FAULT DETECTION AND DIAGNOSIS VIA IMPROVED MULTIVARIATE STATISTICAL PROCESS CONTROL

NOORLISA BINTI HARUN

UNIVERSITI TEKNOLOGI MALAYSIA

FAULT DETECTION AND DIAGNOSIS VIA IMPROVED MULTIVARIATE STATISTICAL PROCESS CONTROL

NOORLISA BINTI HARUN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JULY 2005

In the Name of Allah, Most Gracious, Most Merciful.

I humbly dedicate to... my beloved family members my best friend those who has shaped my life and those who has influenced my life on the right path.

ACKNOWLEDGEMENT

Firstly, I would like to take this opportunity to thank my respectful supervisor, Assoc. Prof. Dr. Kamarul Asri Ibrahim who has relentlessly given guidance, constructive ideas and invaluable advice, enabling me to achieve the objective of this dissertation. In addition I am very grateful to my family members, no amount of gratitude could repay their kindness of being there as well as the patience to put up with my whim.

I also would like to thank my fellow course mates and friends for the assistances, advices and ideas in producing a resourceful, fruitful and practicable research. May God bless all of you.

ABSTRACT

Multivariate Statistical Process Control (MSPC) technique has been widely used for fault detection and diagnosis (FDD). Currently, contribution plots are used as basic tools for fault diagnosis in MSPC approaches. This plot does not exactly diagnose the fault, it just provides greater insight into possible causes and thereby narrow down the search. Hence, the cause of the faults cannot be found in a straightforward manner. Therefore, this study is conducted to introduce a new approach for detecting and diagnosing fault via correlation technique. The correlation coefficient is determined using multivariate analysis techniques, namely Principal Component Analysis (PCA) and Partial Correlation Analysis (PCorrA). An industrial precut multicomponent distillation column is used as a unit operation in this research. The column model is developed using Matlab 6.1. Individual charting technique such as Shewhart, Exponential Weight Moving Average (EWMA) and Moving Average and Moving Range (MAMR) charts are used to facilitate the FDD. Based on the results obtained from this study, the efficiency of Shewhart chart in detecting faults for both quality variables (Oleic acid, x_{c8} and linoleic acid, x_{c9}) are 100%, which is better than EWMA (75% for x_{c8} and 77.5% for x_{c9}) and MAMR (63.8% for x_{c8} and 70% for x_{c9}). The percentage of exact faults diagnoses using PCorrA technique in developing the control limits for Shewhart chart is 100% while using PCA is 87.5%. It shows that the implementation of PCorrA technique is better than PCA technique. Therefore, the usage of PCorrA technique in Shewhart chart for fault detection and diagnosis gives the best for it has the highest fault detection and diagnosis efficiency.

ABSTRAK

Proses Kawalan Statistik Multipembolehubah (MSPC) digunakan secara meluas untuk mengesan dan mengenalpasti punca kesilapan. Pada masa kini, carta penyumbang digunakan untuk mengenalpasti punca kesilapan dalam MSPC. Carta ini tidak dapat mengenalpasti punca kesilapan dengan tepat yang mana ia sekadar menunjukkan kemungkinan besar punca kesilapan dan membantu memudahkan pencarian punca kesilapan. Oleh itu, punca kesilapan tidak dapat ditentukan secara langsung. Justeru, kajian ini telah dijalankan bagi memperkenalkan satu pendekatan baru untuk mengesan dan mengenalpasti punca kesilapan melalui teknik korelasi. Pekali korelasi ditentukan melalui kaedah Analisis Statistik Multipembolehubah iaitu Analisis Komponen Utama (PCA) dan Analisis Korelasi Separa (PCorrA). Turus penyulingan multikomponen industri digunakan sebagai operasi unit. Model turus ini dibangunkan menggunakan perisian Matlab 6.1. Teknik carta individu yang terdiri daripada Shewhart, Exponential Weight Moving Average (EWMA), dan Moving Average dan Moving Range (MAMR) digunakan bagi mengesan dan mengenalpasti punca kesilapan. Berdasarkan kepada keputusan yang diperolehi, kecekapan carta Shewhart dalam mengesan kesilapan untuk kedua-dua pembolehubah kualiti (Asid oliek, x_{c8} dan asid linoleik, x_{c9}) adalah 100% yang mana lebih baik berbanding dengan carta EWMA (75% bagi x_{c8} and 77.5% bagi x_{c9})dan carta MAMR (63.8% bagi x_{c8} and 70% bagi x_{c9}). Peratusan mengenalpasti punca kesilapan secara tepat menggunakan teknik PCorrA bagi carta Shewhart adalah 100% manakala PCA adalah 87.5%. Ini menunjukkan bahawa penggunaan teknik PCorrA adalah lebih baik berbanding teknik PCA. Oleh itu, penggunaan teknik PCorrA dalam carta Shewhart bagi tujuan mengesan dan mengenalpasti punca kesilapan adalah yang terbaik dengan peratusan kecekapan yang paling tinggi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE			
	TITLE PAGE	i			
	DECLARATION	ii			
	DEDICATION				
	ACKNOWLEDGEMENT	iv			
	ABSTRACT	V			
	ABSTRAK	vi			
	TABLE OF CONTENTS				
	LIST OF TABLES	xii			
	LIST OF FIGURES	xiv			
	LIST OF SYMBOLS	xvi			
	LIST OF ABBREVIATIONS	XX			
	LIST OF APPENDICES	xxi			
1	INTRODUCTION				
	1.1 Introduction	1			
	1.2 Research Background	2			
	1.3 Objectives of the Research	4			
	1.4 Scopes of the Research	4			
	1.5 Contributions of the research	5			
	1.6 Chapter Summary	5			

