan ributhujan.  Diketahui umum bahawa perhubungan antara 
keduanya adalah taklinear dan komplek yang mana bergantung kepada banyak faktor.  
Bagi menyelesaikan masalah akibat kekurangan maklumat dan ketaklinearan hubungan 
antara hujan dan airlarian, maka kajian ini memperkenalkan kaedah atau pendekatan 
rangkaian neural buatan (ANN) untuk memodelkan proses dinamik hubungan tersebut.  
Kaedah ANN bercirikan model ‘kotak hitam’ dan telah dibuktikan bahawa ianya boleh 
menghadapi proses taklinear dalam sistem yang komplek ini.  Pelbagai struktur bagi 
model ANN telah direkabentuk untuk mendapatkan perhubungan harian dan jam yang 
selaras dengan hubungan hujan dengan airlarian.  Dengan itu, data airlarian sebenar boleh 
diramal menggunakan data hujan berdasarkan kepada hubungan yang telah dikenalpasti 
perkiraannya melalui proses latihan dalam ANN.  Senibina ANN adalah mudah kerana ia 
mengambilkira data hujan dan airlarian sebagai pembolehubah.  Proses dalaman yang 
mengawal transformasi hujan kepada airlarian dapat diterjemahkan melalui pemberat-
pemberat pada ANN.  Setelah senibina rangkaian ANN dikenalpasti dan pemberat-
pemberat ditentukan, ia akan dapat menterjemahkan keluaran sebenar melalui proses 
pembelajaran yang mana ANN telah dilatih untuk mendapatkan keputusan seperti yang 
dijangkakan.  Dua jenis senibina ANN telah dicadangkan iaitu kaedah rangkaian 
perseptron pelbagai lapisan (MLP) dan fungsi asas jejarian (RBF).  Beberapa kawasan 
tadahan iaitu kawasan tadahan Sungai Bekok, Sungai Ketil, Sungai Klang dan Sungai 
Slim telah dipilih untuk menguji metodologi ini.  Keupayaan model dinilai dengan 
membandingkannya dengan siri-siri aliran cerapan sebenar.  Seterusnya, keputusan ANN 
ini dibandingkan dengan keputusan yang diperolehi dari aplikasi HEC-HMS, SWMM 
dan regresi linear berbilang (MLR).  Didapati bahawa, ANN boleh meramalkan airlarian 
setepatnya dengan korelasi yang baik antara nilai cerapan sebenar dengan nilai ramalan 
berbanding model-model MLR, XP-SWMM dan HEC-HMS.  Jelasnya, aplikasi ANN 
untuk permodelan hidrograf aliran sungai bagi sela masa harian dan jam dapat 
dilaksanakan dengan jayanya. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

Hydrologists are often confronted with problems of prediction and estimation of 

runoff, precipitation, contaminant concentrations, water stages, and so on (ASCE, 2000).  

Moreover, engineers are often faced with real situations where little or no information is 

available.  The processes and relationship between rainfall and surface runoff for a 

catchment area require good understanding, as a necessary pre-requisite for preparing 

satisfactory drainage and stormwater management projects.  In the hydrological cycle, the 

rainfall occurs and reaching the ground may collect to form surface runoff or it may 

infiltrate into the ground.  The surface runoff and groundwater flow join together in 

surface streams and rivers which finally flow into the ocean.  Most of hydrologic 

processes has a high degree of temporal and spatial variability, and are further plagued by 

issues of non-linearity of physical processes, conflicting spatial and temporal scales, and 

uncertainty in parameter estimates.  That the reason why our understanding in many areas 

especially in hydrologic processes is far from perfect.  So that empiricism plays an 

important role in modelling studies.  Hydrologists strive to provide rational answers to 

problems that arise in design and management of water resources projects.  As modern 

computers become ever more powerful, researchers continue testing and evaluating a new 

approach of solving problems efficiently. 



 2
 

A problem commonly encountered in the stormwater design project is the 

determination of the design flood.  Design flood estimation using established 

methodology is relatively simple when records of streamflow or runoff and rainfall are 

available for the catchment concerned.  The quantity of runoff resulting from a given 

rainfall event depends on a number of factors such as initial moisture, land use, and slope 

of the catchments, as well as intensity, distribution, and duration of the rainfall.  

