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ABSTRACT 

 

 

 

Modeling of fluid flow in porous media and predicting its performance is one 
of the important subjects in petroleum engineering. This research reports the 
development of a lattice gas automata method to study and simulate a single-phase 
and two-phase flow in heterogeneous porous media as an alternative to conventional 
methods (finite difference and finite element).  In this work, the FHP-II (Frisch, 
Hasslacher and Pomeau, FHP) model of lattice gas automata was developed to 
simulate microscopic fluid flow and estimate the macroscopic properties of 
heterogeneous porous media.  Heterogeneity of the porous media was constructed by 
placing solid obstacles randomly in a two-dimensional test volume.  Effects of grain 
shape and size geometry, and their distribution in the porous media were taken into 
account. In addition, macroscopic properties of the heterogeneous porous media 
were estimated in terms of the shape, size, number of the solid obstacles and by the 
distribution of the solid obstacles within the volume. 

 
In the single-phase flow simulation part, a heterogeneous porous media was 

constructed, and correlations between various macroscopic properties, i.e., 
tortuosity, specific surface area, effective porosity and permeability were obtained. 
In the two-phase flow simulation part, the phase separation of the two immiscible 
fluids was described.  Furthermore, the surface tension and capillary pressure were 
also estimated.  The displacement mechanisms of carbon dioxide to displace oil and 
displacement efficiency of the process in the heterogeneous porous media were also 
predicted. Generally, the lattice gas automata simulation produced similar results 
with previous researchers and experiments.  Errors of between 10% and 25% were 
associated with the computed results from the single-phase flow simulation part for 
the permeability prediction, compared with the laboratory experiments, while for the 
immiscible fluids displacement process it was less than 5%.  Based on the results, it 
is obvious that the lattice gas automata method was indeed capable of being applied 
in petroleum engineering for simulation of a single-phase and two-phase flow in 
heterogeneous porous media. 
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ABSTRAK 

 

 

 

Permodelan dan kesan peramalan aliran bendalir di dalam media berliang 
merupakan suatu subjek yang penting di dalam kejuruteraan petroleum.  Kajian ini 
melaporkan tentang pembangunan model kekisi gas automata untuk melakukan 
pembelajaran dan penyelakuan aliran bendalir satu fasa dan dua fasa melalui media 
berliang yang heterogen sebagai pilihan lain daripada penggunaan kaedah 
konvensional (perbezaan terhad dan perbezaan elemen).  Di dalam kajian ini, model 
FHP-II (Frisch, Hasslacher and Pomeau, FHP) dari kekisi gas automata dibangunkan 
untuk menyelakukan aliran mikroskopik dan pengiraan sifat makroskopik di dalam 
media berliang yang heterogen.  Keheterogenan media berliang dilukiskan oleh 
penempatan pepejal yang acak di dalam pengujian dua dimensi.  Kesan daripada 
geometri bentuk butiran dan saiz, dan agihannya di dalam media berliang diambil 
perhatian.   Selanjutnya, sifat makroskopik di dalam media berliang yang heterogen 
diperkirakan berazaskan bentuk, saiz, bilangan daripada pepejal dan agihan daripada 
pepejal tersebut di dalam merintangi aliran bendalir terhadap volume. 