LITERATURE REVIEW

2.1	Introduction 7				
2.2	Definitions of Fault, Fault Detection and Fault Diagnosis				
2.3	Multivariate Statistical Analysis, MSA	9			
2.4	Review on Principal Component Analysis, PCA	10			
	2.4.1 Extension of Principal Component Analysis, PCA				
	method				
	2.4.1.1 Multi-Way PCA	14			
	2.4.1.2 Multi-Block PCA	15			
	2.4.1.3 Moving PCA	16			
	2.4.1.4 Dissimilarity, DISSIM	17			
	2.4.1.5 Multi-Scale PCA	18			
	2.4.2 PCA Adopted in Industries	19			
	2.4.3 PCA as Controller	20			
	2.4.4 Theory of PCA	21			
2.5	Review on Partial Correlation Analysis, PCorrA	23			
	2.5.1 Theory of PCorrA	26			
2.6	Chapter Summary	27			
IM	PROVED STATISTICAL PROCESS CONTROL CHART				
3.1	Statistical Process Control, SPC	29			
3.2	Traditional Statistical Process Control, SPC chart	30			
	3.2.1 Shewhart Chart	31			
	3.2.2 Exponential Weight Moving Average, EWMA Chart	35			
	3.2.3 Moving Average and Moving Range, MAMR Chart	39			
3.3	Improve Statistical Process Control Chart43				

3.3 Improve Statistical Process Control Chart3.4 Chapter Summary

45

2

3

DYNAMIC SIMULATED DISTILLATION COLUMN				
4.1	Introd	Introduction 40		
4.2	Process Description of Precut Column			
4.3	The Ir	formation	n of Pre-cut column	49
4.4	Degre	e of Freed	dom (DoF) Analysis	51
4.5	Formu	lations of	f the Distillation Column Models	56
	4.5.1	Mass Ba	alance Equations	56
		4.5.1.1	Bottom column model	58
		4.5.1.2	Trays model	59
		4.5.1.3	Reflux drum model	61
		4.5.1.4	Pumparound drum model	62
	4.5.2	Equilibr	ium Equations	63
		4.5.2.1	Bubble Point Calculations	66
	4.5.3	Summat	ion Equation	68
	4.5.4	Heat Ba	lance Equation	68
	4.5.5	Hydraul	ic Equations	69
4.6	Dynar	nic Simul	ation of the Study Column	70
4.7	Contro	oller Tuni	ng	74
	4.7.1	Bottom	Liquid Level Controller	75
	4.7.2	Bottom	Temperature Controller	76
	4.7.3	Top Col	umn Pressure Controller	78
	4.7.4	Sidedray	w Tray Liquid Level Controller	79
	4.7.5	Pumpar	ound Temperature Controller	80
	4.7.6	Pumparo	ound Flow Rate Controller	81
	4.7.7	Reflux I	Flow Rate Controller	82
	4.7.8	Controll	er Sampling Time, T_{APC}	82
4.8	Dynar	nic simula	ation Program Performance Evaluation	83
4.9	Chapter Summary 84			

4

MF

METHODOLOGY

5.1	Introduction 8		
5.2	Variable Selection for Process Monitoring		
5.3	Statist	ical Process Control Sampling Time, T _{SPC}	90
5.4	Norma	al Operating Condition (NOC) Data Selection and	92
	Prepar	ration	
	5.4.1	Data pretreatment	94
	5.4.2	Correlation Coefficient via Multivariate Analysis	94
		Techniques	
		5.4.2.1 Principal Component Analysis, PCA	95
		5.4.2.2 Partial Correlation Analysis, PCorrA	101
	5.4.3	Control limits of Improved Statistical Process	103
		Control, ISPC chart	
5.5	Gener	ated Out of Control, OC data	105
5.6	Fault (Coding Monitoring Framework	109
5.7	Perfor	mance Evaluation of the FDD Method	111
	5.7.1	Fault Detection Efficiency	111
	5.7.2	Fault Diagnosis Efficiency	112
5.8	Chapte	er Summary	113
RES	SULTS	AND DISCUSSIONS	
6.1	Statist	ical Process Control Sampling Time, T _{SPC}	116
6.2	Norma	al Operating Condition, NOC Data	117
	6.2.1	Correlation coefficient via Principal Component	119
		Analysis, PCA	
	6.2.2	Correlation coefficient via Partial Correlation	123
		Analysis, PCorrA	
6.3	Param	eters to Design Improved Statistical Process Control	124
	chart		
6.4	Fault I	Detection and Diagnosis Method Performance	127
	6.4.1	False alarm Analysis	127

	6.4.2	Fault	Detection	Efficiency	Results	and	Results
		Discu	ssions				
	6.4.3	Fault	Diagnosis	Efficiency	Results	and	Results
		Discu	ssions				
6.5	Chapt	er Sum	mary				
7.1	Introd	uction					
7.1 7.2	Introd Concl	uction usions o	of Improved	SPC framev	vork		

7

APPENDICES	154
	-

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	Specification of the pre-cut column	49
4.2	Components composition and conditions of the pre-cut column	50
4.3	Number of variables	52
4.4	Number of equations	53
4.5	Control loops properties	55
4.6	Cohen-Coon controller settings	75
4.7	The step change results for bottom liquid level controller	76
4.8	Properties of bottom liquid level P controller	76
4.9	The step change results for bottom temperature controller	77
4.10	Properties of bottom temperature PID controller	77
4.11	The step change results for top column pressure controller	78
4.12	Properties of top column pressure PI controller	78
4.13	The step change results for sidedraw tray liquid level controller	79
4.14	Properties of sidedraw tray liquid level P controller	79
4.15	The step change results for pumparound temperature controller	80
4.16	Properties of pumparound temperature PID controller	81
4.17	Properties of pumparound flow rate P controller	81
4.18	Properties of reflux flow rate P controller	82
5.1	APC variables for each control loops	87
5.2	Normal correlation coefficient for process variables	88
5.3	SPC variables	88

