
MESOPOROUS MCM-48 SYNTHESIZED FROM RICE HUSK ASH SILICA: 

PHYSICOCHEMICAL PROPERTIES AND ITS CATALYTIC ACTIVITY IN 

ACYLATION REACTION

LAU CHIN GUAN

UNIVERSITI TEKNOLOGI MALAYSIA



MESOPOROUS MCM-48 SYNTHESIZED FROM RICE HUSK ASH SILICA: 

PHYSICOCHEMICAL PROPERTIES AND ITS CATALYTIC ACTIVITY IN 

ACYLATION REACTION

LAU CHIN GUAN

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Science (Chemistry)

Faculty of Science

Universiti Teknologi Malaysia

MARCH 2005



iii

For the Lord Almighty,

my beloved family
and

specially for Yang Eik Hien



iv

ACKNOWLEDGEMENTS

Halleluyah! All praise, glory and thanks to almighty God for His amazing 

grace that led me throughout the whole process of completing this research. 

Heartfelt thanks to my project supervisor, Assoc. Prof. Dr. Salasiah Endud, 

who introduced me to the field of mesomorphous materials. Her patience, 

understanding, supervision and thoughtful guidance throughout this study is greatly 

appreciated. I am particularly grateful to MOSTI for financial support in this study 

through IRPA funding 09-02-06-0057-SR0005/09-04. 

I wish to express my special appreciation to Dr. Hadi Nur, the lecturer of 

Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 

for giving me worthy advices, valuable suggestions and constructive discussions 

particularly in the vision of scientific ethics for conducting a research. I would also 

like to thank Lim Kheng Wei for helping me to carry out the 27Al MAS NMR 

measurements. My appreciation is also extended to Norizah bt. Abdul Rahman who 

help me recorded field emission SEM images in University of Yamagata, Yonezawa, 

Japan. Not forgetting all of the laboratory staffs of Faculty Science and the member 

of Zeolite and Porous Materials Group (ZPMG), who have in many ways contributed 

and gave me moral support to the success of my study. 

I am grateful for my family’s ceaseless love and support whenever I need. 

My heartfelt thanks and gratitude to the church members of Inter-Vasity Christian 

Centre (IVCC) for their endless prayer and encouragement throughout the whole 

duration of this research.

The holistic life during this research is unable to be achieved without the 

companion of everyone mentioned. Kudos to all of you!! 



v

PREFACE

This thesis is the result of my work carried out in the Department of Chemistry,

Universiti Teknologi Malaysia between Jun 2002 to September 2004 under supervision

of Assoc. Prof. Dr. Salasiah Endud. Part of my work described in this thesis has been 

reported in the following publications:

1. Lau, C.G. and Endud, S. (2002). “Sintesis Bahan Mesoliang MCM-48

Menggunakan Campuran Templat Surfaktan Kationik dan Neutral.” Proceedings

of the Fifth UKM-ITB Joint Seminar on Chemistry. Bandar Hilir, Melaka. 16-17

July. 425-432.

2. Lim, K.W., Lau, C.G. and Endud, S. (2002). “High Surface Area Catalysts for 

Alkylation and Oxidation Reactions”. Poster presentation at the 15th Simposium 

Kimia Analisis Kebangsaan (SKAM-15). Universiti Sains Malaysia, Minden,

Pulau Pinang. 10-12 September. P 90.

3. Lau, C.G. and Endud, S. (2003). “Optimization of Synthesis of Mesoporous

Materials from Carbonaceous Rice Husk Ash”. Report for Post-Graduate Study

1st Assessment. Pusat Pengajian Siswazah, Universiti Teknologi Malaysia.

4. Lau, C.G. and Endud, S. (2003). “Synthesis of Mesoporous Materials from

Carbonaceous Rice Husk Ash (RHA) and Its Application As Catalyst In Friedel-

Crafts Reaction” Annual Meeting of Zeolite and Porous Materials Group. A

Farmosa, Melaka.



vi

5. Lau, C.G. and Endud, S. (2003). “Hydrothermal Stability of MCM-48

Mesoporous Molecular Sieves: Effect of Aluminium Content”. Proceedings of 

Annual Fundamental Science Studies. Johor Bahru, Johor. 20-21 May. 115-120.

