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ABSTRACT 
 
 
 
 

The main objective of this study is to develop a novel inverse modeling 

technique, known as Fuzzy State Space Model (FSSM).  This model is used for 

optimization of input parameters in multivariable dynamic systems.  In this approach, 

the flexibility of fuzzy modeling is incorporated with the crisp state space models 

proposed in the modern control theory.  The vagueness and uncertainty of the 

parameters are represented in the model construction, as a way of increasing the 

available information in order to achieve a more precise model of reality.  

Subsequently, the inverse Fuzzy State Space algorithm is formulated for a multiple-

input single-output system, which leads to the derivation of Modified Optimized 

Defuzzified Value Theorem.  This algorithm is enhanced to address the optimization 

of parameters for a multiple-input multiple-output system, which leads to the 

derivation of an Extension of Optimized Defuzzified Value Theorem.  The proofs of 

these theorems are presented.  To facilitate the implementation of these algorithms, a 

semi-automated computational tool using Matlab® programming facilities is 

developed.  The effectiveness of this modeling approach is illustrated by implementing 

it to the state space model of a furnace system of a combined cycle power plant.  The 

results obtained in this application demonstrate that the proposed new modeling 

approach is reasonable and provides an innovative tool for decision-makers.  In 

addition, the investigations on the properties and characteristics of FSSM have 

resulted in the derivation of some lemma and theorems related to convexity and 

normality of the induced solution of the model, and bounded stability of  the Fuzzy 

State Space system.  Finally, the properties of the induced solution of a single FSSM 

are generalized to the multi-connected systems of FSSM.  Some algebraic views 

related to the systems of FSSM are also discussed. 
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ABSTRAK 
 
 
 

 
Objektif utama kajian ini adalah untuk membangunkan satu teknik pemodelan 

songsang yang baru, dikenali sebagai Model Keadaan Ruang Kabur (MKRK).  Model 

ini di gunakan untuk pengoptimuman parameter masukan dalam sistem dinamik multi-

pembolehubah.  Dalam pendekatan ini, pemodelan kabur yang fleksibel digabungkan 

dengan model keadaan ruang rangup dari teori kawalan moden.  Kesamaran dan 

ketidakpastian bagi parameter di wakili dalam pembentukan model, sebagai satu cara 

menambah maklumat supaya menghasilkan model yang lebih tepat.  Seterusnya, 

algoritma Keadaan Ruang Kabur dibentuk untuk sistem pelbagai-masukan keluaran-

tunggal, yang mana Teorem Nilai Penyahkaburan Optimum Ubahsuaian diterbitkan.  

Algoritma ini ditambahbaik untuk pengoptimuman parameter masukan bagi sistem 

pelbagai-masukan pelbagai-keluaran, yang mana Teorem Nilai Penyahkaburan 

Optimum Lanjutan diterbitkan.  Bukti teorem-teorem tersebut ditunjukkan.  Untuk 

memudahkan perlaksanaan algoritma ini, alat pengkomputeran separa-automotik 

menggunakan kemudahan pengaturcaraan Matlab® disediakan.  Keberkesanan 

pendekatan pemodelan ini ditunjukkan dengan perlaksanaan keatas model keadaan 

ruang sistem relau bagi sebuah loji janakuasa kitar padu.  Keputusan yang dihasilkan 

menunjukkan bahawa pendekatan pemodelan baru yang dicadangkan adalah 

berpatutan dan boleh menjadi satu alat yang innovatif kepada pembuat kataputus.  