5.4	The control limits of Improved SPC chart	104
5.5	Parameters to design EWMA	105
5.6	Description of sensor fault, valve fault and controller fault	107
5.7	Improved SPC chart statistic for FDD	108
5.8	Coding system for fault detection	109
5.9	Coding system for fault diagnosis	109
5.10	Fault coding system for Shewhart Chart	110
5.11	Fault coding system for EWMA Chart	110
5.12	Fault coding system for MAMR Chart	110
6.1	Time constant for each control loops	116
6.2	The skewness and kurtosis value of NOC data	118
6.3	Summary of the NOC data	118
6.4	Eigenvectors Matrix	119
6.5	Eigenvalues, variation explained by each PC and cumulative	119
	variation	
6.6	The correlation coefficient using different cumulative variation	121
6.7	The percentage difference for two PCs retained and three PCs	122
	retained compared to six PCs	
6.8	Simple correlation matrix	123
6.9	The correlation coefficient result using PCorrA	124
6.10	Constant to design Shewhart range chart	124
6.11	FDD result using different L and β to design EWMA chart	125
6.12	FDD result using PCA with different window size to design	126
	MAMR chart	
6.13	FDD result using PCorrA with different window size to design	126
	MAMR chart	
6.14	False alarm result corresponding to oleic acid composition	128
6.15	False alarm result corresponding to linoleic acid composition	128
6.16	The known fault causes	129
6.17	The known out of control, OC conditions	130

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Multi-block PCA monitoring framework	15
3.1	Shewhart range and Shewhart individual chart during normal condition	34
3.2	Shewhart range and Shewhart individual chart during faulty condition	34
3.3	EWMA control chart under normal condition	38
3.4	EWMA control chart under faulty condition	38
3.5	Moving average and range control chart under normal condition	42
3.6	Moving average and range control chart under faulty condition	42
3.7	The implementation of correlation coefficient, C_{jk} in SPC chart	44
4.1	Pre cut column	48
4.2	Distillation column control loop	54
4.3	Distillation column schematic diagram	57
4.4	Bubble point calculation procedure	67
5.1	The procedure to calculate and implement T_{SPC}	92
5.2	Example Scree plot	97
5.3	The procedures to determine correlation coefficient, C_{jk} via PCA method	100
5.4	The procedures to determine correlation coefficient, C_{jk} via PCorrA metho	103
5.5	The outlined of FDD algorithm	115

6.1	The autocorrelation plot	117
6.2	Histogram plot of NOC data	118
6.3	Scree plot	120
6.4	Fault detection efficiency using different Improved SPC chart	131
6.5	Percentage of faults occurs in different region detected by each	132
	Improved SPC chart	
6.6	Fault diagnosis situation using PCA for oleic acid composition	133
6.7	Fault diagnosis situation using PCorrA for oleic acid	134
	composition	
6.8	Fault diagnosis situation using PCA for linoleic acid	134
	composition	
6.9	Fault diagnosis situation using PCorrA for linoleic acid	135
	composition	

LIST OF SYMBOLS

a_{ij}	-	Wilson constant
n	-	Number of retained principal component
Α	-	Square matrix
A_b	-	Bottom column area
A_t	-	tray active area
A_i, B_i, C_i	-	Antoine constant for component <i>i</i>
A*,B*,C*,D*	-	Constant for liquid heat capacity
$A_{2,} D_{.001}, D_{.999}$	-	Constant for MA and MR control limit
β	-	Weighting factor
В	-	Bottom flow rate
$C_{j,k}$	-	Correlation coefficient between variable j and variable k
δ	-	Shifted value in standard deviation unit
D	-	Distillate flowrate
F _{Detect}	-	Fault Detection
$F_{Diagnose}$	-	Fault Diagnosis
ΔH_{vap}	-	Heat of vaporization
$\Delta H_{vap,n}$	-	Heat of vaporization at normal boiling point
h_N	-	Liquid enthalpy leaving each tray
h_b	-	Enthalpy for bottom stream
h_{ow}	-	Over weir height
H, h	-	CuSum control limits
H_N	-	Vapor enthalpy leaving each tray

Ι	-	Identity matrix
K _c	-	Controller Gain
K_p	-	Static Gain,
L_{28}	-	Liquid flowrate at tray 28
$L_{H, P}$	-	Pumparound drum height
L_f	-	Liquid feed flowrate
L _{H, Re}	-	Reflux drum liquid level
<i>L</i> _{<i>H</i>, <i>B</i>}	-	Bottom liquid level
L	-	Width of the control limit
М	-	Number of observations
$M_{ m B}$	-	Bottom molar hold-up
MW	-	Molecular weight
M_{Re}	-	Reflux drum molar hold-up
M_P	-	Pumparound drum molar hold-up
M_N	-	Molar hold up at tray N
Ν	-	Number of stages
р	-	Number of observations
Р	-	Pumparound flowrate
P _{ci}	-	Critical pressure of component <i>i</i>
P_i^{sat}	-	Vapor pressure for component <i>i</i>
P _{tot}	-	Total pressure of the system
ρ	-	Liquid density
Q_R	-	Reboiler heat duty
Q	-	Number of variables for response variables
R	-	Correlation matrix
r _{j,k}	-	Correlation value between variable j and variable k
Re	-	Reflux flowrate
R	-	Universal gas constant
r_k	-	Autocorrelation coefficient