6. Lau, C.G. and Endud, S. (2003). “Phase Transformation of Mesoporous

Molecular Sieves: Effect of Sodium Hydroxide.” Oral presentation at the 16th

Simposium Kimia Analisis Kebangsaan (SKAM-16), Universiti Malaysia

Sarawak, Kuching, Sarawak. 9-11 September 2003. 2C-01.

7. Nur, H., Lau, C.G., Endud, S. and Hamdan, H. (2004). “Quantitative

Measurement of A Mixture of Mesophases Cubic MCM-48 and Hexagonal

MCM-41 by 13C CP/MAS NMR” Materials Letters. 58. 1971-1974.

8. Lau, C.G., Nur, H. and Endud, S. (2004). “Preparation of MCM-48 with A

Bimodal Pore Size Structure by Post-Synthesis Alumination”. Oral presentation

at the Regional Symposium on Membrane Science & Technology 2004. Johor 

Bahru, Johor. 21-25 April. 

9. Lau, C.G., Nur, H. and Endud, S. (2004). “Highly Effective Cubic Aluminated 

Mesoporous Catalyst in Friedel-Crafts Acylation”. Proceedings of 2004 Annual 

Fundamental Science Seminar 2004. Skudai, Johor. 14-15 June. 

10. Lau, C. G., Nur, H. and Endud S. (2005). “Bimodal Pore Size Mesoporous

MCM-48 Materials Prepared by Post-Synthesis Alumination”. J. Phys. Sci.

(accepted ).



vii

ABSTRACT

The cubic structural mesoporous molecular sieves Si-MCM-48 has been successfully 
controlled by optimizing the gel compositions via a mixed surfactant templating 
route using cationic cetyltrimethylammonium bromide (CTABr) and neutral Triton 
X-100 (TX-100) surfactants. Rice husk ash, an agricultural waste obtained from an 
open burning site with high silica content (93 % SiO2) has been utilized as active 
silica reagent in the synthesis process. The Si-MCM-48 mesoporous materials were 
structurally characterized by X-Ray Powder Diffraction (XRD), and Fourier 
Transform Infrared Spectroscopy (FTIR). The results show that the crystallinity and 
phases of the products depend on the compositions of Na2O, surfactants, H2O and pH 
values. Moreover, 13C CP/MAS NMR technique had been developed to quantify a 
mixture of cubic MCM-48 and hexagonal MCM-41 mesophases by means of 
interpretation of their surfactant organization, which cannot be determined by XRD 
technique. In order to generate active sites for catalytic applications, alumino-
mesoporous materials Al-MCM-48 were prepared by post-synthesis alumination of 
mesoporous Si-MCM-48 and post-synthesis alumination of Si-MCM-48 mesophase 
using sodium aluminate as the aluminium reagent. The aluminated MCM-48 
materials were characterized using XRD, 27Al MAS NMR, FTIR and nitrogen 
adsorption-desorption measurements. The results reveal that unimodal Al-MCM-48, 
which possesses narrow pore size distribution around 26Å, had been synthesized 
from post-synthesis alumination of mesoporous Si-MCM-48. Whereas, bimodal Al-
MCM-48, which possesses dual narrow pore size distributions around 26 Å and 38 Å 
had been generated by post-synthesis alumination of uncalcined Si-MCM-48 
mesophase. 27Al MAS NMR results depict that aluminium had been tetrahedrally 
incorporated into the framework structure of MCM-48. The nature and the 
concentration of acid sites of Al-MCM-48 materials have been monitored by IR 
spectroscopy using pyridine as the probe molecule and temperature-programmed 
desorption of ammonia (TPDA). Acidity studies on the samples demonstrated that 
the acidity strength of samples prepared via post-synthesis alumination of 
mesoporous Si-MCM-48 is greater than samples prepared via post-synthesis 
alumination of Si-MCM-48 mesophase. Aluminated MCM-48 materials have been 
employed in the acylation of bulky aromatic compound, 2-methoxynaphthalene with 
acetic chloride to produce 2-acetyl-6-methoxynaphthalene, which is intermediate for 
preparing naproxen, a non-steroidal anti inflammation drug. Catalytic activities have 
been investigated in solvents with different polarity and the results illustrate that the 
conversion and selectivities of products rely on the polarity of solvent. The 
conversion of the 2-methoxynaphthalene can be as high as 42 % with 86 % 
selectivities towards the desired 2-acetyl-6-methoxynaphthalene in polar solvent, 
nitrobenzene. Whereas, the conversion of the 2-methoxynaphthalene is 30 % with 56 
% selectivity of 2-acetyl-6-methoxynaphthalene in non-polar solvent, cyclohexane. 
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ABSTRAK