Selain daripada itu, penyelidikan mengenai sifat dan ciri-ciri MKRK telah 

menghasilkan beberapa lemma dan teorem yang berkaitan dengan kecembungan dan 

normal bagi penyelesaian teraruh model , dan kestabilan terbatas bagi sistem Keadaan 

Ruang Kabur.  Akhir sekali, sifat-sifat penyelesaian teraruh bagi sebuah MKRK 

dilanjutkan kepada beberapa sistem MKRK yang berhubung.  Beberapa pandangan 

dari sudut algebra berkaitan dengan sistem MKRK juga dibincangkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Rationale 

The design of mathematical models of complex real-world systems is 

essential in many fields of science and engineering.  The need for new approaches 

and philosophies in modeling and control of complex industrial systems is much 

influenced by recent advances in information technology, increased market 

competition, the demand for low cost operation and energy efficiency.  In the 

electricity industry for example, power generation plants need to operate optimally in 

order to stay competitive, as even a small improvement in energy efficiency would 

involve substantial cost savings.  For a large complex system such as power 

generation plants, it is useful to decompose the system into subsystems or 

components that can be analyzed and understood separately.  The physical structure 

of the system often suggests a suitable subdivision.  The inverse concept, 

composition, is naturally applied to construct large systems from simple components 

or subsystems.  These subsystems can be interconnected in a flat or hierarchical 

structure such that an output of one subsystem becomes an input to another 

subsystem. 

The traditional “mechanistic” approach to modeling is based on a thorough 

understanding of the nature and behavior of the actual system, and on a suitable 

mathematical treatment that leads to the development of a model (Babuska, 1998).  

This approach is also termed as first-principle, physical or white-box modeling.  

However, the requirement for a good understanding of the physical background of 

the system has proven to be a severe limiting factor in practice, when complex and 
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poorly understood systems are considered.  Another approach for building 

mathematical models is called black-box modeling (Ljung, 1987).  In this approach, 

the modeling problem reduces to postulating an appropriate structure of the 

approximator, in order to correctly capture the dynamics and nonlinearity of the 

system.  A severe drawback of this approach is that the structure and parameters of 

these models usually do not have any physical significance, and therefore are less 

useful for industrial practice.  The limitations of these two approaches have led to the 

development of semi-mechanistic or grey-box modeling approaches (Lindskog, 

1997; Babuska, 1998).  This modeling technique combines the advantages of the 

white-box and black-box approaches.  The known parts of the system are modeled 

using physical knowledge, and the unknown or less certain parts are approximated 

using process data and black-box modeling structures with suitable approximation 

properties. 

Traditional grey-box approaches assume that the structure of the model is 

given directly as a parameterized mathematical function, which is based on physical 

principles.  However, for many real-world systems a great deal of information is 

provided by human experts, who describe the system verbally through vague, 

uncertain or imprecise statements.  The fact that humans are often able to manage 

complex tasks under significant uncertainty has stimulated the search for alternative 

modeling and control paradigms.   

The most relevant information about any system comes in one of three ways, 

that is: a mathematical model, sensory input and output data or measurement, and 

human expert knowledge.  The common factor in all these three sources is 

knowledge.  For many years, classical control designers began their effort with a 

mathematical model and did not go any further in acquiring more knowledge about 

the system (Jamshidi, 1997).  Today, control engineers can use all of the above 

sources of information.  Apart from a mathematical model whose utilization is clear, 

numerical input-output data can be used to develop an approximate model as well as 

a controller, based on the best available knowledge to treat uncertainties in the 

system.  A typical example of techniques that make use of human knowledge and 

deductive processes is fuzzy modeling.  Furthermore, fuzzy sets also provide a tool 
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for handling ill-conditioned or ill-posed problems, which exist as a result of 

combining measurements with engineering models.  The inverse problem (Hensel, 

1991), or more precisely the inverse modeling, is one type of ill-conditioned or ill-

posed problems.  In inverse modeling, the desired responses are given and a model is 

used to estimate the input parameters.  Thus, fuzzy models can be seen as logical 

models which use logical operators to establish qualitative relationships among the 

variables in the model.  At the same time, at the computational level, fuzzy models 

can be regarded as flexible mathematical structures, which can approximate a large 

class of nonlinear systems to a desired degree of accuracy (Zeng and Singh, 1995).  

This duality allows qualitative knowledge to be combined with quantitative data in a 

complementary way. 