S	-	Sidedraw flowrate
S	-	Variance-Covariance matrix
$\mathbf{s}_{j,k}$	-	Covariance value of variable j and variable k
S	-	NOC standard deviation
Т	-	Temperature of the system
T _{ci}	-	Critical temperature of component i
T_{ri}	-	Reduced temperature of component <i>i</i>
$T_{b,i}$	-	Boiling point for component <i>i</i>
TAPC	-	APC sampling time
T _{SPC}	-	SPC sampling time
t, u	-	Latent vectors
τ	-	Time Constant
$ au_D$	-	Derivative Time Constant
$ au_I$	-	Integral Time Constant
heta	-	Dead time
V	-	Eigenvector matrix
v	-	Eigenvector or loading vectors
V	-	Vapor flowrate
V _{ci}	-	Critical volume for component i
V_i	-	Liquid molar volume of component <i>i</i>
W_L	-	Weir length
ω	-	Critical accentric factor of component <i>i</i>
W	-	Un-normalized eigenvectors
\overline{x}	-	NOC mean
\overline{x}_1	-	Shifted mean
x_i	-	i th observation in the process
x _{ij}	-	Value of the <i>i</i> -th row and <i>j</i> -th column matrix
x_{ij}^s	-	Standardized variable
x	-	Liquid phase mole fraction

x_S	-	Sidedraw mole fraction
x_{Re}	-	Reflux mole fraction
χ_P	-	pumparound liquid mole fraction
x_D	-	Distillate mole fraction
γ_i	-	Liquid phase activity coefficient for component <i>i</i>
У	-	Vapor phase mole fraction
Z_i	-	The i th EWMA statistic
Z_{ci}	-	Critical compressibility factor for component <i>i</i>
ϕ_{i}	-	Vapor fugacity coefficient for component <i>i</i>
Λ_{ij}	-	Wilson binary interaction parameter for component i and j

LIST OF ABBREVIATIONS

APC	-	Automatic Process Control
DoF	-	Degree of Freedom
EWMA	-	Exponential Weight Moving Average
FDD	-	Fault Detection and Diagnosis
ISPC	-	Improved Statistical Process Control
MA	-	Moving Average
MESH	-	Mass, Equilibrium, Summation, Heat
MR	-	Moving Range
MSA	-	Multivariate Statistical Analysis
MSPC	-	Multivariate Statistical Process Control
NIPALS	-	Non-iterative Partial Least Squares
NOC	-	Normal Operating Condition
OC	-	Out of Control
PCA	-	Principal Component Analysis
PCorrA	-	Partial Correlation Analysis
PV	-	Process Variable
QV	-	Quality Variable
SPC	-	Statistical Process Control
USPC	-	Univariate Statistical Process Control

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Column profile comparison	155
В	Parameter selection to design EWMA chart	158
С	Parameter selection to design MAMR chart	163
D	Number of fault causes	170

CHAPTER 1

INTRODUCTION

1.1 Introduction

A major technological challenge facing the processing industries is the need to produce consistently high quality product. This is particularly challenging in high demanding situations where processes are subject to varying raw material properties, changing market needs and fluctuating operating conditions due to equipment or process degradation. The need to provide industry with techniques, which enhance process performance, will require new methodologies to be adopted that are capable of being used across a spectrum of industrial processing operations and on a wide range of products (Simoglou *et al.*, 2000).

Modern industrial processes typically have a large number of operating variables under closed loop control. These loops used to compensate for many types of disturbances and to counteract the effect of set point change. This is necessary to achieve high product quality and to meet production standards. Although these controllers can handle many types of disturbances, there are faults in the process such as line blockage, line leakage, sensor fault, valve fault and controller fault that cannot be handled adequately. In order to ensure that process is operating at normal operating condition as required, faults must be detected, diagnosed and removed. These activities, and their management, are called as Statistical Process Control, SPC (Miletic *et al.*, 2004).

The combination of Statistical Process Control (SPC) charts and multivariate analysis approach is used for Fault Detection and Diagnosis (FDD) in the chemical process. Principal Component Analysis (PCA) and Partial Correlation Analysis (PCorrA) are the techniques used in this study. A precut multicomponent distillation column that has been installed with controllers is used as the study unit operation. Improved Statistical Process Control method is implemented to detect and diagnose various kinds of faults, which occur in the process.

1.2 Research Background

Statistical methods are used to monitor the performance of the process over time in order to detect any process shifts from the target. Most of Statistical Process Control (SPC) techniques involve operations on single response variables such as weight, pH, temperature, specific gravity, concentration and pressure. This traditional SPC is used to monitor and verify that the process remains in statistical control based on small number of variables. The state of statistical control means that the process or product variables remain close to the target. Normally the fault in the process is seek through the usage of SPC chart, i.e., the final product quality variables. Measuring quality variables alone are not enough to describe the process performance (Kourti et al., 1996). In this study, both quality variables and process variables are monitored. This can be done by developing the correlation coefficient between quality variables and process variables using multivariate analysis technique. In traditional SPC, once the quality variables detected out of statistical control signal, it is then left up to process operators and engineers to try to diagnose the cause of out of control using their process knowledge (MacGregor and Kourti, 1995).

Chemical processes are becoming better instrumented with the advances of process sensors and data acquisition systems. There are massive amount of data being collected continuously and these variables are often correlated. Multivariate statistical analysis has been developed in order to extract useful information from process data and utilize it for process monitoring (Kresta *et al.*, 1991). Normally,

multivariate statistical analysis technique is combined with SPC chart using Hotelling' s T^2 and Q statistics to plot the graph for fault detection and diagnosis. Even though this conventional method provides good results for fault detection, there is difficulty in applying this method to diagnose faults because it does not provide a causal description of the process that can be used as the basis for fault diagnosis. Currently, contribution plots are used as the basic tools for fault diagnosis in the multivariate statistical approaches. However, this plot cannot exactly diagnose the cause but it just provides greater insight into possible causes and thereby narrows the search. The cause of the faults cannot be found in a straightforward manner.

