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ABSTRACT 

 

 

 

 Grassroots synthesis of maximum water recovery network based on Pinch 

Analysis has been rather well established.  In contrast, less work has been done on 

retrofit of water network.  There is a clear need to develop procedures to retrofit an 

existing water network.  Four new systematic techniques for retrofit of water network 

based on Pinch Analysis concept have been developed in this work, i.e. retrofit of 

water network for mass transfer-based operations; retrofit of water network for non-

mass transfer-based operations; retrofit of water network with regeneration unit(s) 

optimisation; retrofit of water network with the addition of new regeneration unit(s).  

Retrofit technique for water network with mass transfer-based operations involves 

two key steps namely utility targeting and network design.  During targeting, utility 

and capital cost targets were determined for a particular capital expenditure.  Lastly, 

the existing network was retrofitted to meet the targets.  Retrofit method for non-

mass transfer-based operations precludes targeting and only requires retrofit design.  

A new graphical tool called concentration block diagram (CBD) has been introduced 

to diagnose, retrofit and evolve the existing water network.  The new techniques 

proposed for retrofit of water network with existing regeneration unit(s) 

optimisation/ additional new regeneration unit(s) consist of two stages.  The first 

stage locates the various retrofit targets, where utility savings and capital investment 

were determined for a range of process parameters (i.e. total flowrate and/or outlet 

concentration of the regeneration unit).  Next, the existing water network was re-

designed to achieve the chosen targets.  Application of the new retrofit techniques on 

paper mill plants proves that the techniques are both highly interactive as well as 

viable for implementation.  
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ABSTRAK 

 

 

 

 Sintesis asas bagi rangkaian perolehan air yang maksimum berdasarkan 

Analisis Pinch telah banyak diterokai.  Sebaliknya, hanya sedikit kajian yang telah 

dilakukan terhadap pengubahsuaian rangkaian air.  Ini jelas menunjukkan bahawa 

prosedur pengubahsuaian rangkaian air amat diperlukan.  Empat teknik baru yang 

sistematik bagi pengubahsuaian rangkaian air telah dibangunkan, khususnya, 

pengubahsuaian rangkaian air bagi operasi yang melibatkan pindah jisim; 

pengubahsuaian rangkaian air bagi operasi yang tidak melibatkan pindah jisim; 

pengubahsuaian rangkaian air dengan pengoptimuman unit penjanaan semula; 

pengubahsuaian rangkaian air dengan penambahan unit penjanaan semula.  Teknik 

pengubahsuaian rangkaian air bagi operasi yang melibatkan pindah jisim melibatkan 

dua langkah utama iaitu penetapan sasaran dan rekadentuk rangkaian air.  Semasa 

penetapan sasaran, sasaran utility dan kos modal telah diperolehi berdasarkan 

pelaburan yang tetap.  Akhirnya, rangkaian yang sedia ada diubahsuai untuk 

mencapai sasaran yang ditetapkan.  Pengubahsuaian rangkaian air bagi operasi yang 

tidak melibatkan pindah jisim hanya memerlukan pengubahsuaian rangkaian.  

Gambar rajah blok kepekatan telah diperkenalkan untuk menganalisis, mengubahsuai 

dan membangunkan rangkaian air yang sedia ada.  Teknik-teknik baru yang 

dicadangkan bagi pengubahsuaian rangkaian air dengan pengoptimuman unit 

penjanaan semula/ penambahan unit penjanaan semula melibatkan dua peringkat.  

Dalam peringkat pertama, beberapa sasaran pengubahsuaian termasuk pengurangan 

utiliti dan pelaburan telah diperolehi bagi satu lingkungan parameter proses.  

Seterusnya, rangkaian air yang sedia ada diubahsuai bagi mencapai sasaran yang 

telah ditetapkan.  Penggunaan teknik-teknik pengubahsuaian baru ini ke atas 

beberapa kajian kes kilang kertas telah membuktikan bahawa teknik-teknik ini 

adalah amat interaktif dan praktikal untuk dilaksanakan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Problem background 

 

Water is largely taken for granted as it is perceived as the most widely 

occurring substance in the Earth.  It is reported that 2.5 % of world water is 

freshwater while the rest is salt.  However, only 0.3 % of the world’s freshwater is 

available in rivers or lake.  Almost all the rest is held up by icecaps and glaciers or 

buried deep in underground aquifers (Figure 1.1) (Shiklomanov, 1999).   

 

Global freshwater consumption raised six fold between 1990 and 1995, which 

is more than twice the rate of population growth.  Thus, about one-third of the 

world’s population already lives in countries with moderate to high water stress 

(UNEP, 1999).  Current predictions are that by 2050 at least one in four people is 

likely to live in countries affected by chronic or recurring shortages of freshwater 

(World Water Assessment Programme, WWAP, 2000). 
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Figure 1.1: The water resources of earth (Shiklomanov, 1999) 

 

Demands for water come not only from the need to drink and the need to deal 

with waste.  The primary consumers of water include industry as well as agriculture 

sectors (Figure 1.2).  Consequently, water pollution created from these demands has 

significantly contributed towards the scarcity of freshwater in the world.  About two 

million tons of waste is dumped everyday into rivers, lakes and streams, with one 

litre of wastes sufficient to pollute about eight litre of water (WWAP, 2000).  