 
Pada bahagian penyelakuan aliran satu fasa, sifat heterogen daripada media 

berliang boleh dibangunkan, dan korelasi-korelasi diantara pelbagai parameter 
makroskopik, iaitu tortuositi, luas permukaan spesifik, keliangan efektif dan 
ketertelapan telahpun diperolehi.  Sementara itu dalam penyelakuan aliran dua fasa, 
pemisahan fasa daripada dua bendalir yang tak larut campur boleh dilukisan, dan 
tegangan permukaan serta tekanan rerambut boleh diperkirakan. Mekanisma 
penyesaran karbon dioksida yang menyesarkan minyak dan kecekapan penyesaran di 
dalam media berliang telahpun diramalkan.  Pada amnya, hasil yang memuaskan dari 
penyelakuan kekisi gas automata dengan hasil penyelidik terdahulu dan keputusan 
kajian makmal telahpun diperolehi.  Keputusan penyelakuan untuk peramalan 
ketertelapan pada model satu fasa terdapat kesalahan perhitungan yang berjulat 
antara 10% sehingga 25%, jika diperbandingkan dengan kajian makmal, seterusnya 
untuk proses penyesaran tak larut campur kurang dari 5 %. Berdasarkan keputusan 
tersebut, kaedah kekisi gas automata adalah benar kapabel untuk diaplikasikan di 
dalam kejuruteran petroleum guna menyelakukan aliran satu dan dua fasa di dalam 
media berliang yang heterogen. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 This chapter describes the background of the lattice gas automata methods as 

a numerical method for simulation of fluid flow in porous media.  Simulation studies 

conducted by previous researchers are also reviewed.  Objectives and scope of work 

based on the statement problem of the research are also described.  Finally, the 

chapter provides an overview of the content of this thesis. 

 

 

 

1.1 Background 

 

 Modeling of fluid flow in porous media for both single-phase and two-phase 

flows is of importance in petroleum engineering.  Most models for reservoir 

simulations are on the scale of centimeter to hundred of meters.  Usually, increasing 

resolution in geological measurements result in finer geological models.  Many 

numerical methods have been developed to simulate fluid flow in porous media. 

Numerical models of fluid flow in porous media can be developed from either 

microscopic or macroscopic properties.  Attention is then typically focused on the 

determination of the petrophysical properties of the porous media and its 

performance based on the microscopic pore-space geometry.  Due to the intrinsic 

inhomogeneity of porous media makes the application of proper boundary conditions 

difficult.  Hence, microscopic flow calculations have typically been achieved with 

idealized arrays of geometrically simple pores and throats. 
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 Because fluid flow in porous media is an important subject in petroleum 

engineering, numerous theoretical and experimental studies have attempted to 

investigate its performance.  Rothman (1988), reported that although these 

investigations are diverse in approach, they can be classified broadly into three 

categories based on their use of microscopic data.  First, some studies employ no 

microscopic data at all; these studies attempt instead to relate macroscopic rock 

properties, such as relating permeability to resistivity and porosity (e.g., Walsh and 

Brace, 1984; Paterson, 1983).  In the second category are studies that collect 

microscopic data on pore-space geometry, usually via microscopic and digital image 

analysis (e.g., Lin and Cohen, 1982), and then compute macroscopic statistics from 

these microscopic data in attempt to relate their macroscopic rock properties to the 

statistical properties (e.g., Berryman and Blair, 1986; Lin et al., 1986).  The third 

category is based entirely on microscopic rock geometry (e.g., Koplik et al., 1986).  

 

 The finite difference and finite element methods have been useful for 

simulating single-phase and two-phase flow in porous media, and have been used 

extensively.  Numerical methods based on the finite difference approximation of the 

governing equations are probably the most commonly used tools for simulating the 

single-phase and two-phase flow process, and predicting their performance.  In 

practice, the porous media are usually represented by discrete grid block, and transfer 

of each constituent being tracked is computed across each block face for a succession 

of small time increments.  Finite difference or finite element methods use floating-

point numbers to describe properties, a large number of grid blocks are often 

required, and appropriate boundary conditions are difficult to be applied.  As a result, 

they may not be the most efficient numerical method for this problem.  

 

 Despite this extensive study, Dullien (1979), shown that theoretical estimates 

of macroscopic rock properties are often in error by as much as an order of 

magnitude or more.  The lack of success of these theoretical models, however, could 

be the result of faulty flow models, inadequate representations of pore space, or both.  