Penapis molekul mesoliang Si-MCM-48 yang berbentuk kiub telah berjaya disintesis 
dengan mengoptimumkan komposisi gel melalui kaedah campuran surfaktan kationik 
setiltrimetilammonium bromida (CTABr) dan surfaktan neutral Triton X-100 (TX-
100). Abu sekam padi yang mempunyai kandungan silika yang tinggi (93 % SiO2), di 
mana ia diambil daripada kawasan pembakaran terbuka telah digunakan sebagai 
sumber silika yang aktif dalam proses sintesis ini. Struktur penapis molekul mesoliang 
Si-MCM-48 ini dicirikan dengan kaedah pembelauan sinar-X (XRD) dan spektroskopi 
inframerah transformasi Fourier (FTIR). Keputusan menunjukkan darjah kehabluran 
dan ketulenan fasa bahan mesoliang adalah bergantung kepada komposisi Na2O,
surfaktan, H2O dan nilai pH. Di samping itu, teknik 13C CP/PSA RMN telah 
digunakan untuk mengkaji ketulenan fasa campuran MCM-48 yang berfasa kiub dan 
MCM-41 yang berfasa heksagon secara kuantitatif, di mana ia tidak dapat dilakukan 
dengan menggunakan kaedah XRD. Aluminium MCM-48 (Al-MCM-48) telah 
disintesis dengan menggunakan dua kaedah pasca-sintesis untuk menghasilkan tapak 
aktif pemangkinan, iaitu, penyelitan aluminium ke dalam bingkaian Si-MCM-48 dan 
penyelitan aluminium ke dalam fasa meso Si-MCM-48 dengan menggunakan natrium 
aluminat sebagai sumber aluminium. Sampel Al-MCM-48 dicirikan dengan kaedah 
XRD, 27Al PSA RMN, FTIR dan penjerapan dan nyahjerapan nitrogen. Analisis 
penjerapan nitrogen menunjukkan liang Al-MCM-48 yang bersebar secara seragam 
dengan purata liang disekitar taburan 26 Å telah dihasilkan dengan menggunakan 
kaedah penyelitan aluminium ke dalam bingkaian bahan mesoliang Si-MCM-48. Di 
samping itu, Al-MCM-48 yang memiliki taburan dua jenis mesoliang yang tertabur di 
antara 26 Å dan 38 Å telah dihasilkan melalui kaedah penyelitan aluminium ke dalam 
fasa meso Si-MCM-48 tanpa kalsin. Keputusan 27Al PSA RMN menunjukkan 
aluminium bingkaian berkordinatan tetrahedral telah dihasilkan melalui kedua-dua 
kaedah tersebut. Jenis dan kepekatan tapak asid yang terdapat pada permukaan        
Al-MCM-48 telah ditentukan dengan menggunakan kaedah spektroskopi inframerah 
menggunakan piridina sebagai molekul prob dan kaedah nyahjerapan ammonia pada 
suhu terkawal (TPDA). Hasil kajian keasidan menunjukkan sampel yang disediakan 
melalui penyelitan aluminium ke dalam bingkaian bahan mesoliang Si-MCM-48 
adalah lebih kuat daripada sampel yang disediakan melalui penyelitan aluminium ke 
dalam fasa meso Si-MCM-48 tanpa kalsin. Potensi bahan Al-MCM-48 sebagai 
mangkin Friedel-Crafts telah diuji dengan menggunakan tindak balas pengasilan 
sebatian 2-metoksinaftalena dengan asetil klorida untuk menghasilkan 2-asetil-6-
metoksinaftalena, bahantara untuk menyediakan naproxen, ubat anti-keradangan yang 
non-steroid. Kajian aktiviti pemangkinan dengan menggunakan pelarut yang berlainan 
kepolaran menunjukkan peratus pertukaran dan kepilihan produk adalah bergantung 
kepada kepolaran pelarut. Peratus pertukaran 2-metoksinaftalena boleh mencapai 
setinggi 42 % dengan 86 % kepilihan kepada 2-asetil-6-metoksinaftalena di dalam 
pelarut polar (nitrobenzena). Di samping itu, peratus pertukaran 2-metoksinaftalena 
hanya sebanyak 30 % dengan 56 % kepilihan kepada 2-asetil-6-metoksinaftalena di 
dalam pelarut yang tidak polar (sikloheksana). 
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CHAPTER 1