To overcome the limitation of contribution plot using multivariate analysis technique to diagnose fault, Improved SPC chart is introduced in this study. Multivariate analysis approach is applied in the SPC realm procedure to detect and diagnose the faulty condition in different approach. The multivariate analysis method is used to develop the control limits of SPC charts. The correlation coefficient calculated from multivariate analysis technique is applied to improve the SPC chart. The quality variables data is incorporated in the control chart during the faulty condition for fault detection purpose, while the process variables which has been correlated with the quality variables is used for fault diagnosis. Therefore, the Improve SPC charts applied is not only for quality variables but also for process variables. By monitoring the process variables, the cause of faulty condition, which affects the quality variables, could be identified directly. This will help the operator to take proper action immediately after faults exist in the process.

1.3 Objectives of the Research

- To determine the performance of the Improved Statistical Process Control charts; which are Shewhart individual and Shewhart range, Exponential Weight Moving Average (EWMA) and Moving Average and Moving Range (MAMR) chart for fault detection.
- To utilize multivariate analysis technique, Principal Component Analysis (PCA), and Partial Correlation Analysis (PCorrA), for developing the relationship between the process variable(s) and the quality variable(s) for fault diagnosis.

1.4 Scopes of the Research

The scopes of the research are:

- A simulated precut multicomponent distillation column model from the literature is used as a case study. The model consists of controllers with various kinds of disturbances and operating conditions.
- A set of Normal Operating Condition (NOC) data and a set of Out of Control (OC) data are generated using this simulated distillation column.
- 3. Normal operating statistical model is developed using the multivariate techniques, PCA and PCorrA via correlation coefficient approach between the quality variable(s) and the process variable(s).
- 4. The Shewhart individual and Shewhart range, Exponential Weight Moving Average (EWMA), and Moving Average and Moving Range (MAMR) charts are developed.
- 5. The faulty condition is incorporated into the process model in order to see the performance of the control charts to detect the fault(s) and to find the cause of the fault(s).

6. The results of fault detection and diagnosis are then discussed further.

1.5 Contributions of the Research

In this research, a new approach known as Improved Statistical Process Control for fault detection and diagnosis is introduced. Multivariate analysis technique, Principal Component Analysis, PCA and Partial Correlation Analysis, PCorrA are used to develop the correlation coefficient between quality variables and process variables. This technique is incorporated in the Improved SPC chart as a fault diagnosis tools to find the cause of the faulty condition. Improved SPC charts are applied for both quality variables and process variables which have been correlated with quality variables of interest.

1.6 Chapter Summary

This thesis contains seven chapters. The first chapter comprises of the introduction of the research, research background, objectives of the research, scopes of the research and contributions of this research. Chapter 2 reviews the multivariate analysis techniques and the concept of multivariate analysis technique used in this study, which are Principal Component Analysis (PCA) and Partial Correlation Analysis (PCorrA).

Chapter 3 consists of the concept of Statistical Process Control, SPC chart, detail explanation on SPC charts; Shewhart, EWMA and MAMR and the way to construct these charts. This chapter also presents the implementation of multivariate analysis technique in SPC chart to develop Improve SPC chart.

Chapter 4 expresses the reasons for choosing distillation column as the case study. This chapter also presents the dynamic modeling of the columns, formulation

of dynamic simulating algorithm, establishment of dynamic simulation program, controller tuning and explanation on Automatic Process Control, APC time sampling. The performances of the written simulation program are compared with HYSYS simulator.

Chapter 5 mainly contains the procedure for fault detection and diagnosis. This chapter contains variables selection to perform process fault detection and diagnosis, determination of SPC sampling time, generating of normal operating condition data, out of control data and the development of correlation coefficient using PCA and PCorrA to relate the quality variables with process variables.

Chapter 6 presents the result and discussion of the research. The results are systematically presented. Discussions are made on the performance of each Improved SPC chart to detect known fault in the process and the efficiency of the proposed method to conduct fault diagnosis with application of multivariate statistical analysis. Chapter 7 contains the conclusions of the research and suggestions to the future SPC research activities.

LIST OF REFERENCES

Alwan, L. C. (2000). Statistical process analysis. New York: McGraw Hill.

- Bakshi, B. R. (1998). Multiscale PCA with application to multivariate statistical process monitoring. *American Institute of Chemical Engineering Journal*. 44: 1596-1610.
- Bakshi, B. R. (1999). Multiscale analysis and modeling using wavelets. *Journal of Chemometrics*. 13: 415–434.
- Bower, K. M. (2000). Using exponentially weighted moving average (EWMA) charts. Minitab Inc., State College, P.A., USA.
- Chen, Q., Kruger, U., Meronk, M. and Leung, A.Y.T. (2004). Synthesis of T^2 and Q statistic for process monitoring. *Control Engineering Practice*. 12: 745-755.
- Chen, G., McAvoy, T. J. and Piovoso, M. J. (1997). A multivariate statistical controller for on line quality improvement. *Journal of Process Control.* 8(2): 139-149.
- Chen, K. H. (2001). *Data-Rich Multivariate Detection and Diagnosis Using Eigenspace Analysis*. PhD Thesis. Massachusetts Institute Of Technology.
- Chen, K. H., Boning, D. S. and Welsch, R. E. (2001). Multivariate statistical process control and signature analysis using eigenfactor detection method. *The 33rd Symposium on the Interface of Computer Science and Statistics*. June 2001. Costa Mesa, CA. 1996. 1-20.

