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ABSTRACT 
 

 

Pure SnO2 and Pt-SnO2 ceramics were prepared by the dry-pressing method 
using a pressure of 40 MPa and sintered at various temperatures between 100-000oC 
from a mixture of powders of (100-x)SnO2.xPt (0 ≤ x wt % ≤ 5).  The electrical 
properties of the ceramics were studied using a home-made Sensor Element 
Characterization System (SECS) and an Impedance Analyzer.  The sensing probe of the 
SECS was modified so it was much slimmer with most of the electrical connections 
concealed and could measure either the bulk or surface resistance of the ceramic.  The 
optimum composition for detecting methane in air was 0.5 wt.% Pt-SnO2 sintered at 
1000oC and the optimum operating temperature was at 400oC.  The resistance of the 0.5 
wt.% Pt-SnO2 in 25000 ppm methane decreases from ~ 54.0 kΩ to ~ 4.6 kΩ at 
temperatures of 200oC up to 440oC respectively.  The activation energies were between 
0.30 eV and 0.45 eV for temperatures between 200oC and 400oC.  The corresponding 
conductance (G) decreased with Pt loading and the gas partial pressure (p) or methane 
flow rate (χ).  As such, it indicates that the doped SnO2 is an n-type semiconductor.  The 
conductance power law takes the form G ~ p-0.5 and this indicates that the chemisorbed 
ions on the doped ceramics depended only on temperature.  The conductance (G)-
methane concentration (c) takes the form G = kc0.35.  A linear relationship ln G = 0.35 ln 
c – 11.9 was obtained when plotting ln G against ln c.  The relative conductance change 
(∆G/G) and the square root of methane concentrations (c½) obey the relationship ∆G/G 
= 0.08c ½ which indicates the doping with 0.5 wt.% Pt increased the sensitivity of the 
base material (SnO2) to methane by a factor of 133.  The response and recovery times 
were affected by the methane flow rate, operational temperature, level of doping with 
values between 30 s up to 154 s and between 600 s up to 1317 s respectively.  The 
doping of Pt at 0.1 wt.% up to 5 wt.% in SnO2 produced ceramics with densities of 
7.01g/cm3 up to 7.03 g/cm3 which exceeds the full density of pure SnO2 (6.90 g/cm3).  
The strength and stability were indicated from the doped SnO2 measurements of Vickers 
hardness (10 GPa and up to 19 GPa), Young modulus (20 GPa and up to 55 GPa) and 
Bulk modulus (20 GPa and up to 80 GPa) for Pt loadings between 0.1wt.% and 2.5 
wt.%.  High resolution X-ray diffraction showed that the mean crystallite size ranges 
between 25 nm and 55 nm for Pt loadings from 1 wt% up to 5 wt.% in SnO2.  The strain 
in doped samples could not be eradicated by either sintering at high temperature 
(1000oC) or high Pt loading (5 wt.%).  X-ray photoemissions spectroscopy (XPS), 
Mössbauer and nuclear magnetic resonance (NMR) analysis showed that the doped 
SnO2 has additional chemical environment (compared to pure SnO2) can be attributed to 
the ease of detecting methane in air via electrical measurements.  
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ABSTRAK 
 

 