Fuzzy sets were first proposed in the early 1960s by L. A. Zadeh as a general 

model of uncertainty encountered in engineering systems (Zadeh, 1965).  He wanted 

to generalize the traditional notion of set and statement to allow grades of 

memberships and truth values, respectively.  His efforts were prompted by the two 

main complications that arise during physical modeling in the real world 

(Zimmerman, 1985).  Firstly, many real situations are not crisp and resolute; hence 

they cannot be described precisely.  Secondly, the complete description of a real 

system often requires far more detailed data than a human being could ever recognize 

simultaneously, process and comprehend.  Thus, his approach emphasized modeling 

uncertainties that arise commonly in human thought processes.  According to him, a 

fundamental limitation of our ability to characterize complex dynamic systems is 

best captured by the “principle of incompatibility” (Zadeh, 1973).  Roughly, this 

principle states that the more complex a system is, the less is our ability to make 

precise yet relevant characterization about it.  The implication of this principle is two 

fold.  First, we may not be able to acquire a precise model at all in the conventional 

quantitative sense for a complex dynamic system.  In this case, we need to settle with 

a less precise alternative model formulism suitable to represent our knowledge about 

the system.  Second, even if we are able to obtain a precise quantitative model for a 

complex system, the precision offered by the model often reveals too many details of 

the system.  This tends to blur its critical characteristics which are useful for some 

specific purpose.  Therefore, it is essential that a complex system is modeled just at 

the right “resolution” without going into unnecessary details.  
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Based on this background discussion, this research presents a new inverse 

modeling technique for multivariable dynamic systems, called the Fuzzy State Space 

Model (FSSM).  The philosophy in the construction of this model is discussed in the 

next section.  In this model, the flexibility of fuzzy modeling is incorporated with the 

crisp state space models proposed in the modern control theory.  There are two 

important facts that make this modeling approach intuitively appealing.  Firstly, there 

are always uncertain factors affecting the system in a real-world modeling situation.  

This indicates that a complete physical model can hardly ever be constructed.  

However, uncertain factors can be taken care of by employing a sufficiently flexible 

model.  Secondly, the restriction on the flexibility to comply with prior knowledge is 

allowed in the modeling procedure. 

1.1.1 Approaches in Model Construction 

In the knowledge-based construction of the FSSM, three different kinds of 

models are considered.  The relations between these models are shown in Figure 1.1.  

From experience, intuition and expert knowledge, we build a mental model in our 

mind.  The verbal model is then formulated using “If…Then…” rules, which is a 

very common means of description in everyday life.  The verbal model can also be 

formulated based on fuzzy or uncertain descriptions such as “about 15”, “almost 40”, 

“around 600”.  To take account of these uncertainties in the model, the uncertain 

value parameters of the system are represented by fuzzy numbers (Kaufmann and 

Gupta, 1985) with their membership function derived from expert knowledge.  Fuzzy 

numbers, which are based on the concept of fuzzy sets (Zadeh, 1965), are used to 

analyze and manipulate approximate numeric values.  Thus, fuzzy sets serve as a 

smooth interface between qualitative variables and numerical domains of the inputs 

and outputs of the model. 
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Figure 1.1   Construction of the Fuzzy State Space Model 
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For system analysis and engineering purposes, mathematical models are often 

constructed, for instance, based on algebraic and differential or difference equations 

which are derived from physical laws.  For well-defined systems, these standard 

mathematical tools lead to good models, even though the modeling process is often 

very tedious.  However, most of the real-world systems are complex and nonlinear.  

An analytical approach for such systems is available only to a very limited extent 

(Bossel, 1994).  On the other hand, a well-developed set of analytical tools is readily 

available for linear systems.  Thus, linearization of nonlinear systems into linear 

systems plays an important role in this study.  The transformation of a nonlinear 

dynamic system into a linear state space model is presented in Figure 1.2.  

