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ABSTRACT 

 

 

 

Multivariate Statistical Process Control (MSPC) technique has been widely 

used for fault detection and diagnosis (FDD). Currently, contribution plots are used 

as basic tools for fault diagnosis in MSPC approaches. This plot does not exactly 

diagnose the fault, it just provides greater insight into possible causes and thereby 

narrow down the search. Hence, the cause of the faults cannot be found in a 

straightforward manner. Therefore, this study is conducted to introduce a new 

approach for detecting and diagnosing fault via correlation technique. The correlation 

coefficient is determined using multivariate analysis techniques, namely Principal 

Component Analysis (PCA) and Partial Correlation Analysis (PCorrA). An industrial 

precut multicomponent distillation column is used as a unit operation in this research. 

The column model is developed using Matlab 6.1. Individual charting technique such 

as Shewhart, Exponential Weight Moving Average (EWMA) and Moving Average 

and Moving Range (MAMR) charts are used to facilitate the FDD. Based on the 

results obtained from this study, the efficiency of Shewhart chart in detecting faults 

for both quality variables (Oleic acid, xc8 and linoleic acid, xc9) are 100%, which is 

better than EWMA (75% for xc8 and 77.5% for xc9) and MAMR (63.8% for xc8 and 

70% for xc9). The percentage of exact faults diagnoses using PCorrA technique in 

developing the control limits for Shewhart chart is 100% while using PCA is 87.5%. 

It shows that the implementation of PCorrA technique is better than PCA technique. 

Therefore, the usage of PCorrA technique in Shewhart chart for fault detection and 

diagnosis gives the best for it has the highest fault detection and diagnosis efficiency.   
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ABSTRAK 

 

 

 

Proses Kawalan Statistik Multipembolehubah (MSPC) digunakan secara 

meluas untuk mengesan dan mengenalpasti punca kesilapan. Pada masa kini, carta 

penyumbang digunakan untuk mengenalpasti punca kesilapan dalam MSPC. Carta 

ini tidak dapat mengenalpasti punca kesilapan dengan tepat yang mana ia sekadar 

menunjukkan kemungkinan besar punca kesilapan dan membantu memudahkan 

pencarian punca kesilapan. Oleh itu, punca kesilapan tidak dapat ditentukan secara 

langsung. Justeru, kajian ini telah dijalankan bagi memperkenalkan satu pendekatan 

baru untuk mengesan dan mengenalpasti punca kesilapan melalui teknik korelasi. 

Pekali korelasi ditentukan melalui kaedah Analisis Statistik Multipembolehubah iaitu 

Analisis Komponen Utama (PCA) dan Analisis Korelasi Separa (PCorrA). Turus 

penyulingan multikomponen industri digunakan sebagai operasi unit. Model turus ini 

dibangunkan menggunakan perisian Matlab 6.1. Teknik carta individu yang terdiri 

daripada Shewhart, Exponential Weight Moving Average (EWMA), dan Moving 

Average dan Moving Range (MAMR) digunakan bagi mengesan dan mengenalpasti 

punca kesilapan. Berdasarkan kepada keputusan yang diperolehi, kecekapan carta 

Shewhart dalam mengesan kesilapan untuk kedua-dua pembolehubah kualiti (Asid 

oliek, xc8 dan asid linoleik, xc9) adalah 100% yang mana lebih baik berbanding 

dengan carta EWMA (75% bagi xc8 and 77.5% bagi xc9)dan carta MAMR (63.8% bagi 

xc8 and 70% bagi xc9). Peratusan mengenalpasti punca kesilapan secara tepat 

menggunakan teknik PCorrA bagi carta Shewhart adalah 100% manakala PCA 

adalah 87.5%. Ini menunjukkan bahawa penggunaan teknik PCorrA adalah lebih 

baik berbanding teknik PCA. Oleh itu, penggunaan teknik PCorrA dalam carta 

Shewhart bagi tujuan mengesan dan mengenalpasti punca kesilapan adalah yang 

terbaik dengan peratusan kecekapan yang paling tinggi.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

A major technological challenge facing the processing industries is the need 

to produce consistently high quality product. This is particularly challenging in high 

demanding situations where processes are subject to varying raw material properties, 

changing market needs and fluctuating operating conditions due to equipment or 

process degradation. The need to provide industry with techniques, which enhance 

process performance, will require new methodologies to be adopted that are capable 

of being used across a spectrum of industrial processing operations and on a wide 

range of products (Simoglou et al., 2000).  