- Chiang, L. H., Russell, E. L. and Braatz, R. D. (2000). Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. *Chemometrics and Intelligent Laboratory Systems*. 50: 243–252
- Chiang, L. H., and Braatz, R. D. (2003). Process monitoring using causal map and multivariate statistics: fault detection and identification. *Chemometrics and Intelligent Laboratory Systems*. 65: 159–178.
- Cliff, N. (1987). *Analyzing Multivariate Data*. Harcourt Brace Jovanovich Publishers.
- Dash, S. and Venkatasubramanian, V. (2000). Challenges in the industrial applications of fault diagnostic systems. *Computers and Chemical Engineering*. 24: 785-791.
- Daszykowski, M., Walczak, B. and Massart, D. L. (2003). Projection methods in chemistry. *Chemometrics and Intelligent Laboratory Systems*. 65: 97–112.
- DeVor, R. E., Chang, T. H. and Sutherland, J. W. (1992). *Statistical quality design and control: contemporary concepts and methods*. New York: Macmillan.
- DeVries, A. and Conlin, B. J. (2003). Design and performance of statistical process control charts applied to estrous detection efficiency. *Journal of Dairy Science*. 86: 1970–1984.
- Doty, L. A. (1996). *Statistical process control*. 2nd Edition. New York: Industrial press Inc.
- Duchesne, C., Kourti, T., and MacGregor, J. F. (2002). Multivariate SPC for startups and grade transition. *American Institute of Chemical Engineering Journal*. 48 (12): 2890-2901.

- Finn, J.D. (1974). *A general model for multivariate analysis*. USA: Holt, Rinehart and Winston.
- Foucart, T. (2000). A decision rule for discarding principal components in regression. *Statistical Planning and Inference*. 89: 187-195.
- Frank, P. M., and Ding, X. (1997). Survey of robust residual generation and evaluation methods in observer based fault detection systems. *Journal of process control*. 7(6): 403-424.
- Geankoplis, C. J. (1993). *Transport processes and unit operations*. 3rd Edition. New Jersey: Prentice-Hall.
- Gertler, J. J. (1998). *Fault detection and diagnosis in engineering systems*. New York: Marcel Dekker.
- Goulding, P.R., Lennox, B., Sandoz, D.J., Smith, K. and Marjanovic, O. (2000). Fault detection in continuous processes using multivariate statistical methods. *International Journal of Systems Science*. 31(11): 1459-1471.
- Hashimoto, K., Shimizu, E., Komatsu, N., Nakazato, M., Okamura, N., Watanabe, H., Kumakiri, C., Shinoda, N., Okada, S., Takei, N., and Iyo, M. (2003).
 Increased levels of serum basic fibroblast growth factor in schizophrenia. *Psychiatry Research*. 120: 211–218.
- Himmelblau, D.M. (1978). Fault detection and diagnosis in chemical and petrochemical processes. Amsterdam: Elsevier Press.
- Hurowitz, S., Anderson, J., Duvall, M. and Riggs, J. B. (2003). Distillation control configuration selection. *Journal of Process Control*. 13: 357–362.
- Hunter, J.S (1989). One point plot equivalent to the Shewhart chart with Western Electris Rules. In: Montgomery, D. C. *Introduction to Statistical Quality Control*.
 3rd Edition. Canada: John Wiley & Sons. 338.

- Hwang, D. and Han, C. (1999). Real time monitoring for a process with multiple operating modes. *Control Engineering Practice*. 7: 891 902.
- Isermann, R. (1997). Supervision, Fault Detection and Fault Diagnosis Methods An Introduction. *Control Engineering Practice*. 5(5): 639 – 652.
- Ibrahim, K.A. (1997). Application of Partial Correlation Analysis in Active Statistical Process Control. *Proceedings of Regional Symposium of Chemical Engineering*. October 13-15, 1997. Johor: UTM and IEM. 1997. 434 – 439.
- Jackson, J. E. (1991). A User's Guide to Principal Components. USA: John Wiley & Sons.
- JiJi, R. D., Hammond, M. H., Williams, F. W. and Rose-Pehrsson, S. L. (2003). Multivariate statistical process control for continuous monitoring of networked early warning fire detection (EWFD) systems. *Sensors and Actuators B*. 93: 107– 116.
- Kahn, M. G., Bailey, T. C., Steib, S. A., Fraser, V. J. and Dunagan, W. C. (1996). SPC for expert system performance monitoring. *Journal of American Medical Informatics Association*. 3(4): 258-269.
- Kano, M., Nagao, K., Hasebe, S., Hashimoto, I., Ohno, H., Strauss, R. and Bakshi, B. R. (2000a). Comparison of statistical process monitoring methods: application to the Eastman challenge problem. *Computers and Chemical Engineering*. 24: 175-181.
- Kano, M., Segawa, T., Ohno, H., Hasebe, S. and Hashimoto, I. (2000b). Identification of Fault Situations by Using Historical Data Sets. *Proceedings of International Symposium on Design, Operation and Control of Next Generation Chemical Plants (PSE Asia 2000)*. December 6-8. Kyoto, Japan. 345 – 350.

- Kano, M., Ohno, H., Hasebe, S., Hashimoto, I., Strauss, R. and Bakshi, B. R. (2000c). Contribution plots for fault identification based on dissimilarity of process data. *American Institute of Chemical Engineering Annual Meeting*. November 12-17. Los Angeles, CA. Unpublished.
- Kano, M., Nagao, K., Ohno, H., Hasebe, S., Hashimoto, I. (2000d). Dissimilarity of Process Data for Statistical Process Monitoring. *Proceedings of IFAC Symposium* on Advanced Control of Chemical Processes (ADCHEM). June 14-16. Pisa, Italy: IFAC, 231-236.
- Kano, M., Hasebe, S., Hashimoto and Ohno, H. (2001a). Fault Detection and Identification Based on Dissimilarity of Process Data. *European Control Conference (ECC)*. September 4-7. Porto, Portugal. 1888-1893.
- Kano, M., Hasebe, S., Hashimoto, I., Ohno. (2001b). A new multivariate process monitoring method using principal component analysis. *Computers and Chemical Engineering*. 25: 1103-1113.
- Kano, M., Nagao, K., Hasebe, S., Hashimoto, I., Ohno, H., Strauss, R. and Bakshi, B. R. (2002). Comparison of multivariate statistical process monitoring methods with application to the Eastman challenge problem. *Computers and Chemical Engineering*. 26: 161-174.
- King, C. J. (1980). Separation processes. 2nd Edition. New York: McGraw Hill.
- Kleinbaum, D. G., Kupper, L. L. and Muller, K. E. (1987). *Applied regression analysis and other multivariable methods*. Boston: PWS-KENT Publishing Company.
- Kourti, T., Lee, J. and Macgregor, J. F. (1996). Experiences with industrial applications of projection methods for multivariate statistical process control. *Computers chemical engineering*. 20: 745-750.