In this research, a different approach is used to model the fluid flow in heterogeneous 

porous media.  The difference between this work and the existing theoretical 

literature (finite element and/or finite difference methods) on fluid flow in porous 

media lies in the numerical method used to model the fluid flow.  The numerical 
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method used is Lattice Gas Automata.  This alternative method was first introduced 

by Hardy et al. (1973; 1976) and was extended by Frisch et al. (1986; 1987), for the 

computational of fluid dynamic.  The method is based on the knowledge of 

microscopic rock geometry, which falls in the third category detailed above.  This is 

due to the microgeometric space as the Navier-Stokes equations are solved 

numerically with appropriate boundary conditions.  Therefore, the results obtained 

with the lattice gas automata should agree well with the experimental results insofar 

as the microscopic model adequately represents the real porous media.  Hence, lattice 

gas automata methods are applicable to the study of fluid flow in porous media. 

 

 Dullien (1979), also reported that previous numerical techniques have 

typically employed an array of geometrically simple pores and throats; the results 

have been approximate models of the microscopic flow.  Recent advances in fluid 

mechanics (Frisch et al., 1986) and computer science (Margolus et al., 1986), 

suggest that accurate calculations of microscopic flow are practicable in arbitrarily 

complex pore-space geometry.  Rothman (1988), also reported that the relevant 

advance in fluid mechanics is the advent of the discrete lattice gas automata.  

Although lattice gas automata can be implemented on any computer, massively 

parallel machines and certain special-purpose computer, perform these flow 

computations considerably more efficiently than conventional methods (finite 

difference and finite element).  The utility of lattice gas automata for computations of 

fluid flow in porous media, stems from the ease with which computations are made 

in grossly irregular geometries, where no special grids blocks are required, and 

appropriate boundary conditions are easily applied at all solid-fluid boundaries. 

 

Lee et al. (1993), used the lattice gas automata method for hydrodynamic 

calculations.  The lattice gas automata method employs interactions of discrete fluids 

on a regular lattice analogous to microscopic molecular dynamics.  Therefore, a 

complex system can be simulated by simple rules of particle interactions at a lattice. 

Macroscopic variables are then recovered by averaging over a spatial and temporal 

space.  Computationally this method has two main advantages over conventional 

methods.  Firstly, the mathematical operations are mainly bit manipulation, which 

provides memory efficiency, thereby easily simulating a very large system.  

Secondly, the algorithm is inherently parallel. 
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The microscopic and macroscopic nature and bit basis of lattice gas automata 

means it is also endowed with several other attractive features, as follows (Biggs et 

al., 1998): (a) it replaces costly floating-point calculations with fewer Boolean and/or 

table look-up operations; (b) each point in space demands significantly less memory; 

and (c) boundary conditions are easily and simply applied even for complex 

geometries such as those found within porous solid. 

 

The lattice gas automata model for the numerical solution of the Navier-

Stokes equations provide the lattice gas model with sufficient symmetry and the local 

rules for collisions between particles obey the conservation law as presented by 

Frisch et al. (1986), and d’Humieres and Lallemand (1986).  In their model, time, 

space, mass and velocity of microscopic fluid particles are all discrete.  Macroscopic 

properties can be obtained from averaging microscopic properties over time and 

space domains.  

 

Wolfram (1986), showed that the macroscopic behaviour of certain cellular 

automata correspond to the Navier-Stokes equations for fluid flow.  He derived the 

kinetic and hydrodynamic equations for a particular cellular automata field.  Slightly 

modified Navier-Stokes equations were obtained in two and three dimensions with 

certain lattices.  Viscosity and other transport coefficients were calculated using the 

Boltzmann transport equation approximation.  He showed that the cellular automata 

method could potentially be applied to a wide variety of processes conventionally 

described at a macroscopic scale by partial differential equations.  

 

There are numerous research and publications on the applications of lattice 

gas automata in hydrodynamics, but there are only a handful of studies related to 

applications in porous media.  The first work was that of Balasubramanian et al. 