 

Modern industrial processes typically have a large number of operating 

variables under closed loop control. These loops used to compensate for many types 

of disturbances and to counteract the effect of set point change. This is necessary to 

achieve high product quality and to meet production standards. Although these 

controllers can handle many types of disturbances, there are faults in the process 

such as line blockage, line leakage, sensor fault, valve fault and controller fault that 

cannot be handled adequately. In order to ensure that process is operating at normal 

operating condition as required, faults must be detected, diagnosed and removed. 

These activities, and their management, are called as Statistical Process Control, SPC 

(Miletic et al., 2004).  
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The combination of Statistical Process Control (SPC) charts and multivariate 

analysis approach is used for Fault Detection and Diagnosis (FDD) in the chemical 

process. Principal Component Analysis (PCA) and Partial Correlation Analysis 

(PCorrA) are the techniques used in this study. A precut multicomponent distillation 

column that has been installed with controllers is used as the study unit operation.  

Improved Statistical Process Control method is implemented to detect and diagnose 

various kinds of faults, which occur in the process.  

 

 

 

1.2 Research Background 

 

Statistical methods are used to monitor the performance of the process over 

time in order to detect any process shifts from the target. Most of Statistical Process 

Control (SPC) techniques involve operations on single response variables such as 

weight, pH, temperature, specific gravity, concentration and pressure. This 

traditional SPC is used to monitor and verify that the process remains in statistical 

control based on small number of variables. The state of statistical control means that 

the process or product variables remain close to the target. Normally the fault in the 

process is seek through the usage of SPC chart, i.e., the final product quality 

variables. Measuring quality variables alone are not enough to describe the process 

performance (Kourti et al., 1996). In this study, both quality variables and process 

variables are monitored. This can be done by developing the correlation coefficient 

between quality variables and process variables using multivariate analysis 

technique. In traditional SPC, once the quality variables detected out of statistical 

control signal, it is then left up to process operators and engineers to try to diagnose 

the cause of out of control using their process knowledge (MacGregor and Kourti, 

1995). 

 

Chemical processes are becoming better instrumented with the advances of 

process sensors and data acquisition systems. There are massive amount of data 

being collected continuously and these variables are often correlated. Multivariate 

statistical analysis has been developed in order to extract useful information from 

process data and utilize it for process monitoring (Kresta et al., 1991). Normally, 
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multivariate statistical analysis technique is combined with SPC chart using 

Hotelling’ s T2 and Q statistics to plot the graph for fault detection and diagnosis. 

Even though this conventional method provides good results for fault detection, there 

is difficulty in applying this method to diagnose faults because it does not provide a 

causal description of the process that can be used as the basis for fault diagnosis. 

Currently, contribution plots are used as the basic tools for fault diagnosis in the 

multivariate statistical approaches. However, this plot cannot exactly diagnose the 

cause but it just provides greater insight into possible causes and thereby narrows the 

search. The cause of the faults cannot be found in a straightforward manner. 

 

To overcome the limitation of contribution plot using multivariate analysis 

technique to diagnose fault, Improved SPC chart is introduced in this study. 

Multivariate analysis approach is applied in the SPC realm procedure to detect and 

diagnose the faulty condition in different approach. The multivariate analysis method 

is used to develop the control limits of SPC charts. The correlation coefficient 

calculated from multivariate analysis technique is applied to improve the SPC chart. 