INTRODUCTION

1.1 Green Chemistry for Sustainable Development

In the 21st century, building a sustainable future has been the greatest

challenge of the global society.  The development of science and technology has

become the crucial role in order to fulfilling current need and to preserve a well

living environment for the future generations.  Therefore, the public, legislative, and

environmentalists are urging the development of cleaner technologies to serve

mankind.  Hence, it has stimulated the exciting opportunities for catalysis and

catalytic processes.

Catalyst is a substance, which accelerates the rate of a chemical reaction

whilst it may be recovered chemically unchanged at the end of the reaction [1].  The 

presence of the catalyst is essential for (i) obtaining new structures, (ii) increasing the 

productivity, (iii) decreasing the raw materials and energy consumption, (iv)

minimizing the waste production and getting a better environment [2].

Catalysis is a privileged way to a clean and powerful chemistry.  Today,

catalysts play a vital role in the chemicals industry, with a total contribution of ca.

20% of the world GNP in the 20th century [3]. In addition, 80% of the industrial

reactions use catalysts.  The British agency Frost and Sullivan, which published a

study in 1998 [4] evaluated the catalysts European market to $ 3.7 billions turnover 

in 1998.  With about 4% growth per year, it should increase to $ 5 billions in 2005.
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1.2 Heterogeneous Catalysts

Catalysts can be classified into two categories, homogenous and

heterogeneous.  Homogenous catalyst is the catalyst, which presents in the same

phase as the reagents.  Sulfuric acid has been widely used as homogenous catalyst in 

the alkylations or isomerizations of hydrocarbon [5].  Whereas, catalysts are

heterogeneous if they are present in a different phase from the reactants.  One of the 

prominent heterogeneous catalysts is zeolites which are extensively employed in

petroleum refinery processes [6].

Heterogeneous catalysis is the backbone of the modern chemical industry,

because of the necessity to achieve environmental benign processes in the industry.

In addition, heterogeneous catalysts offer numerous potential advantages over

homogenous catalysts, such as easier working up procedures, easy catalyst separation 

from the reaction mixture, reduction of environmental pollutant, avoidance of salt

formation and waste disposals [7].

Since 1960s, zeolites catalysts have conquered the petroleum refining and

petrochemical industries.  This is due to the zeolites that have excellent thermal and 

chemical stability.  Moreover, zeolites provide great acid strength, which are

comparable to homogeneous acid catalysts [7]. The most important of these

processes are hydrocracking of heavy petroleum distillates, octane number

enhancement of light gasoline by isomerization, the isomerization of xylenes (to

produce para-xylene, the precursor chemical for terephthalic acid), and etc [6].

However, the utilization of zeolites in the areas of specialty and fine chemicals

synthesis is still limited, even though their potential is considered to be very high in

this area as well.  The small pore opening of zeolites, in the range of ca.  0.2-1 nm, is 

a major restriction for it to utilize in organic reactions [6].  The reactants with sizes 

exceeding the dimensions of the pore are not able to process via zeolites.  Therefore, 

numerous attempts have been devoted to increasing the pore size of crystalline

molecular sieves [8].

In 1992, a novel family of ordered silicate mesoporous molecular sieves,

designated as M41S has been discovered by researchers at Mobil R & D Corporation 
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[9].  The most important member among these materials is MCM-41 and MCM-48,

which possesses hexagonal and cubic symmetry, respectively. The uniqueness of

M41S mesoporous materials are the pore size are uniform and tunable in the range

between 1.6-10 nm.  Furthermore, these mesoporous materials also possess high

thermal stability and have extremely high surface areas.   This innovative discovery

has greatly expanded the area of microporous molecular sieves (zeolites) into the

mesopore range and has created new opportunities beyond catalysis.  The ordered

mesoporous materials have been found as promising materials in optics and

electronics, as nano size template, and as adsorbents for heavy metals [10].  The

rapid growing of publications in mesoporous materials since 1990 is shown in Figure 

1.1 [10].