  

 
Figure 1.2: Global water use (UNEP, 1999) 

 

UNEP has also stated that industrial wastes are significant sources of water 

pollution.  Industrial wastes often give rise to contaminant with heavy metals and 

persistent organic compounds.  Some 300-500 million tons of heavy metals, solvent, 

toxic sludge and other wastes accumulate each year from industry (United Nations 

Agriculture 
(70%) 

Industry 
(22%) 

Domestic 
(8%) 
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Industrial Development Organisation, UNIDO, 1998).  Figure 1.3 shows the global 

estimates of emissions of organic water pollutants by different industry sector (World 

Bank, 2001).  A study of 15 Japanese cities showed that 30 % of all groundwater 

supplies are contaminated by chlorinated solvents from industry.  In some cases, the 

solvents from spills travelled as far as 10 km from the source of pollution.  As a 

result, strict enforcement of environmental regulations has been carried out to 

minimise the water pollution. 

 

 
 

Figure 1.3: Contributions of main industrial sectors to the production of organic 

water pollutants (a) high- income countries (b) low-income countries 

 

In most countries, industrial water tariff has been increasing from time to 

time.  One of the main reasons that causes this is the current inflation level, which 

resulted in higher chemical cost, labour cost and construction cost.  Besides, the need 

for more advanced wastewater treatment techniques with higher wastewater 

treatment costs to treat highly polluted water has also become one of the driving 

forces towards water tariff increment.  The need to fund addition of water utility to 

meet rising demand for clean fresh water has also causes water supply companies to 

increase the water tariff. 

 

Therefore, rising cost of industrial freshwater and stringent environmental 

regulations have been functional to reduce the water requirement from the industry.  

Thus, it became necessary for the industries to look for better water management 

(a) (b) 
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system to reduce their freshwater consumption and wastewater generation.  To solve 

this problem, many companies have applied the systematic technique based on water 

pinch analysis (WPA) through efficient water utilisation.       

 

Our experience and analysis have shown that WPA is well suited for 

grassroots design but has limitations when applied to existing processes.  This is 

mainly caused by the existence of numerous constraints and problems related to the 

operability of an existing plant.  Consequently, there is a need of new systematic 

techniques for retrofit of water network.   

 

 

 

1.2 The Water Management Hierarchy 

 

It is quite common to find the environmental issue considered during the last 

stage of process design.  Wastewater produced often goes through the end-of-pipe 

treatment where wastewater is treated with treatment processes such as biological 

treatment, filtration, membranes, etc. to a form suitable for discharged to the 

environment.   

 

Over the past decade, water minimisation through WPA has become an 

important issue in the chemical process industries to achieve optimum water utility 

network.  This approach does achieve beneficial goals such as reducing the water 

utility, bigger process throughput, lower capital and operating costs as well as 

improving the public perception towards the company.  

 

To obtain the optimum water utility design for a water network, Manan et al., 

(2004b) established a hierarchical approach for fresh water conservation called ZM 

water management hierarchy (Figure 1.4).  This is a general guideline for fresh water 

conservation.  The hierarchy consists of five levels, namely source elimination, 

source reduction, direct reuse, reclamation, and discharge after treatment.  Each level 

represents various water management options.  The levels are arranged in order of 

preference, from the most preferred option at the top of the hierarchy (level 1) to the 
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least preferred at the bottom (level 5).  Water minimisation is concerned with the first 

to the fourth level of the hierarchy. 

 

Source elimination and source reduction at the top of the hierarchy is 

concerned with the complete avoidance of fresh water usage.  When it is not possible 

to eliminate or reduce fresh water at source, wastewater recycling and regeneration 

should be considered.  Discharge after treatment should only be considered when 

wastewater cannot be recycled.  Through the ZM water management hierarchy, the 

end-of-pipe treatment may not be eliminated, but it will become economically 

legitimate. 

 

Figure 1.4: A holistic approach for water minimisation through the ZM Water 

Management Hierarchy (Manan et al., 2004b) 

 

 

 

1.3 Problem Statement 

 

Water is used in the process industry for a wide range of applications.  

Increased cost of wastewater treatment and rising demand for high quality industrial 

water have created a pressing need for efficient water utilisation and wastewater 

reuse.  The synthesis of optimal water utilisation networks has dealt with grass-root 

design, where the emphasis is on the minimisation of raw water and maximisation of 

Source  
Elimination 

Reuse 

Discharge after Treatment  

Regeneration Reuse 

Source  
Reduction 
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water reuse and regeneration.  To date, very little has been accomplished on the use 

of heuristic techniques for the retrofit of existing water network in contrast to the 

work done on grassroots designs.  There is a clear need to develop systematic 

techniques for water network retrofit with and without regeneration to help achieve 

water savings for existing processes.   