Seramik Timah Oksida tulen dan timah oksida yang didop dengan Platinum telah 
disediakan dengan kaedah Tekanan Kering dengan menggunakan tekanan 40 MPa dan 
disinter pada suhu antara 100-1000oC daripada campuran dalam bentuk bedak 
berkomposisi (100-x)SnO2.xPt (0 ≤ x %berat ≤ 5).  Pencirian elektrik bahan tersebut 
dilakukan dengan mengunakan alat yang dibina dinamakan Sistem Cirian Elemen 
Sensor (SECS) and Penganalisa Impedans bagi mengesan gas metana di udara.  Prob 
pengesan Sistem Cirian Elemen Sensor diubah agar ia lebih langsing dengan sambungan 
elektriknya terlindung dan boleh mengukur rintangan padu atau rintangan permukaan 
seramik.  Adunan optimum untuk mengesan metana di udara adalah 0.5 % berat Pt-SnO2 
dan suhu operasi optimumnya pula ialah 400oC.  Rintangan elektrik bagi 0.5 % berat Pt-
SnO2 di dalam 25000 bahagian per juta metana di udara susut dari ~ 54.0 kΩ ke 4.6 kΩ 
pada suhu 200oC hingga ke 400oC, masing-masing.  Konduktans (G) pula susut dengan 
tambahan Pt dan tambahan tekanan separa gas (p) atau kadar aliran metana (χ).  Dengan 
itu tertunjuk bahawa SnO2 yang didop ialah semikonduktor jenis-n.   Hukum kuasa 
konduktans dinyatakan dalam bentuk G ~ p-0.5 dan ini menunjukkan ion-ion yang 
diserapkimia pada seramik yang didop hanya bersandar kepada suhu.  Hubungan antara 
konduktans (G) dan kepekatan metana (c) adalah dalam bentuk G = kc0.35.  Hubungan 
linear ln G = 0.35 ln c – 11.9 diperolehi bila memplot ln G lawan ln c.  Perubahan relatif 
konduktans (∆G/G) dan punca ganda dua kepekatan metana (c1/2) mematuhi hubungan  
∆G/G = 0.08 c½ , yang menunjukkan 0.5 % berat Pt meningkatkan kepekaan bahan asas 
(SnO2) kepada metana dengan faktor sebanyak 133.  Masa respons dan masa pemulihan 
dipengaruhi oleh kadar aliran metana, suhu operasi, amaun dopan dengan nilai- nilai  
30 s hingga 154 s dan antara 600 s hingga 1317 s, masing-masing.  Mengedop Pt dari 
0.1 % berat sehingga 5 % berat dalam SnO2 menghasilkan seramik dengan ketumpatan 
7.01 g/cm3 hingga 7.03 g/cm3 yang melebihi ketumpatan penuh SnO2 (6.90 g/cm3).  
Kekuatan dan kesetabilan SnO2 yang didop ditunjukkan oleh ukuran dari kekerasan 
Vickers (10 GPa sehingga 19 GPa), Modulus Young (20 GPa sehingga 55 GPa) dan 
Modulus Pukal (20 GPa sehingga 80 GPa) bagi tambahan Pt dari 1 % berat sehingga  5 
% berat dalam SnO2.  Pembelauan sinar-X resolusi tinggi menunjukkan min saiz kristalit 
berada dalam julat 25 nm sehingga 55 nm untuk tambahan Pt dari 1 % berat sehingga 5 
% berat dalam SnO2.  Spektroskopi fotopancaran sinar-X (XPS), Mössbauer dan 
salunan-magnetik-nuklear (NMR) menunjukkan SnO2 yang didop memiliki suasana 
kimia tambahan (berbanding dengan SnO2 tulen) yang mungkin menjadi atribut 
mudahnya mengesan metana di udara melalui pengukuran elektrik. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 General Introduction to Gas Sensing 

 

A sensor is a form of transducer which converts physical or chemical 

quantity into an electrical quantity for the purposes of measurement.  A transducer 

is a device which converts one form of energy into another. A gas sensor is then a 

chemical sensor whose sole purpose is to determine the gas composition and 

concentration via an electric signal.  The use of sensors has increased as it was 

necessary where environmental, health and safety issues are concerned to improve 

the quality of life (Brailsford and Logothesis, 1998).  For example, low level toxic 

gases emission from exhaust systems could only be possible if high efficient 

sensors are realised (Ogita et al., 2001).  

 

 

1.1.1 Methane gas 

 

Methane gas is colourless, odourless and lighter than air.  The methane gas 

is a molecule which is made up of 1 carbon atom and 4 hydrogen atoms.  Natural 

sources of methane include wetlands, grass hydrate, termites, oceans and 

freshwater bodies.  Human related (anthropogenic) activities like fossil fuel 

production, animal husbandry, rice cultivation, biomass burning and waste 

management also release methane into the atmosphere and alter the atmospheric 
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composition.  Also, almost all (95%) of the methane emissions are from coal in 

underground mines. This is still the main danger in coal mines all over the world.  

Methane gas sensing is difficult because it is colourless and odourless.  A crude 

method of methane sensing is by its pungent smell when an additive such as 

mercaptan is added in low dosage.  Mixtures of methane and air between 5 to 15% 

methane when ignited can burst into flame and explode (Leer, 1992).  This will 

then cause widespread fire and can claim many lives. 