(1987).  They created the FHP-I model of lattice gas automata to study fluid flow in 

porous media.  Balasubramanian et al. (1987) and Hayot (1987), introduced into the 

lattice gas model a random distribution of fixed points scatterers.  The Navier-Stokes 

equation was modified by introducing a damping terms which is proportional to 

velocity.  Then, Darcy’s law obtained and permeability was related to the scatterers 

of particles density.  Even though the permeability of porous media can be obtained, 

the effects of grain sizes distribution in porous media was not taken into account. 
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Rothman (1988), showed that lattice gas automata fluids could be applied to 

the study of flow in porous media.  The complex geometry of the porous media 

simulated by placing solid obstacles of specific shapes in the fluid and imposing a 

no-slip boundary condition on all nodes within this boundary.  The loss in 

momentum was related to the pressure gradient.  Rothman’s model, in principle, 

allows for the incorporation of pore and grain shapes of arbitrary complexity.  This is 

very useful in the calculations of permeability.  Where, the permeability calculated 

by Rothman is based on Darcy’s equation.  However, other approach using other 

equations such as the Carman-Kozeny equation is still required in predicting of 

permeability. 

 

Zhang (1989), illustrated the linear and nonlinear behaviour of lattice gas 

automata for simulating fluid flow in porous media, as derived from relevant 

boundary conditions and creating a pressure gradient from Darcy’s law.  Stauffer 

(1991), applied the lattice gas automata model in fluid mechanics and summarized 

the results for applications in flow through porous medium.  Chen et al. (1991b), 

used the lattice gas automata model to study the variation of the Forcheimer equation 

parameters as a function of Reynolds number for a two-dimensions porous solid 

model.  While Knackstedt et al. (1993), used the lattice gas automata model on two-

dimension porous solid to confirm the existence of a scaling law for the dynamic 

permeability.  Gao (1994), also used lattice gas automata model to study the effect of 

structure on the petrophysical properties of porous media and dispersion within a 

porous solid or pores.  Based on these studies, it is shown that lattice gas automata 

can be applied to simulate fluid flow in porous media.  However, studies have been 

conducted mostly in the area of homogeneous porous media.  Hence, extensive work 

is needed to apply the lattice gas automata model in heterogeneous porous media. 

 

 Furthermore, the first lattice gas automata model on the study of immiscible 

fluids was that of Rothman and Keller (1988), called immiscible lattice gas (ILG) 

model.  The model was originally developed for two immiscible species in two-

dimensions.  The two-dimension immiscible lattice gas model builds upon the 

original FHP models (Frisch et al., 1986; d’Humieres et al., 1987), with additional 

requirement of species conservation during collision.  The separation of two species 

into separate phase was induced by biasing collision outcomes in such a way that 
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black particles head towards regions of highest black particle concentration, and vice 

versa for red particles.  Rem and Somers (1989), developed the immiscible lattice gas 

algorithm to calculate the colour gradients at each site using concentration from 

adjacent site for flow involving solid surfaces such as those within porous media.  

 

 Zaleski et al. (1990), developed a theoretical basis of the phase separation 

algorithm based on Boltzmann assumption.  Based on this assumption, the 

immiscible lattice gas reproduced Laplace’s equation for droplets within a stationary 

mixture (Zaleski et al., 1990; Somers et al., 1991).  Furthermore, the immiscible 

lattice gas model was used by Flekkoy and Rothman (1995), to study the interface 

between two immiscible fluids, while Boghosian et al. (1996), extended the method 

to the study of emulsions.  All these studies essentially used for phase separation 

simulation and to estimate surface tension of two immiscible fluids.  However, the 

extension study to estimate specifically the interface width and capillary pressure has 

not been discussed yet.  Capillary pressure is one of the important parameters which 

needs to be identified in order to displace oil in the reservoir by the other fluids when 

two immiscible fluids are in contact. 