Knowledge on the characteristics of rainfall-runoff relationship is essential for risk and 

reliability analysis of water resources projects.  Since the 1930s, numerous rainfall-runoff 

models have been developed to forecast streamflow.  For example, conceptual models 

provide daily, monthly, or seasonal estimates of streamflow for long term forecasting on 

a continuous basis.  Sherman (1932) defined the unit graph, linear systems analysis has 

played an important role in relating input-output components in rainfall-runoff modelling 

and in the development of stochastic models of single hydrological sequences (Singh, 

1982).  The performance of a rainfall-runoff model heavily depends on choosing suitable 

model parameters, which are normally calibrated by using an objective function (Yu and 

Yang, 2000).  The entire physical process in the hydrologic cycle is mathematically 

formulated in conceptual models that are composed of a large number of parameters 

(Tokar and Johnson , 1999).     

 

The modelling technique approach used in the present study is based on artificial 

neural network methods in modelling of hydrologic input-output relationships.  The 

rainfall-runoff models are developed to provide predicts or forecast rainfalls as input to 

the rainfall-runoff models.  The observed streamflow was treated as equivalent to runoff.  

The previous data were used in the test set to illustrate the capability of model in 

predicting future occurrences of runoff, without directly including the catchment 

characteristics.  Tokar and Markus (2000) believed that the accuracy of the model 

predictions is very subjective and highly dependent on the user’s ability, knowledge, and 

understanding of the model and the watershed characteristic.  Artificial intelligence (AI) 

techniques have given rise to a set of ‘knowledge engineering’ methods constituting a 

new approach to the design of high-performance software systems.  This new approach 

represents an evolutionary change with revolutionary consequences (Forsyth, 1984).  The 
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systems are based on an extensive body of knowledge about a specific problem area.  

Characteristically this knowledge is organized as a collection of rules, which allow the 

system to draw conclusions from given data or premises.   

 

Application of neural networks is an extremely interdisciplinary field such as 

science, engineering, automotive, aerospace, banking, medical, business, transportation, 

defense, industrial, telecommunications, insurance, and economic.  In the last few years, 

the subject of artificial neural networks or neural computing has generated a lot of 

interest and receives a lot of coverage in articles and magazine.  Nowadays, artificial 

neural networks (ANN) methods are gaining popularity, as is evidenced by the increasing 

number of papers on this topic appearing in engineering and hydrology journals, 

conferences, seminars, and so on.  This modelling tool is still in its nascent stage in terms 

of hydrologic applications (ASCE, 2000). Recently there are increasing number of works 

attempt to apply the neural network method for solving various problems in different 

branches of science and engineering.  This highly interconnected multiprocessor 

architecture in ANN is described as parallel distributed processing and has solved many 

difficult computer science problems (Blum, 1992).  Electrical Engineers find numerous 

applications in signal processing and control theory.  Computer engineers and computer 

scientists find that the potential to implement neural networks efficiently and by 

applications of neural networks to robotics and it show promise for difficult problems in 

areas such as pattern recognition, feature detector, handwritten digit recognition, image 

recognition, etc.  Manufacturers use neural networks to provide a sophisticated machine 

or instrument enabling the consumers to gain some benefit in a modern society and our 

life become comfortable and productive.  In medical, the neural networks used to 

diagnose and prescribe the treatment corresponding to the symptoms it has been before.  

It is a tool to provide hydraulic and environmental engineers with sufficient details for 

design purposes and management practices (Nagy et. al., 2002).  In other word, 

apparently neural network models are able to treat problems of different disciplines. 

 

The main function of all artificial neural network paradigms is to map a set of 

inputs to a set of output.  However, there are a wide variety of ANN algorithms.  An 
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attractive feature of ANN is their ability to extract the relation between the inputs and 

outputs of a process, without the physics being explicitly provided to them.  They are 

able to provide a mapping from one multivariate space to another, given a set of data 

representing that mapping.    Even if the data is noisy and contaminated with errors, ANN 

has been known to identify the underlying rule (ASCE, 2000).  Neural network can learn 

from experience, generalize from previous examples to new ones, and abstract essential 

characteristics from inputs containing   irrelevant data (Fausett, 1994; Wasserman, 2000).  

Therefore, the natural behaviour of hydrological processes is appropriate for the 

application of ANN methods.  