 

 

1.1.1.1  Anthropogenic methane sources   

 

Amongst the anthropogenic sources of methane are landfills, natural  

gas and oil systems, domesticated livestock, coal mining, livestock manure, rice 

cultivation, biomass burning and wastewater treatment.  Under anaerobic 

conditions (without oxygen) landfills and open dumps decompose and generate 

methane.  The volume of methane generated depends upon the waste mass and the 

moisture content.  One of the primary component of natural gas is methane which 

escapes to the environment during the production, processing, storage, 

transmission and distribution stages.  The fact that the gas is found in conjunction 

with oil means that the production, refinement, transportation and storage of crude 

oil is also considered as a source of methane.  Cattle, buffalo, sheep, goats are 

amongst the ruminant animals kept as domesticated livestock.  These animals 

produce methane as part of their digestive processes.  It is in their large fore-

stomach or rumen that microbial fermentation takes place where the feed is 

converted into products that can be digested by the animal.  The byproduct of the 

microbial fermentation is methane which is eructed or released by the animal.  

Human too produces methane via their digestive processes but the emissions from 

this source is insignificant compared to the case of livestock.  Methane which is 

trapped in coal deposits and in the surrounding strata is released during coal 

mining operations.  Methane is also emitted during the combustion of coal.  

Reducing the emissions of methane from coal mining is environmentally 

beneficial as it also a greenhouse gas.  Liquid manure from ponds, lagoons and 
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holding tanks also promotes methane production as the manure is produced from 

decomposition of the organic matter in the livestock and poultry manure.  A 

flooded rice field is an ideal environment for methane production as it contains 

high levels of organic substrates, oxygen-depleted conditions and moisture for 

anaerobic decompositions.  The level of emissions varies with soil conditions and 

production practices. In countries like Indonesia, biomass is burned as part of 

their agricultural system as well as for fuel.  A small but significant amount of 

methane is produced - 95% is carbon dioxide and carbon monoxide.  Waste water 

treatment can only produce methane if the organic matter in the waste water is 

treated anaerobically.  If methane is produced, it is directly released to the air. 

 

 

1.1.1.2  Natural methane sources   

 

The known natural sources of  methane are wetlands, fossil, termites and  

freshwaters.  Natural wetlands are a rich anaerobic environment and abundant in 

organic matter.  As such, it is a conducive habitat for methanogenic bacteria 

(methane producing bacteria) and enhances the decomposition of the organic 

matter, thus producing methane.  Methane was created in the geologic past and 

found in the earth’s crust in the form of gas hydrates and permafrost.  Hydrates 

are solids comprising water molecules that contain methane molecules which are 

found in both the polar regions and ocean sediments.  Permafrost methane 

originates from biological processes and is trapped in shallow permafrost ice and 

soil before it reaches the atmosphere.  Today, the amount of permafrost is 

decreasing and more methane is being released to the environment.  Cicerone and 

Oremland (1988) reported the emissions of methane from termites depended on 

the termite population, amount of organic matter consumed, type of species and 

the methane-oxidizing bacteria activity.  The freshwater environment is an ideal 

place for the decomposition of wetlands plants which then emits methane.  

Emissions from these natural sources are dependent on the temperature and 

rainfall.  For example, temperature changes can promote microbial activity, thus 

enhancing methane production. 
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1.1.2 Ceramics 

 

The term ceramics is defined as the art and science of making and using 

solid articles which have their essential component, and are composed in large 

part of, inorganic non-metallic materials (Kingery et al., 1976).  This definition is 

not limited to just pottery, porcelain, refractories, structural clay products, 

abrasives, porcelain enamels, cements and glass but it also applies to non-metallic 

magnetic materials, ferroelectrics, single crystals and glass-ceramics.  Barsoum 

(1997) defined ceramics as solid compounds that are formed by the application of 

heat and sometimes heat and pressure, comprising at least one metal and a non-

metallic elemental solid or non-metal, a combination of at least two non-metallic 

elemental solids, or a combination of at least two non-metallic elemental solids 

and a non-metal.   