 

Based on the review of the simulation studies conducted by previous 

researchers, it is shown that majority of previous studies concentrated on the 

development of lattice gas automata as a tool for permeability prediction on 

homogeneous porous media based on Darcy’s equation and validation of scaling 

laws for this property.  Further work is required to conduct research on the 

application of lattice gas automata for simulation of a single-phase and two-phase 

fluid flow in heterogeneous porous media.  These simulation works are motivated by 

the fact that laboratory experimental determination of macroscopic properties and 

fluid flow behaviour of heterogeneous porous media can be expensive and time 

consuming, and limited to relatively small samples compared to the applications on 

real porous media.  Besides that, the laboratory displacement experiments are usually 

conducted on sandpack and cores.  Unfortunately these experiments do not allow us 

to observe directly the physics of the displacement on the microscopic pore level, 

such as displacement mechanisms and mechanism of residual oil saturation. 
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1.2 Statement of Problem 

 

 Numerous simulation studies have been established regarding fluid flow in 

porous media.  A great many researches had employed different numerical methods 

to reach different objectives.  Among the numerical methods used is the lattice gas 

automata method that shows a promising future for use in simulation systems with 

potential capability of predictions.  Unfortunately, most of these studies have not 

considered some aspects of fluid flow in porous media.  For instance, most of the 

researches of lattice gas automata method have focused on homogeneous porous 

media. 

 

 In such studies, aspects of the disordered morphology such as pore size 

geometry and distribution on the pore space have not been taken into account with 

only general assumption made on the homogeneous porous media.  Although, such 

assumptions seem quite ideal, they lead to limited applicability of these studies since 

almost all porous media considered in petroleum engineering are of that type which 

composes a heterogeneous structure.  A comprehensive study is thus required to take 

these aspects into consideration.  Such a study would be essential to enhance the 

applicability of the lattice gas automata method.  In addition, the inclusion of such 

aspects are expected to improve the understanding of the effects of heterogeneity on 

the fluid flow process through porous media in both single-phase and two-phase fluid 

flow, which is of importance in reservoir engineering.  Furthermore, it is also 

important for other relevant processes, such as phase separation of two immiscible 

fluids and immiscible fluids displacement.  

 

 Assumption on heterogeneous porous media requires focusing on the effects 

of grain shape and size geometry and its distribution on the pore space both for 

single-phase and two-phase fluid flow.  These specific problems call for studies of 

the macroscopic properties of heterogeneous porous media, the fluid flow behaviour, 

and performance of lattice gas automata method to predict these properties.  All these 

prescribed lines will bring the whole system to the main question, i.e., is the lattice 

gas automata method capable of describing the single-phase and two-phase fluid 

flow in heterogeneous porous media. 
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 In summary, the following problems are addressed:  

a. Most corresponding studies utilizing lattice gas automata method have assumed a 

homogeneous porous media, which is not the case in most cases of real porous 

media. 

b. A heterogeneous porous media is always the real media as it allows the study of 

the effects of grain size geometry and distribution on the pore space on fluid flow 

and immiscible displacement process. 

c. Lack of studies dealing with these aspects for both single-phase and two-phase 

fluid flow in heterogeneous porous media. 

d. Comprehensive studies of the macroscopic properties, displacement mechanisms 

of the immiscible displacement process in the heterogeneous porous media, and 

phase separation of two immiscible fluids are essential in order to reach an 

appreciable solution for the problems in question.  

 

 

 

1.3 Objectives of the Research 

 

 In order to solve the problems above, the objectives of the research are as 

follows: 
 
a. To formulate a micro level model that can describe a single-phase and two-phase 

fluid flow through heterogeneous porous media in two-dimensions.  

b. To determine the macroscopic properties of heterogeneous porous media, i.e., 

tortuosity, specific surface area, effective porosity and permeability, and to 

correlate between those properties. 

c. To determine the effects of grain shape and size geometry and their distribution 

in the pore space on fluid flow and immiscible displacement processes.  

d. To study the phase separation, and estimate the surface tension and capillary 

pressure of two immiscible fluids in porous media. 

e. To determine the displacement mechanisms of displacing and displaced fluids, 

and to predict the displacement efficiency (ED) of the process in heterogeneous 

porous media. 
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1.4 Scope of Work 

 

Scope of work of the research, are as follows: 

 
1. To build a FHP-II model of lattice gas automata that can be used to simulate and 

study a single-phase flow in heterogeneous porous media.  Two sizes of models 

with 400x300 lattice units and 800x600 lattice units will be built.  
 