A nonlinear dynamic system with n inputs u1(t), u2(t), … , un(t),    m 
outputs y1(t), y2(t), … , ym(t) and p state variables  x1(t), x2(t), …, xp(t)  
may be described by vector functions 

x&   =  f (x(t), u(t), t) for   0 ≤ t < ∞   

 y  =  g (x(t), u(t), t) for   0 ≤ t < ∞  

 

LINEARIZATION

A linear state space model 
 (t) =  A x(t) + B u(t)  .  x&
  y(t)  =  C x(t) + D u(t)   

where A is the state matrix of order p, B is the p × n input matrix, C is 
an m × p output matrix and D is an m × n direct transmission matrix. 

Figure 1.2   Linearization of a nonlinear dynamic system 

The most important advantage of the crisp state space model is that the 

system dynamic properties are condensed in the model (Cao and Rees, 1995).  For 

example, stability of the system is examined from the state matrix A, and a controller 

can be designed based on the system model (A, B).  The system model gives both the 

external and internal behavior of the system.  Furthermore, the state space 

representation is suitable when the prior available knowledge allows to determine the 

structure of the system under study and to identify the state variables (Babuska and 

Verbruggen, 1996).  Therefore, FSSM can be seen as a modeling framework for 
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blending information of different kinds, qualitative as well as quantitative.  It can 

adequately process not only the given data, but also the associated uncertainty. 

The developed FSSM can be used to observe the influence of parameters on 

system behavior, and apply that knowledge to achieve a desired outcome.  The 

desired outcome is the “known” information, whereas the input parameters to 

achieve that outcome need to be deduced.  This is analogous to an inverse problem, 

where the measured response is given and a model is used to estimate input 

parameters.  Traditionally, such inverse problems have been addressed by repeated 

simulation of forward problems, for example Ordys et al. (1994), Ram and Patel 

(1998), which requires excessive computer time.  Thus, an inverse methodology 

using Fuzzy State Space algorithms is developed, whereby the manipulation of 

imprecise, uncertain quantities is considered.  This novel model provides algorithms 

that address inverse problem in multivariable systems directly.  To facilitate the 

implementation of this model, the algorithms are coded using Matlab® software 

packages to form a semi-automated computational tool.  Using this computational 

tool, the users can evaluate more alternatives in less time, and at the same time, the 

users can obtain more information on the performance of each of those alternatives.  

The effectiveness of this modeling approach is illustrated by implementing it 

in a furnace system of a combined cycle power plant, which is regarded as an 

important constituent in the heat treatment system of a boiler.  The objective of 

optimization of a furnace system is to minimize energy losses and, at the same time, 

to keep variables within constraints.  The theoretical basis that leads to the 

formulation of the mathematical model for the furnace system can be found in Ordys 

et al. (1994).  Based on this mathematical model, the state space model of the 

furnace system is developed.  Subsequently, the state space model is used in the 

implementation of the Fuzzy State Space algorithm of the furnace system by 

considering it as a multiple-input single-output (MISO) system.  The Fuzzy State 

Space algorithm is further enhanced and implemented in the furnace system by 

considering is as a multiple-input multiple-output (MIMO) system.  The results 

obtained in these implementations demonstrate that the proposed new modeling 

approach is promising, reasonable and effective (Razidah et al., 2002a, 2002b, 2004).  
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In this study, the furnace system of the combined cycle power plant is used as an 

illustration, but in general, the FSSM is applicable to any multivariable dynamic 

systems as long as the governing equations of the systems can be transformed into 

linear state space representations. 

1.1.2 Related Studies 

The current literature on fuzzy modeling clearly exhibits a wealth of diverse 

approaches to fuzzy modeling, supporting various methodological points of view and 

embracing distinct classes of models (Pedrycz, 1995).  The ideas of fuzzy models 

and fuzzy modeling have been formulated and analyzed from both the 

methodological and experimental standpoints.  There is no doubt that the 

methodology of fuzzy modeling is vital to any application of fuzzy sets. 