 

 Today, ceramics are, in short “solid inorganic non-metallic materials made 

by firing” (Murata, 2000).   The term ceramics is now classified as traditional and 

fine ceramics.  These ceramics  have common features; resistance to rust, heat 

resistance, non-flammability, extreme hardness and ease of forming.  These 

features are meaningful because neither plastics nor metals have all these features.  

Today’s fine ceramics are a new breed or a new kind of material.  To distinguish 

between fine and traditional ceramics, the latter are made of natural materials 

whilst the former are produced by putting the atomic compositions of various, 

refined elements together through scientific forming and sintering processes.  In 

other words,  fine ceramics are made by scientifically controlling chemical 

compositions and this brings the realisation of new materials customised to the 

unlimited amount of purpose they serve.  Therefore, fine ceramics can be grouped 

as functional materials such as electronic ceramics, optical ceramics and catalyst 

or structural materials such as bio-ceramics, heat resistance structure and artificial 

jewellery. 
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1.1.2.1  Electronic ceramics 

 

The secret of the characteristics of fine ceramic is in its microstructure. 

To a layman it is like an artificially created small piece of stone as shown in 

Figure 1.1  

 
FIGURE 1.1:  Microstructure of a fine ceramic showing grain and grain 
boundary of a typical ceramic. 
 

Technically, they are finely aggregated grains and traditional ceramics are 

comparatively far more porous and more irregular.  The grains and grain 

boundaries are all scientifically controlled and show specific electrical responses 

to electrical potential or environmental changes.  These specific reactions are 

utilised  for specific purposes.  For example, titanium dioxide (TiO2) ceramics or 

barium titanate (BaTiO3) ceramics are polarised when voltage is applied to them.  

On the other hand, other types of ceramics containing different additives, though 

mainly composed of the same BaTiO3, serve as unique semiconductors which turn 

an electric flow on and off under a given condition.  This is therefore an 

application of the electrical changes in their grain boundaries.  Another example is 

when the inclusion of a catalyst in semiconductor ceramics such as TiO2 or SnO2 

affects the conductance of the material which can serve as sensing element in a 

gas detector.  Thus the function of electronic ceramics varies according to their 

internal microstructure (Saito, 1988). 

 

grain 

grain boundary
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 Most natural stones are insulators.  In contrast, fine ceramics can be 

designed with different conductivities by adjusting their composition; some are 

conductors and others are insulators.  This variation is one of the greatest 

advantages of electronic ceramics.  Electronic ceramics can further sub-divided 

into magnetic ceramics, transparent ceramics, pyroelectric ceramics, 

semiconductive ceramics, piezoelectric ceramics, insulating ceramics and 

dielectric ceramics. 

 

 

1.2 Justification for Research 

 

In the past, gas sensors were used to control industrial processes and to 

warn of poisonous gas leakages (Carotta et al., 1991).  In Europe, controlling air 

quality was mandatory by 2001 as stipulated by Council Directives such 96/61/EC 

and 96/62/EC (Saul Garcia and Fernandez, 1999 and O’Malley 1999).  For 

example, the National Air Quality Standard for CO adopted by the UK 

government in January 2000 is currently 10 ppm for a running 8 hours mean 

(Stewart, 2000).  It was therefore necessary to focus research on sensors capable 

of monitoring pollutant gases and controlling combustion processes both at home 

and in industry (Ruiz et al., 2002).  The demands for more accurate and dedicated 

sensors to monitor and control environmental pollution have led to the 

development of new sensing materials to improve sensitivity, selectivity and 

stability of sensors (Sharma et al., 2001). 

 

With reference to an environmental issue,  gases like CO2, methane, water 

vapour, ozone, nitrous oxide and  halocarbons play a significant role in enhancing 

the greenhouse effect.  The greenhouse effect is primarily a function of the 

concentration of water vapour, carbon dioxide and other trace gases in the 

atmosphere that absorb the terrestrial radiation leaving the earth surface.  The 

changes in the atmospheric concentration of these greenhouse gases will alter the  
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balance of energy transfers between the atmosphere, space, land and the ocean 

which will give rise to global warming (Houghton et al., 1996). 