 

In this study, artificial neural network (ANN) methods were applied to model the 

hourly and daily rainfall-runoff relationship.  The available rainfalls and runoffs data are 

from four catchments known as Sungai Bekok, Sungai Ketil, Sungai Klang, and Sungai 

Slim.  An attractive feature of ANN methods is their ability to extract the relation 

between the inputs and outputs of process, without the physics being explicitly provided 

to them.  The networks were trained and tested using data that represent different 

characteristics of the catchments area and rainfall patterns.  The sensitivity of the network 

performance to the content and length of the calibration data were examined using 

various training data sets.  Existing commercially available models used in modelling 

study were HEC-HMS and XP-SWMM.  The performances of the ANN model for the 

selected catchments were investigated and comparison was made against the XP-

SWMM, HEC-HMS and linear regression models.  The performance of the proposed 

models and the existing models are evaluated by using correlation of coefficient, root 

mean square error, relative root mean square error, mean absolute percentage error and 

percentage bias. 
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1.2 Statement of the Problem 

 

In many parts of the world, rapid population growth, urbanization, and 

industrialization have increased the demand for water.  These same pressures have 

resulted in altered watersheds and river systems, which have contributed to a greater loss 

of life and property damages due to flooding.  It is becoming increasingly critical to plan, 

design, and manage water resources systems carefully and intelligently.  Understanding 

the dynamics of rainfall-runoff process constitutes one of the most important problems in 

hydrology, in order to predict or forecast streamflow for purposes such as water supply, 

power generation, flood control, water quality, irrigation, drainage, recreation, and fish 

and wildlife propagation. During the past decades, a wide variety of approaches, such as 

conceptual, has been developed to model rainfall-runoff process.  However, an important 

limitation of such approaches is that treatment of the rainfall-runoff process as a 

realization of stochastic and statistical process means that only some statistical features of 

the parameters are involved.  Therefore, what is required is an approach that seeks to 

understand the complete dynamics of the hydrologic process, capturing not only the 

overall appearance but also the intricate details.   

 

The rainfall-runoff relationships are among the most complex hydrologic 

phenomena to comprehend due to the tremendous spatial and temporal variability of 

watershed characteristics, snow pack, and precipitation patterns, as well as a number of 

variables involved in modelling the physical processes (Tokar and Johnson, 1999).   The 

modelling of rainfall-runoff relationship is very important in the hydraulics and 

hydrology study for new development area.  The transformation of rainfall to runoff 

involves many highly complex components, such as interception, infiltration, overland 

flow, interflow, evaporation, and transpiration, and also non-linear and cannot easily 

calculate by using simple equation.  The runoff is critical to many activities such as 

designing flood protection works for urban areas and agricultural land and assessing how 

much water may be extracted from a river for water supply or irrigation.  Despite the 

complex nature of the rainfall-runoff process, the practice of estimating runoff as fixed 

percentage of rainfall is the most commonly used method in design of urban storm 
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drainage facilities, highway culverts, and many small hydraulic structures.  The quantity 

of runoff resulting from a given rainfall event depends on a number of factors such as 

initial moisture, land use, and slope of the catchments, as well as intensity, distribution, 

and duration of the rainfall.  Various well known currently available rainfall-runoff 

models have been successfully applied in many problems and catchments.  Numerous 

papers on the subject have been published and many computer simulation models have 

been developed.  All these models, however, require detailed knowledge of a number of 

factors and initial boundary conditions in a catchments area which in most cases are not 

readily available.  However, the existing popular rainfall-runoff models can be detected 

as not flexible and they require many parameters for calibration.   

 

Beven (2001) reported that the ungauged catchment problem is one of the real 

challenges for hydrological modellers in the twenty-first century.  Furthermore, the 

traditional method of investigation and the collection of data in the field involving the 

installation and maintenance of a network of instruments tend to be costly.  Furthermore, 

some of these models are expensive, and of limited applicability.  The availability of 

rainfall-runoff data is important for the model calibration process. Rainfall-runoff 

modelling for sites where there are no discharge data is a very much more difficult 

problem.  However, it is considered that the main limitation in the development of a 

design flood hydrograph estimation procedure lies in the availability of rainfall and 

streamflow data, rather than any inherent limitations in the techniques used to develop the 

procedure.  However, discharge data are available at only a small number of sites in any 

region.  In this respect the problem is that there are very few major floods for which 

reliable rainfall and streamflow data are available, particularly on small catchments. Any 

relationships developed are therefore based on data from relatively small storms, and 

hence the flood estimates are made from extrapolated relationships.  Even more often, 

physical measurements of the pertinent quantities are very difficult and expensive 

especially in a virgin rural area.  That is reasons why many catchments in many countries 

in the world are not installed the measurement instruments.  These difficulties lead us to 

explore the use of neural networks as a way of obtaining models based on experimental 

measurements.  In terms of hydrologic applications, this modelling tool is still in its 
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nascent stages.  An attractive feature of this model is their ability to extract the 

relationship between the inputs and outputs of a process, without the physics being 

explicitly provided to them.  The goal is to create a model for predicting runoff from a 

gauged or ungauged catchment.  For long term runoff modelling, use a continuous model 

rather than a single-event model.   