Figure 1.1 Development of publications on ordered mesoporous materials since 

1990 [10].
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1.3 Research Background and Problem Statement

Malaysia has been found as one of the major rice production country,

whereby 425,080 hectares (3.21 % of the total land in peninsular Malayisia) of the

land have been used for paddy plantation [11].  Therefore, it generates abundance of 

waste namely rice husk, a thin but abrasive skin in nature covering the edible rice

kernel.  It has been reported that Malaysia produces a ca. 18 million tons of paddy in 

which about one fifth of it is the husk [12].  This means that the annual production of 

rice leaves behind about 3.6 million tons of husk as waste product, usually disposed 

by combustion.  Unfortunately, the 20 % of the rice husk ash (RHA) residues left

after the combustion constitute environmental problems due to severe air and water

pollution problems.  However, RHA can be considered as a potential feature of the 

rice husk, which the RHA residues can be employed as raw materials in a variety of

applications.

Previous research had shown that the rice husk ash containing 96-99% SiO2

can exist either in amorphous phase or in crystalline phases such as, α-cristobalite

and tridymite [13-14].  In fact, the amorphous silica is the most active silica

precursor in the synthesis of zeolites.  Hence, the large amount of silica freely

obtained from this source provides abundant and cheap alternatives of silica for

many industrial uses.  From the previous report, MCM-41 has been successfully

synthesized by using the silica extracted from RHA [15].  However, no report has 

been found on the synthesis of MCM-48 directly from RHA, since the synthesis of

MCM-48 mesoporous materials seems to be more challenging than the synthesis of

MCM-41.  By using rice husk ash as the silica source in the synthesis of MCM-48,

the production costs can be reduced subsequently besides helping to overcome

environmental pollution.  Indeed, it should be noticed that RHA is considered

slightly impure silica.  The content of silica and all impurities in RHA vary

depending on the variety, climate and geographic location [16].  Therefore, in order 

to transform the RHA to valuable mesoporous materials, modification and

optimization of the synthesis condition should be carried out.

The three-dimensional cubic porous system of MCM-48 mesoporous

materials has more advantageous than one-dimensional hexagonal porous system.
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However, it is particularly difficult to synthesize MCM-48 mesoporous materials,

since cubic MCM-48 mesophase are obtained as an intermediate between the

transformation from a hexagonal or disordered mesophase to a more stable lamellar 

mesophase [17].  Hence, instead of pure phase, the mixtures of different phases are 

frequently obtained during the synthesis.  It is a great challenge to characterize the

mesoporous materials, since the XRD is not capable to distinguish the phases in the 

state of mixtures of different ordered mesophases.

Friedel–Crafts acylation of aromatic compounds is one of the prominent

processess in the synthesis of aromatic ketones that has been widely used as an

intermediate to obtain fine, specialty and pharmaceutical chemicals.  However, the

majority of these manufacturing processes still rely on homogeneous reagents and

catalysts.  Many of these processes are developed simply to maximize product yield, 

disregarding the environmental impact of inorganic waste and toxic byproducts

formed during the reaction. Among the Lewis acid catalysts, anhydrous aluminium

chloride was the most widely employed reagent to trigger the Friedel-Crafts reaction 

in the liquid phase in the laboratory as well as in the industry.  However, the use of

standard Lewis acid catalyst is faced with several problems, such as non-regenerable,

requires further treatment after reaction, produces large amounts of hazardous

corrosive waste, catalyzes undesirable reaction, and also uses more than the

stoichiometric amount.  Therefore, the demand for less pollutant and more effective

chemical processes has become the current concern.  Zeolites have been found to be 

less useful in these chemicals processes due to the limitation of its pore opening for 

bulky organic molecules.  Conversely, the emergence of mesoporous materials has

breakthrough the restriction of zeolites, since the larger pore size of these materials

allows bulky organic molecules to diffuse through the pores to reach the active sites.