 

 

1.2.1 Methane gas and global warming 

 

Methane gas is amongst the greenhouse gases and the atmospheric 

concentrations of methane have doubled over the last 200 years and continue to 

rise, although the rate of increase is slowing (Dlugokencky et al., 1998). The 

natural methane emissions to the atmosphere are 30% from wetlands, oceans, 

termites while the remaining 70% is anthropogenic, from human activities such as 

agriculture, usage of fossil fuel and waste disposal (Fung et al., 1991).  When 

methane enters the atmosphere, it reacts with molecules of oxygen and hydrogen 

known as OH radicals.  The OH radicals combine with methane and they 

decompose into carbon dioxide and water vapour.  Increasing emissions of 

methane will reduce the concentration of OH radicals, a feedback which may 

increase methane’s atmospheric lifetime.  While most greenhouse gas studies 

focus on CO2, methane is 20 times more potent as a heat trapping gas in the 

atmosphere (Houghton, 2001).  Thus, methane gas is also a leading contributor to 

global warming after carbon dioxide. 

 

   

1.2.2 Methane gas explosions 

 

Methane is the major component (95 %) of natural gas, thus it can be used 

to produce energy.  The lower explosion limit (LEL) is 5% methane in air and the 

upper explosion limit is 15% methane in air.   However, gas explosions are 

frequently reported in homes, pipelines and coalmines world wide.  For example, 

an explosion at one of the gas pipeline owned by Brunei Shell company in Seria 

destroyed two homes and hundreds of residents in the vicinity were forced to 

abandon their homes (Othman, 2000).  The cause of the explosion was due to a 
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corroded pipeline which leaked out methane gas (Teo, 2000).  Another incident, at 

a Terengganu gas processing plant in Kertih, owned by Petronas Malaysia caught 

fire and killed three workers (Alias and Hamidah, 2002).  Frequent gas explosions 

occurred in the 1960s in Japan largely associated with the popular usage of bottled 

liquid petroleum gas for domestic purposes (some 23 million households use them 

for cooking requirements and another 18 million used piped gas).  In countries 

like the United Kingdom a similar problem was reported in the Ronan Point 

disaster.  The disaster at Ronan Point in London, England in May 1968 was a gas 

explosion which led to the collapse of one whole corner of a high rise building 

and the death of three people.  In Malaysia, closed packed condominiums, 

apartments and flats which utilize bottled or channelled gas pipeline are also 

prone to disasters like those in Japan.   

 

 

1.2.3 The importance of methane sensing in Malaysia 

 

There are two main reasons for researching into methane sensing in 

Malaysia.  Malaysia has substantial resources of natural gas from offshore fields  

such as those based in Terengganu and Sarawak.  Its reserves of natural gas 

ranked 12th in the world (Wu, 2000a).  The gas reserves here are dedicated to the 

Peninsular Gas Utilization Project which provided 37% of the main sources of 

primary commercial energy for the period 1996 to 2000.  By 2005, the 

contribution is expected to rise to 39.9%.  Under the 8th Malaysia Plan (2001-

2005), the Government will continue to promote gas usage.  Malaysia has the 

largest natural gas reserves among the Southeast Asian economies and is the third 

largest amongst the Asia Pacific economies.  At the turn of the century, the 

recoverable gas reserves were 84.4 trillion standard cubic feet, 43% offshore east 

coast of West Malaysia, 48% located offshore Sarawak and 9% offshore Sabah.  

This introduces 1753 km of gas pipelines into the network of both domestic and 

industrial sectors  (Balce, 2002).  Ambitious constructions of natural gas pipeline 

in Malaysia like the one from Kuala Terengganu to Segamat and its branches and 

the 220 miles of gas pipeline from Gulf of Thailand to the northern state of Kedah 
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which will provide natural gas for industries and home would certainly need gas 

sensors to detect leaks and seepage of gases.  It is foreseen that detection and 

measurement of natural gas leaks such as methane is required on a day-to day 

basis especially in the natural gas industry such as Petronas, Gas Malaysia and 

from gas appliances, gas piping inside buildings or buried gas piping. 