 

Rainfall-runoff modelling software’s and guideline from USA, Australia and 

United Kingdom are required as reference for understanding and development of 

hydrologic model in Malaysia. Those models and guidelines to study the modelling 

technique, hydrologic problems, management and design of urban or rural watershed 

system.  Since the present software and guidelines are based on the compilation of the 

practice of urban stormwater management of USA, United Kingdom and Australia, hence 

it is important for us to develop our own. Furthermore, various well-known currently 

available rainfall-runoff models such as HEC-HMS, MIKE-11, SWMM, etc. have been 

successfully applied in many problems and watersheds.  However, the existing popular 

rainfall-runoff models can be detected as not flexible and they require too many 

parameters for calibration.  Obviously, the models have their own weaknesses, especially 

in the calibration processes and the ability to adopt the non-linearity of processes.  

However, there are also many areas where today’s tools are lacking the features and 

functions needed to build these applications effectively (Wasserman, 2000).  

Furthermore, the software’s are not robust and performed by selective calibration.  The 

rapid development of modern Malaysia, the demand of water resources utility has also 

increased, and therefore, time has already come to develop new techniques to overcome 

the problems regarding the hydrology and water resources design and management.  In 

this context, one of the main potential areas of application of rainfall-runoff models is the 

prediction and forecasting of streamflow.  An alternative approach to predicting 

suggested in recent years is the neural network method, inspired by the functioning of the 

human brain and nervous systems.  Artificial neural networks are able to determine the 

relationship between input data and corresponding output data.  When presented with 

simultaneous input-output observations, artificial neural network adjust their connection 
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weights (model parameters), and discover the rules governing the association between 

input and output variables.   

 

 

 

1.3 Study Objectives 

 

The research is focused on the application of the neural networks method on the 

rainfall-runoff modelling.  Comparison between neural networks and other methods is 

made.  

 

The overall objective of the present study is developing mathematical models that 

are able to provide accurate and reliable runoff estimates from the historical data of 

rainfall-runoff of selected catchments area.  To address the performance of various 

rainfall-runoff models applied in Malaysian environment, the following specific 

objectives are made: 

(i) To develop rainfall-runoff model using artificial neural network (ANN) 

methods, based on the Multilayer Perceptron (MLP) model and Radial 

Basis Function (RBF) computation techniques. 

(ii) To examine and quantify the predicting accuracy of neural networks 

models using multiple inputs and output series. 

(iii) To evaluate and compare the neural networks and multiple linear 

regression (MLR) models for daily flow prediction only. 

(iv) To compare and evaluate the performance of the neural networks models 

against XP-SWMM and HEC-HMS models for daily and hourly 

predictions. 
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1.4 Research Approach and Scope of Work 

 

The present study was undertaken to develop daily and hourly rainfall-runoff 

models using the ANNs method that can possible be used to provide reliable and accurate 

estimates of runoff based on rainfall as input variable.  The ANN models used are the 

MLP and RBF.   It is believed that the ANN is able to overcome the non-linear 

relationship between rainfalls against runoff.  The ANN methods of computation are 

MLP and RBF.  Calibration methods (algorithm) apply for MLP is back-propagation and 

the transfer function used is tangent sigmoid (tansig).  Meanwhile, calibration methods 

apply for RBF is Generalized Regression Neural Network (GRNN) and the transfer 

function used is Gaussian for hidden units.  

 

The modelling work was carried out using five years period of daily data and ten 

years period of hourly data consisting the rainfall and runoff records from selected 

catchments in Peninsular of Malaysia.  There are four catchments being selected for 

analysis and modelling.  Those stations have sufficient length of records and fairly good 

quality of data.  Those are Sungai Bekok (Johor, Malaysia), Sungai Ketil (Kedah, 

Malaysia), Sungai Klang (Kuala Lumpur, Malaysia), and Sungai Slim (Perak, Malaysia) 

catchments.  Those sites were selected to demonstrate the development and application of 

ANN, multiple linear regression (MLR), XP-SWMM and HEC-HMS models.  It is 

emphasized that the MLR model is only applied to model the daily rainfall-runoff for 

those catchments.  The data required to carry out this study are catchment physical data, 

rainfall and river (at catchments outlet).  The data of all these gauges is recorded and 

maintained by Department of Drainage and Irrigation (DID) Malaysia. 

 

This study is subjected to the following limitations: 

(i) Analyses treat the catchment as one single catchment.  No sub-division of 

catchment is carried out. 