The quality variables data is incorporated in the control chart during the faulty 

condition for fault detection purpose, while the process variables which has been 

correlated with the quality variables is used for fault diagnosis. Therefore, the 

Improve SPC charts applied is not only for quality variables but also for process 

variables. By monitoring the process variables, the cause of faulty condition, which 

affects the quality variables, could be identified directly. This will help the operator 

to take proper action immediately after faults exist in the process.   
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1.3 Objectives of the Research 

 

1. To determine the performance of the Improved Statistical Process Control 

charts; which are Shewhart individual and Shewhart range, Exponential 

Weight Moving Average (EWMA) and Moving Average and Moving 

Range (MAMR) chart for fault detection. 

2. To utilize multivariate analysis technique, Principal Component Analysis 

(PCA), and Partial Correlation Analysis (PCorrA), for developing the 

relationship between the process variable(s) and the quality variable(s) for 

fault diagnosis. 

 

 

 

1.4 Scopes of the Research 

 

The scopes of the research are: 

 

1. A simulated precut multicomponent distillation column model from 

the literature is used as a case study. The model consists of 

controllers with various kinds of disturbances and operating 

conditions. 

2. A set of Normal Operating Condition (NOC) data and a set of Out 

of Control (OC) data are generated using this simulated distillation 

column. 

3. Normal operating statistical model is developed using the 

multivariate techniques, PCA and PCorrA via correlation 

coefficient approach between the quality variable(s) and the process 

variable(s). 

4. The Shewhart individual and Shewhart range, Exponential Weight 

Moving Average (EWMA), and Moving Average and Moving 

Range (MAMR) charts are developed.  

5. The faulty condition is incorporated into the process model in order 

to see the performance of the control charts to detect the fault(s) 

and to find the cause of the fault(s).   
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6. The results of fault detection and diagnosis are then discussed 

further. 

 

 

 

1.5 Contributions of the Research 

 

In this research, a new approach known as Improved Statistical Process 

Control for fault detection and diagnosis is introduced. Multivariate analysis 

technique, Principal Component Analysis, PCA and Partial Correlation Analysis, 

PCorrA are used to develop the correlation coefficient between quality variables and 

process variables. This technique is incorporated in the Improved SPC chart as a 

fault diagnosis tools to find the cause of the faulty condition. Improved SPC charts 

are applied for both quality variables and process variables which have been 

correlated with quality variables of interest. 

 

 

 

1.6 Chapter Summary 

 

This thesis contains seven chapters. The first chapter comprises of the 

introduction of the research, research background, objectives of the research, scopes 

of the research and contributions of this research. Chapter 2 reviews the multivariate 

analysis techniques and the concept of multivariate analysis technique used in this 

study, which are Principal Component Analysis (PCA) and Partial Correlation 

Analysis (PCorrA).  

 
Chapter 3 consists of the concept of Statistical Process Control, SPC chart, 

detail explanation on SPC charts; Shewhart, EWMA and MAMR and the way to 

construct these charts. This chapter also presents the implementation of multivariate 

analysis technique in SPC chart to develop Improve SPC chart.  

 

Chapter 4 expresses the reasons for choosing distillation column as the case 

study. This chapter also presents the dynamic modeling of the columns, formulation 
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of dynamic simulating algorithm, establishment of dynamic simulation program, 

controller tuning and explanation on Automatic Process Control, APC time 

sampling. The performances of the written simulation program are compared with 

HYSYS simulator. 

 

Chapter 5 mainly contains the procedure for fault detection and diagnosis. 

This chapter contains variables selection to perform process fault detection and 

diagnosis, determination of SPC sampling time, generating of normal operating 

condition data, out of control data and the development of correlation coefficient 

using PCA and PCorrA to relate the quality variables with process variables.  

 

Chapter 6 presents the result and discussion of the research. The results are 

systematically presented. Discussions are made on the performance of each 

Improved SPC chart to detect known fault in the process and the efficiency of the 

proposed method to conduct fault diagnosis with application of multivariate 

statistical analysis. Chapter 7 contains the conclusions of the research and 

suggestions to the future SPC research activities. 
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