 

The water network retrofit problem is summarised as follows:  

 

Given a set of mass transfer-based and/or non-mass transfer-based water-using 

processes, with/without a set of treatment processes, it is desired to perform 

retrofit synthesis on the existing water network with/without integration of new 

treatment process(es) or optimisation of existing treatment process(es).  The 

various streams in the process are re-structured to simultaneously accomplish 

the best savings in operating costs, subject to a minimum payback period 

or/and maximum capital expenditure. 

 

 

 

1.4 Objective 

 

The main objective of this research is to develop new systematic techniques 

for the retrofit of water network with and without regeneration that includes utility 

targeting and/or network design.  

 

 

 

1.5 Scope of Research 

 

The scopes of this work include: 
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• Analysis of the state-of-art technique 

It involved analysis of the previous approach for retrofit, their 

advantages and disadvantages and the improvements required. 

 

• Development of retrofit targeting techniques  

Three new systematic targeting techniques for water network with 

and/or without regeneration have been established.  These procedures 

are used according to different types of water network.  Capital and 

operating costs as well as piping cost estimations are taken into 

consideration in these targeting procedures.  

 

• Establishment of retrofit design procedure  

A systematic retrofit design methodology has been introduced to meet 

the retrofit targets.  This methodology is also applicable for cases 

without retrofit targeting procedure.     

 

 

 

1.6 Research Contributions  

 

The main contributions of this research are summarised as follows: 

 

i. As far as it can be found in the literature, this is the first work on the 

Water Cascade Analysis (WCA)-based water network retrofit synthesis.  

The basic concept of pinch analysis for heat exchange network, mass 

exchange network and water network are the basic of this work.  

 

ii. A new systematic retrofit technique for water network with mass transfer-

based operations involving two key steps namely utility (water) targeting 

and network design has been established.  In the targeting stage, fresh 

water and wastewater targets, and capital cost targets were determined for 

a particular capital expenditure.  Lastly the existing network was 

retrofitted to meet the targets.   
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iii. A new systematic retrofit design methodology for non-mass transfer-

based operations has been established.  A new graphical tool called 

concentration block diagram (CBD) has been introduced to diagnose, 

retrofit and evolve the existing water network. 

 

iv. A new two-stage systematic technique for the retrofit of water network 

with existing regeneration unit(s) optimisation has been developed.  The 

first stage of the retrofit task was to locate the various retrofit targets, 

where utility savings and capital investment were determined for a range 

of process parameters (flowrate increment or outlet concentration 

reduction of the existing regeneration unit).  Next, the existing water 

network was re-designed to achieve the chosen targets.   

 

v. A new systematic retrofit methodology,  which incorporates new 

regeneration unit(s) into water network retrofit has been developed. In the 

targeting stage, retrofit targets (utility savings and capital investment) 

were determined for a range of process parameters (total flowrate and/or 

outlet concentration of the new regeneration unit) to obtain a savings 

versus investment curve.  Lastly the existing network was retrofitted to 

meet the targets.   

 

 

 

1.7 Summary of This Thesis 

 

In this thesis, a set of new systematic targeting and design techniques for the 

retrofit of water network have been developed.  The basic concept of pinch 

technology utilised for retrofit of heat integration and mass integration has been 

extended to retrofit of water network.  

 

Chapter 2 provides a review of the relevant theories of this thesis related to 

the development in pinch technology for heat exchange network, mass exchange 

network and water network.   
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A review of the relevant literatures of this thesis is provided in Chapter 3.   

The development of pinch technology for heat exchange network, mass exchange 

network and water network are reviewed.  Mathematical approaches for heat 

integration are also covered in these chapters.    

 

Chapter 4 gives an overview of the new retrofit methodologies for water 

network developed in this work.  Two new methods for retrofit water network are 

discussed.  These involve retrofit with mass transfer-based and of non-mass transfer-

based operations.  Retrofit targeting and design procedure for water network with 

mass transfer-based operations, which includes capital and operating costs 

constraints are presented.  For water network with non-mass transfer-based 

operations, only network design is described since no equipment investment other 

than those for pipework modifications is usually required during retrofit.   

 

The methodologies for water network retrofit with optimisation of existing 

regeneration units and addition of new regeneration units are also discussed in 

Chapter 4.  During retrofit targeting, various retrofit alternatives based on the 

different combinations of constraints to establish the optimum retrofit targets are 

examined.  To achieve the targets, retrofit design is then conducted.   

 

The detailed methodologies for retrofit of water network as well as the 

analysis and discussions of the results of applying the systematic retrofit techniques 

on different case studies are presented in Chapter 5. 

 

Chapter 6 concluded the thesis by summarising the main points and 

contributions discussed and exploring the potential area for future development for 

water network retrofit.    
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Figure 1.5: A flow diagram illustrating the conceptual link between the chapters 
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