- Kourti, T. and McGregor, J.F. (1996). Multivariate SPC methods for process and product monitoring. *Journal of Quality Technology*. 1996. 28 (4): 409–428.
- Kresta, J., MacGregor, J.F and Marlin, T.E. (1991). Multivariate statistical monitoring of process operating performance. *Canada journal chemical engineering*. 69: 35-47.
- Leger, R. P., Garland, Wm. J.and Poehlman, W. F. S. (1998). Fault detection and diagnosis using statistical control charts and artificial neural networks. *Artificial Intelligence in Engineering*. 12: 35-47.
- Lennox, B., Goulding, P.R. and Sandoz, D.J. (1999). Analysis of multivariate statistical methods for continuous systems. *Computers and Chemical Engineering*. 23: 207-210.
- Lennox, B., Montague, G. A., Hiden, H. G., Kornfeld, G., and Goulding, P. R. (2001). Application of multivariate statistical process control to batch operations. *Biotechnology and Bioengineering*. 74(2): 125-135.
- Loong, L. H., and Ibrahim, K. I. (2002). Improved Multivariable Statistical Process Control (MSPC) for Chemical Process Fault Detection and Diagnosis (PFDD)– Cross-Variable Correlation Approach. *Regional Symposium on Chemical Engineering, RSCE/SOMChem.* 1637-1644.
- Lopes, J. A. and Menezes, J. C. (1998). Faster Development of Fermentation Processes. Early Stages Process Diagnosis. *American Institute of Chemical Engineering Journal*. 94(320): 391-396.
- Luyben, W. L. (1963). Process Modeling, Simulation, and Control for Chemical Engineer. USA: McGraw Hill.
- MacGregor, J. F., Jaeckle, C., Kiparissides, C. and Koutoudi, M. (1994). Process Monitoring and Diagnosis by Multi-block Methods. *American Institute of Chemical Engineering Journal*. 40: 826–838.

- MacGregor, J.F. and Kourti, T. (1995). Statistical process control of multivariate processes. *Control engineering practice*. 3(3): 403-414.
- Marriott, F. H. C. (1974). *The Interpretation of Multiple Observations*. N.Y.: Academic Press.
- Martin, E.B., and Morris, A.J. (1996). Non-parametric confidence bounds for process performance monitoring charts. *Journal process control*. 6(6): 349-358.
- Martin, E. B., Morris, A.J., Papazoglou, M. C., and Kiparissides, C. (1996). Batch process monitoring for consistent production. *Computers Chemical Engineering*. 20: 599-604.
- Martin, E. B., Morris, A.J., and Kiparissides, C. (1999). Manufacturing performance enhancement through multivariate statistical process control. *Annual Reviews in Control.* 23: 35-44.
- Mason, R. L. and Young, J. C. (2002). *Multivariate statistical process control with industrial applications*. U.S.A: Asa-Siam.
- Miles, J. and Shevlin, M. (2001). *Applying regression and correlation: A guide for students and researchers*. London: Sage Publication.
- Miletic, I., Quinn, S., Dudzic, M., Vaculik, V., and Champagne, M. (2004). Review: An industrial perspective on implementing on-line applications of multivariate statistics. *Journal of Process Control.* 14: 821-836.
- Misra, M., Yue, H. H., Qin, S. J., and Ling, C. (2002). Multivariate process monitoring and fault diagnosis by multi-scale PCA. *Computers and Chemical Engineering*. 26: 1281–1293.
- Montgomery, D. C. (1996). *Introduction to Statistical Quality Control*. 3rd Edition. Canada: John Wiley & Sons.

- Nash, J.C. and Lefkovitch, L.P. (1976). Principal component and regression by SVD on a small computer. *Apply Statistics*. 25(3): 210-216.
- Nomikos, P. and MacGregor, J. F. (1994). Monitoring of batch processes using Multi-Way Principal Component Analysis. *American Institute of Chemical Engineering Journal*. 40 (8): 1361 – 1375.
- Nomikos, P. (1996). Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis. *ISA Transactions*. 35:25-266.
- Nong Y., Qiang C., Syed Masum E., and Kyutae N. (2000). Chi-square Statistical Profiling for Anomaly Detection. *Proceedings of the 2000 IEEE Workshop on Information Assurance and Security United States Military Academy*. June 6-7, 2000. West Point, NY: IEEE. 2000. 187-193.
- Oakland, J. S. (1996). *Statistical Process Control*. 3rd Edition. Oxford: Butterworth Heinemann.
- Ogunnaike, B.A. and Ray, W.H. (1994). *Process Dynamics, Modelling and Control*. Oxford University Press, Inc.
- Onat, A., Sansoy, V. and Uysal, O. (1999). Waist circumference and waist-to-hip ratio in Turkish adults: interrelation with other risk factors and association with cardiovascular disease. *International Journal of Cardiology*. 70: 43–50.
- Patton, R., Frank, P. and Clark, R. (1989). *Fault diagnosis in dynamic systems: Theory and application.* UK: Prentice Hall.
- Quemerais, B., Cossa, D., Rondeau, B., Pham, T. T. and Fortin, B. (1998). Mercury distribution in relation to iron and manganese in the waters of the St. Lawrence river. *The Science of the Total Environment*. 213: 193-201.
- Quesenberry, C. P. (1997). Statistical process control methods for quality improvement. New York: John Wiley.