2. To build a FHP-II model of lattice gas automata that can be used to simulate and 

study a two-phase fluid separation (immiscible fluids) in porous media. Three 

sizes of models with 200x200 lattice units, 500x500 lattice units and 700x700 

lattice units will be built.  
 
3. To build a FHP-II model of lattice gas automata that can be used to simulate and 

study the immiscible displacement process in heterogeneous porous media. A 

model size of 800x600 lattice units will be built.  
 
4. To develop a two-dimensional simulator of a single-phase and two-phase fluid 

flow in heterogeneous porous media.  A computer programme will be written in 

Borland Delphi-5. 
 
5. To use a simulator to study:  

a. Effects of grain shape and size geometry of obstacles constructed 

representing the heterogeneous porous media to estimate the quantities of 

macroscopic reservoir rock properties, i.e., tortuosity, specific surface area, 

effective porosity and permeability.  Two types of shapes (spherical and 

rectangular) for three grains sizes (10, 20, and 30 lattice units) will be 

studied. 

b. Phase separation, surface tension and capillary pressure of two immiscible 

fluids.  

c. The displacement mechanisms of displacing and displaced fluids, and to 

predict the displacement efficiency (ED) of the process in heterogeneous 

porous media. 
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1.5 Outline of the Thesis 

 

 In Chapter 2, the properties of reservoir rock and fluid flow in porous media 

are discussed.  The properties of reservoir rocks are discussed in terms of porosity, 

permeability, tortuosity, fluid saturations, specific surface area, surface force and 

capillary pressure.  Reservoir heterogeneity, horizontal flow and the immiscible 

fluids displacement are also discussed.   

 

In Chapter 3, the lattice gas automata methods are described in detail.  This 

chapter covers types of lattice gas models and evolution of particles on the lattice.  In 

addition, initial conditions, boundary conditions, the Navier-Stokes equation of 

lattice gas automata, microscopic and macroscopic equations for the lattice gas 

model, fluid flow in porous media by lattice gas automata, and lattice gas model for 

immiscible fluids are also looked at.  

 

In Chapter 4, the lattice gas automata model is applied for simulation of a 

single-phase flow in heterogeneous porous media.  The model used is the FHP-II 

model of lattice gas automata.  Correlations between macroscopic parameters of 

transport phenomena in porous media, i.e., tortuosity, specific surface area, effective 

porosity and permeability are determined.  Comparison of the simulation results with 

results from previous research and laboratory experiments are also presented. 

 

In Chapter 5, the lattice gas automata model is applied to simulate a phase 

separation of two immiscible fluids.  The FHP-II model of lattice gas automata is 

used as the basis of the model.  The study focuses on the simulation of phase 

separation mechanisms of two immiscible fluids, estimation of surface tension based 

on Laplace’s equation, and estimation of the capillary pressure. 

  

In Chapter 6, the FHP-II model of lattice gas automata is applied to simulate 

the immiscible displacement process in heterogeneous porous media.  The 

displacement mechanisms and relative permeability curves are determined.  

Displacement efficiency (ED) of the process of displacing and displaced fluids is 

predicted.  Furthermore, comparison of the simulation results with prediction from 

previous research and laboratory experiments are also presented. 
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 Chapter 7 consists of the conclusions based on the findings of this research 

and the recommendations for future studies. 

 

 

 

1.6 Summary 

 

 Numerical simulations are increasingly used in the study of fluid flow in 

porous media.  They are often very useful in connecting theory with experiments, 

and they can also be used to reduce the number of experiments.  The use of lattice 

gas automata models is possible as an alternative method to the finite difference and 

finite element methods.  The next chapter will discuss the properties of reservoir 

rocks and fluid flow in porous media. 
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