(ii) It is assumed that the HEC-HMS and XP-SWMM can be applied to a big 

catchment without sub-division. 
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(iii) The available observed data for analysis are rainfall, runoff or streamflow, 

evapotranspiration, and size of the catchment area.  Other data or 

parameters such as time of concentration, runoff coefficient and 

infiltration loss coefficient in the HEC-HMS and XP-SWMM will be 

estimated. 

 

 

 

1.5 Significance of the Study 

 

The relationship, or the operation of transforming the input (rainfall) into the 

output (runoff), is implied uniquely by any corresponding input-output pair.  This 

relationship can be abstracted and used to find the output for any arbitrary input or, the 

input corresponding to any given output, though, in practice, in analysing systems which 

are not exactly linear time variant, or where the data are subject to errors.  Problems may 

arise both in identifying the operation or in computing an input corresponding to a given 

output function of time (Singh, 1982).  Overton and Meadows (1976) defined 

mathematical model as, “a quantitative expression of a process or phenomenon one is 

observing, analyzing, or predicting”.  Meanwhile, Woolhiser and Brakensiek (1982) 

defined mathematical model as, “a symbolic, usually mathematical representation of an 

idealized situation that has the important structural properties of the real system.  

Mathematical models that require precise knowledge of all the contributing variables, a 

trained artificial intelligence such as neural networks can estimate process behaviour 

even with incomplete information.  It is a proven fact that neural networks have a strong 

generalization ability, which means that once they have been properly trained, they are 

able to provide accurate results even for cases they have never seen before (Hecht-

Nielsen, 1991; Haykin, 1994).  This generalization capability provides an understanding 

of how the runoff hydrograph system can respond under different rainfall and catchments 

characteristics.  
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Most synthetic procedures for estimating design flood hydrographs are 

deterministic in that the design flood is derived from a hypothetical design storm.  A 

review of some of the more widely used procedures for estimating design flood 

hydrographs has been made by Cordery et. al. (1970).  Three basic steps are common to 

this methodology of flood estimation: (1) the specification of the design storm of which 

the important characteristics are usually the recurrence interval, the total rainfall volume, 

the areal distribution of rainfall over the catchment, the temporal distribution of rainfall, 

and the duration of rainfall; (2) the estimation of the runoff volume resulting from the 

design storm; and (3) the estimation of the time distribution of runoff from the catchment.  

Over recent years there have been numerous and diverse techniques developed for 

estimating all of the above components.  Today, most urban drainage systems in the 

tropical regions are relying upon the ‘old concept’ of rapid stormwater disposal 

determined from tradition rainfall-runoff modelling approach.  The obvious negative 

impacts of urbanization towards water balance are increased stormwater runoff, 

degradation of water quality, recession of the water table and reduction of roughness and 

thus time of concentration.  Therefore, in view of the importance of the relationship 

between rainfall-runoff, the present study was undertaken in order to develop predicting 

models that can be used to provide reliable and accurate estimates of runoff. 

 

 

 

1.6 Structure of the Thesis 

 

This thesis consists of five chapters.  The first chapter presents the introduction of 

this study, and outlined the objectives and scopes of this research. A review of the 

relevant literature is presented in Chapter 2.  The proposed models for rainfall-runoff 

modelling are described in Chapter 3.  The fundamentals and concepts of rainfall-runoff 

relationship, and also the concepts of hydrology modelling are discussed in detail in 

Chapter 3.  The description of selected catchments area, as well as the current catchment 

management practice and related problems also discussed in this chapter.  Meanwhile, 

results and discussions are presented in Chapter 4.  Results of the Multilayer Perceptron 
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(MLP) model were discussed in sub-topic 4.2 and results of the Radial Basis Function 

(RBF) model were discussed in sub-topic 4.3.  Meanwhile, results of the Multiple Linear 

Regression (MLR), HEC-HMS and XP-SWMM were discussed in sub-topic 4.4, 4.5 and 

4.6 respectively.  The results and discussions involving the application and performance 

of the proposed models, the robustness and limitation of the model, river basin 

characteristics, etc. were discussed in detail in sub-topic 4.7.  Finally, in the last chapter, 

conclusions from the present study are summarized and recommendations for future 

studies are outlined. 
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	CHAPTER 5 
	(c) The performance of the MLR, HEC-HMS and SWMM models are moderate. According to the coefficient of efficiency of the model, it was found that the performance of those models is unsatisfactory.  For both calibration and validation processes, the MLR, HEC-HMS and SWMM also take a longer time compared to the ANN models.  Furthermore, this evaluation is based on several limitations such as; (1) no sub-divide of the catchment area and (2) no observed data on infiltration, abstraction and moisture content. 
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