 

In modern, high rise flats, apartments and condominiums in Malaysia, 

methane gas is supplied via such a network of pipelines.  The gas is normally used 

for domestic cooking or drying clothes.  Such areas are enclosed due to the usage 

of air-conditioning.  Therefore, methane leakages  in the concealed pipeline 

network will accumulate in high concentrations in a very short time.  This 

inevitably needs methane monitoring for both public safety and environmental 

issues.  The early warning of methane presence would led to necessary steps that 

could save lives and preserve the environment. 

 

Malaysia also has large resources of tin and its tin reserves ranked as the 

world’s third largest (Carlin, 2001).  Tin is mined by various methods; gravel 

pump (53.5%), open cast (20.2%), retreatment or Amang plant (12.6%), panning 

and underground (8.3%) and dredging (5.4%).  Malaysia exported 20 614 tons of 

refined tin and the domestic demand was 5639 tonnes in 2000 (Wu, 2000b).  The 

local consumption are from the Malaysian solder industry (56.3%), pewter 

industry (14.8%), tin plating industry (10.6%) and other end users (18%) reported 

by the Wu (2000b).  

 

 An oxide of tin known as stannic oxide (SnO2) is easily obtained from 

pure tin or tin derivatives in the form of thin, thick film or pellet (ceramic) form.  

Stannic oxide is a well-known material used for CO and CH4 gas sensing.  

Nevertheless, the state of methane gas sensing using stannic oxide needs further 

investigation as it has not attained its projected capability (Clifford, 1981). 
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The proposed methane sensing project will contribute to future R&D in 

methane sensors for Malaysian natural gas pipelines, domestic actuators and an 

environmental monitoring system to reduce global warming.  The usage of tin in 

the form of stannic oxide will introduce an alternative use of the local tin and 

promote a diversified Malaysian economy.   

 

 

1.3 Scope of study 

 

The knowledge of gas sensors has led to high-volume applications which 

are publicised via periodic international sensor conferences which are devoted to 

fundamental research, for example Transducers/Eurosensors, Semiconductor Gas 

Sensors (SGS), Pittsburgh Conference (PITTCON), Electrochemical Gas Sensors 

and also a book series covering the state of sensor chemistry, physics and 

technology (Gopel et al., 1990).  Much work has been done in the field of 

methane sensing, for example thick film based on SnO2 (Carotta et al.,1991) in 

relating the sensitivity to methane.  The performance of the sensor material 

depends strongly on its composition and preparation conditions (de Angelis and 

Roberto, 1995).  It was intended that the material chosen was SnO2 and takes the 

form of a sintered pellet.  The sensor element that comprised SnO2 only has 

limited sensitivity to CH4 (Williams, 1987).  The incorporation of  noble metals is 

to enhance the sensitivity (Yamazoe et al., 1983).The use of additives like Pt was 

also reported to enhance sensitivity and selectivity and to reduce the response 

time and operating temperature of the sensing material in the form of thin film 

(Wu et al., 1993; Schierbaum et al., 1991;  Zakrzewska et al., 1997 and Atashbar 

et al., 1998).  Gélin and Primet (2002) reported that Pt as a catalyst has 

advantageous over Pd with respect to methane sensing.  Firstly, Pd appeared to be 

more sensitive to poisoning than Pt  and secondly Pt could fully and easily 

restored while the deactivation of Pd was irreversible.  Therefore, a great interest 

in Pt-SnO2 ceramic to achieve a considerable degree of performance for methane 

sensing in air was anticipated mainly due to the catalytic behaviour of Pt. 
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The electrical properties of the ceramic semiconductor Pt-SnO2 was 

studied using impedance spectrometer and Sensor Element Characterization 

System (SECS) which are home-made at the Warwick University, United 

Kingdom and Universiti Teknologi Malaysia respectively.  The measurements 

made were electrical resistance, conductance and sensitivity of the sensor 

element. The microstructure of the sensor element was studied using High 

Resolution X-Ray Diffraction (HRXRD), Energy Dispersive Analysis using X-

Ray (EDAX), Scanning Electron Microscopy (SEM), Transmission Electron 

Microscopy (TEM), Atomic Force Microscopy (AFM), X-Ray Photoemission 

Spectroscopy (XPS), Nuclear Magnetic Resonance spectroscopy (NMR), Fourier 

Transform Infra-red spectroscopy (FTIR), Raman-Shift spectroscopy and 

Mössbauer spectroscopy.  The physical properties of the ceramic was gauged via 

Vickers hardness, bulk density, porosity and elastic modulus measurements.  