The terminology “Fuzzy State Space Models” was first cited in a publication 

by Won et al. (1995), where stability analysis and stabilization of the linguistic 

models using the “If…Then…” rules are discussed.  They deal with the fuzzy model 

proposed by Tanaka and Sugeno (1992) except that the fuzzy model is treated as a 

linear system having modeling uncertainties and the consequent part of each rule is 

represented by a state equation.  Won et al. (1995) used the term “linguistic fuzzy 

state space models” to be synonymous to linguistic fuzzy dynamic models.   

A few years later, Cao et al. (1999) proposed a new kind of dynamic fuzzy 

state space model based on dynamic fuzzy models (Cao and Rees, 1995), which are 

an extended structure of the fuzzy model used in Sugeno and Yasukawa (1993).  

They defined a dynamic fuzzy model for a single-input single-output system as 

follows: 

Rl: IF  z1  is  F1
l  AND … z2n is  F2n

l

THEN   x(t + 1)  =  Al x(t)  +  Bl u(t)            (1.1) 

             y(t)  =  Cl x(t)  +  d l

                l  =  1, 2,…, m 
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where Rl denotes the l th approximation inference rule.  m is the number of 

approximation inference rules, y(t) and u(t) are the output and input variables of the 

system, x(t) are the state variables, (Al, Bl, Cl, d l ) represent the crisp input and output 

relationship or dynamic properties of the system in the local region   where 

, and z(t)  =  [y(t),…, y(t – n + 1), u(t),…, u(t – n + 1)]        (1.2) 

lF

∏=
=

n

i
l

i
l FF 2

1

               =  (z1, z2,…, z2n) 

By using the fuzzy-inference methods described in Cao and Rees (1995), the 

dynamic fuzzy model (1.1) is expressed by the dynamic fuzzy state space model as 

follows: 

 x(t + 1)  =  Ax(t) + Bu(t) 

       y(t)  =  Cx(t) + D              (1.3) 

 where     ∑
=

µ=
m

l
ll AA

1
∑
=

µ=
m

l
ll BB

1

     ]1,0,...,0,0[=C ∑
=

µ=
m

l

l
ldD

1

In other words, the above dynamic fuzzy state space model (1.3) represents the 

evolution of the dynamic fuzzy model (1.1).  Subsequently, a parameter estimator is 

developed for a plant that can be represented by a dynamic fuzzy state space model 

(Cho et al., 2001).  The fuzzy controller is constructed from a fuzzy feedback 

linearization controller whose parameters are adjusted indirectly from the estimates 

of plant parameters.  Thus far and to the best of our knowledge, work reported in the 

literature related to fuzzy state space models has focused on the direct or forward 

modeling techniques for designs of controllers. 

On the contrary, the present study considers a new approach in the 

formulation of the Fuzzy State Space Model for solving inverse problems in 

multivariable dynamic systems, for both MISO and MIMO systems.  Fuzzy 

arithmetic and fuzzy number are used in the computation and evaluation of the 

influences of uncertain or vague parameters, which is different from the fuzzy rule-

based model used in the earlier studies.  In the fuzzy rule-based model, the number of 

rules needed to describe the multivariable system increases exponentially.  This is a 

drawback for real-world applications.  Fuzzy arithmetic and its operations have been 

the subject of many publications and several textbooks, for example Dubois and 
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Prade (1980), Kaufmann and Gupta (1985), Zimmerman (1985), Terano et al. 

(1987), Klir and Yuan (1995), Wang (1997).  Various applications of fuzzy 

arithmetic were reported in the literature, for example Dong and Wong (1987), Wood 

and Antonsson (1989), Giachetti and Young (1997), Hanss et al. (1998), Ahmad et 

al. (1997).  In this study, the approach of using fuzzy numbers in developing a fuzzy 

algorithm for MISO system, which was introduced by Ahmad (1998) and published 

in Ahmad et al. (2004) is of special interest.  He adopted the Level Interval 

Algorithm (Wood and Antonsson, 1989) and used algebraic equations for optimizing 

parameters of microstrip lines with the aim of minimizing crosstalk. 