- Ralston, P., DePuy, G., and Graham, H. (2001). Computer-based monitoring and fault diagnosis: a chemical process case study. *ISA transaction*. 40: 85-98.
- Reid, R.C., Prausnitz, J. M. and Poling, B. E. (1987). *The properties of gases and liquids*. 4th Edition. New York: MacGraw Hill.
- Ruiz, D., Nougues, J. M., and Puigjaner, L. (2001). Fault diagnosis support system for complex chemical plants. *Computers and Chemical Engineering*. 25: 151-160.
- Santen, A., Koot, G. L. M., and Zullo, L. C. (1997). Statistical data analysis of a chemical plant. *Computers Chemical Engineering*. 21: 112-1129.
- Seborg, D. E., Thomas, C. and Tetsuya, W. (1996). Principal component analysis applied to process monitoring of an industrial distillation column. 13th World IFAC Congress. 1996. San Francisco.
- Sharma, S. (1996). Applied Multivariate Techniques. USA: John Wiley & Sons.
- Shirley, M. D. F., Rushton, S. P., Smith, G. C., South, A. B., and Lurz, P. W. W. (2003). Investigating the spatial dynamics of bovine tuberculosis in badger populations: evaluating an individual-based simulation model. *Ecological Modelling*. 167: 139–157.
- Shinskey, F. G. (1984). Distillation control for productivity and energy conservation. 2nd Edition. New York: MacGraw Hill.
- Simoglou, A., Martin, E. B., and Morris, A. J. (2000). Multivariate statistical process control of an industrial fluidised-bed reactor. *Control Engineering Practice*. 8: 893-909.
- Singh. R., and Gilbreath, G. (2002). A real time information system for multivariate statistical process control. *International Jurnal of Production Economics*. 75: 161-172.

- Smith, J. M., Van Ness, H. C., and Abbott, M. M. (1996). *Introduction to chemical engineering thermodynamics*. 5th Edition. New York: MacGraw Hill.
- Souza, A. M., Samohyl, R. W., and Malave, C. O. (2004). Multivariate feed back control: an application in a productive process. *Computers & Industrial Engineering*. 46: 837–850.
- Stephanopoulos, G. (1984). *Chemical Process Control: An Introduction to Theory and Practice*. New Jersey: Prentice Hall.
- Srivastava, M.S. (2002). *Methods of Multivariate Statistics*. New York: John Wiley and Sons.
- Summers, D. C. (2000). *Quality*. 2nd Edition. Upper Saddle River, N.J.: Prentice Hall.
- Thorndike, R. M. (1976). *Correlational procedures for research*. New York: Gardner Press.
- Tsumoto, S., Hirano, S., Yasuda, A. and Tsumoto, K. (2002). Analysis of aminoacid sequences by statistical technique. *Information Sciences*. 145: 205–214.
- Tubb, C., Omerdic, E. (2001). Fault Detection and Handling. *Improves technical* report FD 001. 1-8.
- Upadhyaya, B.R., Zhao, K., and Lu, B. (2003). Fault monitoring of nuclear power plant sensors and field devices. *Progress in Nuclear Energy*. 43: 337-342.
- Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S. N. (2003a). A review of process fault detection and diagnosis Part I: Quantitative model-based methods. *Computers and Chemical Engineering*. 27: 293-311.

- Venkatasubramanian, V., Rengaswamy, and Kavuri, S. N. (2003b). A review of process fault detection and diagnosis Part II: Qualitative models and search strategies. *Computers and Chemical Engineering*. 27: 313-326.
- Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., and Yin, K. (2003c). A review of process fault detection and diagnosis Part III: Process history based methods. *Computers and Chemical Engineering*. 27, 327-346.
- Walas, S. M. (1985). Phase equilibrium in chemical engineering. Butterworth Publisher.
- Wang, J. C. and Henke, G. E. (1966). Tridiagonal Matrix for Distillation. *Hydrocarbon Processing*. 45(8): 155 – 165.
- Wang, S. and Xiao, F. (2004). Detection and diagnosis of AHU sensor faults using principal component analysis method. *Energy Conversion and Management*. 45: 2667-2686.
- Wang, H., Song, Z. and Wang, H. (2002). Statistical process monitoring using improved PCA with optimized sensor locations. *Journal of Process Control.* 12: 735-744.
- Wetherill, W.B. and Brown, D. (1991). *Statistical process control for the process industries*. 3rd Edition. London : Chapman and Hall.
- Wise, B. M., and Gallagher, N. B. (1996). The process chemometrics approach to process monitoring and fault detection. *Journal of Process Control*. 6: 329-348.
- Wissemeier, A. H. and Zuhlke, G. (2002). Relation between climatic variables, growth and the incidence of tipburn in filed-grown lettuce as evaluated by simple, partial and multiple regression analysis. *Scientia Horticulturae*. 93: 193-204.

- Woodall, A. H. (2000). Controversies and contradictions in Statistical Process Control. Journal of Quality Control. 30(4): 341-350.
- Yoon, S. and MacGregor, J.F. (2000). Statistical and causal model-based approaches to fault detection and isolation. *American Institute of Chemical Engineering Journal*. 46(9): 1813-1824.
- Yoon, S. and MacGregor, J.F. (2001). Fault diagnosis with multivariate statistical model part I: Using steady state fault signatures. *Journal of process control*. 11: 387-400.
- Yoon, S., Kettaneh, N., Wold, S., Landry, J. and Pepe, W. (2003). Multivariate process monitoring and early fault detection (MSPC) using PCA and PLS. *Plant automation and decision support conference*. September 21-24, 2003. Washington, DC: National Petrochemical and Refiners Association. 2003. 1-18.
- Yung, W. K. C. (1996). An integrated model for manufacturing process improvement. *Journal of Materials Processing Technology*. 61: 39-43.