Moreover, utilization of mesoporous materials such as MCM-48 in the production of 

fine chemicals is still being studied and developed but is yet to be available

commercially.
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1.4 Research Objectives

The objectives of this research are:

(1) to establish and optimize a new synthetic mesoporous Si-MCM-48

molecular sieves by using rice husk ash as silica source.

(2) to develop a novel characterization technique for measurement of

mesophases composition.

(3) to synthesis and tailor the unimodal and bimodal of Al-MCM-48 via 

post synthesis route.

(4) to characterize the physicochemical properties of Al-MCM-48.

(5) to investigate the catalytic properties of the Al-MCM-48 in the

Friedel-Crafts acylation of 2-methoxynaphthalene with acetyl

chloride.

1.5 Scope of the Study

In this research, syntheses of purely siliceous mesoporous Si-MCM-48

molecular sieves via mixed cationic-neutral templating route have been optimized by

means of varying the initial condition of original gel compositions proposed by Ryoo 

et al. [17], such as pH value, Na2O/ SiO2, surfactant/SiO2, and H2O/SiO2.

Cetyltrimethylammonium bromide (CTABr) has been used as cationic surfactant,

whereas Triton X-100 (TX-100) as neutral surfactants. Rice husk ash (RHA) which

were obtained from open burning site will be used as silica source.  Moreover, a

novel approach for quantification of mesophase purity by using 13C CP/MAS NMR

has been developed in order to verify the mesophases compositions from hexagonal

MCM-41 to cubic MCM-48.

Modification of MCM-48 is devoted by introducing the aluminium into the

Si-MCM-48 by two post synthesis approaches.  Both mesoporous and mesophase of 

Si-MCM-48 will be employed as parent materials in post-synthesis alumination.

Acidity of the samples are investigated by using temperature-programmed desorption

(TPD) of ammonia and pyridine adsorption methods.
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Appropriate techniques are utilized to characterize the physicochemical

properties of the mesoporous materials which include powder X-ray diffraction

(XRD), Fourier Transform Infrared Spectroscopy (FTIR), nitrogen adsorption-

desorption measurement, 27Al magic angle spinning nuclear magnetic resonance

spectroscopy (27Al MAS NMR), and field emission scanning electron microscopy

(FESEM).

Finally, the mesoporous catalysts will be tested as potential catalysts in

laboratory scale.  Investigation of its catalytic activity will be conducted using

Friedel-Crafts acylation of bulky aromatic compound, 2-methoxynaphthalene with

acetyl chloride. Solvents with various polarities such as cyclohexane,

dichloroethane, and nitrobenzene will be used in this study.  The research design is

schematically illustrated in Figure 1.2.

1.6 Outline of the Thesis

This thesis illustrates the information concerning the synthesis,

characterization and the potential catalytic application of mesoporous MCM-48

molecular sieves.  Chapter 1 elucidates the research background and the strategies to 

respond the current issue.  Chapter 2 describes the experimental methodology.

Whereas, Chapter 3 covers the chemistry and fundamental aspects of mesoporous

MCM-48 molecular sieves.  The results of the optimization of synthesis of

mesoporous MCM-48 molecular sieves are also present in this chapter.  Chapter 4 

explains the novel technique for quantification of mesophases compositions by using
13C CP/MAS NMR.  Chapter 5 contains the studies in tailoring the unimodal and

bimodal of Al-MCM-48 by using different post-synthesis alumination approaches.

Chapter 6 reveals the discussion of the acidity studies of Al-MCM-48 by using NH3-

TPD and pyridine adsorption.  In addition, the catalytic activity of Al-MCM-48

catalysts, which is tested by Friedel-Crafts acylation is presented in this chapter too.

Finally, Chapter 7 summarizes the results obtained with recommendation for future

work.
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Figure 1.2 Flowchart of the research design.
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XRD, FTIR, nitrogen adsorption-desorption measurement, 27Al MAS NMR, 

FESEM, NH3-TPD, and pyridine adsorption.
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Product
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Modification of Si-MCM-48

Post-Synthesis Alumination of 

Mesoporous Si-MCM-48

Post-Synthesis Alumination of 

Si-MCM-48 Mesophase

Optimization of Synthesis of Purely 

Siliceous Mesoporous Materials 

from Rice Husk Ash

Develop A Novel Characterization 

Technique for Measurement of 

Mesophases Composition by Using 
13C CP/ MAS NMR
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