In this study, we defined the Fuzzy State Space Model of a multivariable 

dynamic system as  

SgF : (t)  =  A x(t) + B x& u~ (t)  .  

y~ (t)   =  C x(t)              (1.4) 

where  u~ (t) denotes the fuzzified input vector [u1, u2,…, un]T  and  y~ (t)  denotes the 

fuzzified output vector  [y1, y2,…, ym]T  with initial conditions as  t0 = 0  and   

x0 = x(t0) = 0.  T is the vector or matrix transposition.  The elements of state matrix 

, input matrix , and output matrix  are known to a specified accuracy.   ppA × npB × pmC ×

The development of this new FSSM is elaborated in Chapter 4, where inverse Fuzzy 

State Space algorithms are formulated.  The uncertain value parameters of the system 

are represented by fuzzy numbers with their membership function derived from 

expert knowledge.  In many respects, fuzzy numbers depict the physical world more 

realistically than single-valued numbers, as the concept takes into account the fact 

that all phenomena have a degree of uncertainty.  The ability of this novel method to 

address inverse problems in multivariable systems directly, is an outstanding 

advantage especially in reducing computation time and cost.  At the same time, some 

valuable properties and characteristics of the induced solution of the FSSM are also 

established.  These properties are generalized to a multi-connected system of FSSM.  

In addition, we have laid some possible theory for systems of FSSM from the 

algebraic point of view. 
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1.2 Objectives of the Study 

The objectives of this study are as follows: 

(i) To develop a Fuzzy State Space Model for optimal input parameters estimation 

in a multivariable dynamic system. 

(ii) To derive and prove some important properties of the induced solution of the 

Fuzzy State Space Model. 

(iii) To implement the Fuzzy State Space Model in the furnace system of a 

combined cycle power plant. 

(iv) To generalize the properties of Fuzzy State Space Model to multi-connected 

systems. 

1.3 Implications of the Study 

The most significant advantage of this study is the ability to assess the 

condition of the multivariable dynamic systems at the preliminary design stage.  The 

Fuzzy State Space Model developed in this study can assist plant operators or 

designers to recommend a rational and systematic measure for optimizing the input 

parameters of any multivariable dynamic system.  The resulting model finally can be 

embedded into a special conception of fuzzy-model-based control.  At the same time, 

the outcomes of this study will be disseminated at the national and international level 

through journals, seminars and conferences. 

1.4 Scope of the Study 

The study involves developing a new inverse modeling approach for optimal 

input parameters estimation in multivariable dynamic systems.  In order to achieve 

the stated objectives, the scope of the study is divided into several major areas. 

 



 
 

12

S1. Development of the Fuzzy State Space Model. 

A new technique for optimal input parameters estimation for multivariable 

dynamic systems is developed, where the flexibility of fuzzy modeling is 

incorporated with the crisp state space models proposed in the modern control 

theory.  This leads to the development of the inverse Fuzzy State Space 

algorithm for a MISO system, which requires a derivation of a theorem for 

optimization.  A Modified Optimized Defuzzified Value Theorem is derived 

and proven.  Subsequently, the inverse Fuzzy State Space algorithm is 

enhanced to address the optimization of input parameters for a MIMO 

system.  For the MIMO system, an Extension of Optimized Defuzzified 

Value Theorem is derived and proven.  In this study, a dynamic system is one 

whose inputs and outputs are related by a set of differential (or difference) 

equations. 

S2. Software development of the Fuzzy State Space algorithm. 

Matlab® programming facilities are used in the development of a semi-

automated computational tool based on the inverse Fuzzy State Space 

algorithm.  For MISO and MIMO systems, two main programs are developed 

where the number of input parameters and the number of intervals used for 

accuracy are specified by the user.  Obviously, these values will affect the 

computation time of the programs.  Computation of the percentage errors for 

the input and output parameters are also included in the programs. This semi-

automated computational tool allows users to evaluate easily more 

alternatives in less time and at the same time; the users can obtain more 

information on the performance of each of these alternatives. 