Brunauer-Emnett-Teller (BET) method was employed to determine the specific 

surface area and the particle size of the ceramic whilst the Barrett-Joyner-Halenda 

(BJH) method is for calculating pore size distributions  The highlight of the 

research was to relate where ever possible the sensitivity and the microstructure 

properties.  It is reasonable to expect that if the same microstructure is present in 

the fabrication of a similar ceramic, then it will show the similar corresponding 

sensitivity. 

 

 

1.4 Statements of hypotheses 

 

 The hypotheses made are as follows; 

1. The usage of Pt-SnO2 would form a stable and sensitive material for 

methane sensing in air via the dry pressing method, 

2. The amount of Pt in SnO2 sintered will be minimized in obtaining the 

optimum composition of the ceramic and the optimum operating 

temperature of the gas sensor. 
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1.5 Objectives of the study 

 

 The objectives of this study are; 

1.   To construct and improve a new sensing probe in the acquisition of 

      electrical measurements, 

2. To determine the optimum composition  and optimum operating 

temperature of the methane sensing, 

3. To determine the sensor resistance, conductance and sensitivity with 

varying ceramic compositions, operating temperatures of the methane 

sensor and flow rates of the methane gas, 

4. To determine the physical and microstructural properties of the         

Pt-SnO2 ceramics.  

 

 

1.6 Thesis plan 

 

This thesis comprises of nine chapters.  In the introduction, the state of gas 

sensing is briefly mentioned with an emphasis on methane sensing with respect to 

global warming and perils of gas explosion.  The notions of methane sensing as a 

research project with regards to Malaysian resources are highlighted.  The 

research tools and expectations are stated.   

 

The second chapter deals with methane sensor viewed through the work 

by researchers in the last four decades, since the birth of the gas sensor in the 

1960s.  Various methane sensors are mentioned including the stannic oxide based 

sensors.  The introduction of various dopants and their effects on the performance 

of the gas sensor are also mentioned.  The problems that arise from the sensors are 

also pointed out. 
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The third chapter mentions the theory of sensing mechanisms known up to 

the time this thesis was written.  These include the well known Spillover and 

Energy Barrier Model.  The role of Pt in SnO2 in the sensing property is also 

highlighted. 

 

The fourth chapter states the experimental and measurement techniques 

which include sample preparation and the apparatus used for both electrical and 

microstructure analysis.  The parameters and physical measurements are defined. 

 

The fifth chapter presents the results of the electrical analysis which are 

basically the measurement of sensor element resistance, conductance and 

sensitivity.  The variables in the experiments are sintering temperature and the Pt 

loadings in the SnO2 ceramics.  The effects of methane gas concentration and of 

methane gas flow rate are also reported.  The stability of the methane is viewed 

via its long term performance. 

 

The sixth chapter highlights two important parameters which will gauge 

the performance of the methane sensor, namely optimum composition of the 

ceramics and optimum operating temperature of the sensor with respect to 

methane sensing in air.  These two parameters are then related to the mean 

crystallite size of the ceramics. 

 

The seventh chapter looks at the response and recovery times of the 

methane sensor which are influenced by methane gas concentration, operating 

temperature of the sensor, doping level and the flow rate of the methane gas.   

 

The eighth chapter deals with microstructure analysis of the ceramics.  

The  ceramics analysed using HRXRD, EDAX, SEM, TEM, XPS, NMR, 

Mössbauer, Raman-Shift and FTIR will lead to the understanding of the 

microstructure observed.  The physical properties in relation to its stability are 

gauged via DTA, TGA analysis and measurements of density, porosity, BET and 

elastic modulus. 
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The ninth or final chapter summarizes the findings and comments on the 

Pt-SnO2 ceramics in relation to methane sensing in air.  Recommendations for 

further work are also mentioned. 
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9.2   Recommendations 
 

It is recommended that the following studies be attempted; 

 

 perform detection on desired methane concentration using gas 

blenders, 

 in situ microstructure analysis using built-in heater/temperature 

controller for temperatures 100-500oC. 
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