S3. Properties of the induced solution of the FSSM 

Two important properties of the induced solution of the FSSM that are 

investigated in this study are convexity and normality.  Other properties that 

are studied include bounded-input bounded-output stability (BIBO) of the 

induced solution of the FSSM. 
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S4. Implementation of FSSM in the furnace system of a 
combined cycle power plant 

The theoretical concepts and the mathematical equations governing the 

process in the furnace system are used to develop the state space model.  The 

dynamic behavior of the furnace system is studied through state space 

analysis, which is similar to forward or direct modeling.  Subsequently, a 

FSSM for the furnace system is developed and tested using steady state 

operating data.  Next, the inverse Fuzzy State Space algorithms for MISO and 

MIMO systems are implemented in the furnace system.  These results are 

compared to the normally accepted simulation method. 

S5. Systems of FSSM  

The properties of the induced solution of a single FSSM are generalized to 

multi-connected systems of FSSM.  The induced properties considered in the 

present study are convexity, normality, BIBO stability and optimized input 

value parameter.  In addition, some algebraic views related to the systems of 

FSSM are discussed.  In particular, the characteristics of a system of FSSM 

are developed based on the basic properties of divisors and relations. 

1.5 Outline of the Thesis 

The thesis is organized into seven chapters: this introductory chapter, five 

main chapters and a chapter of overall conclusion.  Each main chapter is self 

contained, starting with an introduction and culminating with a summary.  The 

present chapter gives a description of the background and rationale in developing the 

new modeling technique, approaches in model construction, objectives, implications 

and the overall scope of the study.  A literature review on work related to the study is 

also presented. 

In Chapter 2, an overview of system models and the mathematical modeling 

of control systems are discussed.  This leads to a discussion on state space 
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representation and state space analysis of a multivariable dynamic system.  The 

chapter concludes with a description of uncertainties and inverse problems in system 

modeling, which are among the rationale behind the formulation of the system 

modeling framework in this study.  Chapter 3 describes the theoretical concepts and 

principles in fuzzy sets, which are particularly useful in the development of the 

Fuzzy State Space Modeling for solving inverse problems in multivariable dynamic 

systems.  This discussion includes the operations of fuzzy numbers and fuzzy 

arithmetic, as well as a literature review of some related studies on fuzzy arithmetic. 

The main contributions of this study are presented in the next three chapters.  

Chapter 4 describes the development of a new modeling technique known as the 

Fuzzy State Space Model.  The formulations of the Fuzzy State Space algorithms are 

presented in detail.  To facilitate the implementation of this model, the algorithms are 

coded using Matlab® software package to form a semi-automated computational tool 

for MISO and MIMO systems.  Five new theorems related to convexity, normality, 

optimized input value parameter and BIBO stability are derived and proven.  To 

show the effectiveness of this new modeling technique, the inverse Fuzzy State 

Space algorithms are implemented in the furnace system of a combined cycle power 

plant.  A detailed description of this procedure is illustrated in Chapter 5.  

Subsequently, a comparison between the results obtained using the inverse Fuzzy 

State Space algorithms and the forward simulation approach is presented. 

Chapter 6 is primarily concerned with multi-connected systems of FSSM, 

which are the composition of subsystems to form a complex system.  Five new 

theorems are derived and proven, which utilize the properties of FSSM for a single 

system discussed in Chapter 4.  In addition, some foundation for the possible theory 

of systems of FSSM from the algebraic point of view is presented.  In particular, the 

study is based on the ideas of divisor and relation in number theory.  Finally, Chapter 

7 contains a summary of research, the main contributions and findings of this study 

and several recommendations for further research work.  The organization of the 

thesis is summarized in Figure 1.3.  All the references in this thesis are listed in the 

reference section at the end of Chapter 7, which is followed by several appendices.  
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Figure 1.3   Organization of the Thesis 
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