AN IMPLEMENTATION OF A KNOWLEDGE-BASED SYSTEM METHOD TO AN ACTIVE FORCE CONTROL ROBOTIC SCHEME

ENDRA PITOWARNO

A thesis submitted in fulfilment of the requirement for the award of the degree of Master of Engineering (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

.

5

JUNE, 2002

ABSTRACT

v

This thesis presents a method to improve the response of a robotic control system in order to obtain a more robust system performance using an active force control with a knowledge-based system method called the Active Force Control and Knowledge-Based System (AFCKBS). The focus of the study is the implementation of a mechanism to refine the trajectory error generated by an Active Force Control (AFC) scheme applied to a two-link robotic planar arm. This is accomplished by utilizing features of the signal patterns produced by the input and output functions. Based on the previous research that employed a number of robotic control schemes, knowledge of the trajectory track error pattern was obtained when a specific trajectory tracking command was forced to the system. The correlation between the generated track error pattern and the input function of the robot scheme provides the essential knowledge to be utilized via the proposed technique. A simulation and experimental study was performed and the result obtained was consequently analyzed and compared to show the performance enhancement in the proposed method.

ABSTRAK

Tesis ini membincangkan suatu kaedah untuk memperbaiki sambutan daripada sistem kawalan robot untuk memperolehi prestasi sistem yang lebih lasak menggunakan kawalan daya aktif dan satu kaedah berasaskan pengetahuan yang dipanggil Active Force Control and Knowledge-Based System (AFCKBS). Penumpuan utama daripada penyelidikan ini ialah tentang penerapan suatu mekanisme untuk membaiki ralat trajektori yang dihasilkan oleh skema Active Force Control (AFC) dan diuji pada sebuah lengan planar robot dua sendi. Hal ini dapat dilakukan dengan mengambilkira ciri-ciri khas yang terdapat pada isyarat paten yang dihasilkan oleh fungsi masukan dan luaran. Berdasarkan kepada kajian yang dibuat terhadap beberapa jenis skema kawalan robot sebelum ini, pengetahuan tentang ralat jejak trajektori dapat diperolehi apabila suatu arahan penjejakan trajektori diberikan kepada sistem. Korelasi bentuk isyarat ralat trajektori terhasil dan juga fungsi masukan daripada skema robot menyajikan suatu pengetahuan yang diperlukan serta boleh diterapkan melalui teknik yang dicadangkan. Suatu kajian melibatkan kedua-dua penyelakuan dan ujikaji sebenar telah dilakukan dan hasil kajian dapat dihurai serta dibandingkan secara saksama untuk menunjukkan pembaikan dan peningkatan prestasi menggunakan kaedah yang dicadangkan.

CONTENTS

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
CONTENTS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF SYMBOLS	xxii
LIST OF APPENDICES	xxv

CHAPTER I INTRODUCTION

CHAPTER SUBJECT

1.1	General Introduction	1
1.2	Research Background	2
1.3	Research Objectives	4
1.4	Research Scope, Methodology &	
	Strategy	4
1.5	Expected Results	6
1.6	Organization of Thesis	6

PAGE

CHAPTER II PRELIMINARIES STUDY AND REVIEW

2.1	Introd	luction	9
2.2	Kinen	natics & Dynamics of Robot	10
2.3	Robot	t Control Schemes	11
	2.3.1	Motor and Drive System	12
	2.3.2	Position Control	12
	2.3.3	Speed Control	13
	2.3.4	Acceleration/Force Control	14
2.4	Two-l	link Robot Arm Model	15
2.5	The A	active Force Control (AFC)	
	Conce	ept	16
	2.5.1	Estimation of the Inertia Matrix	
		Using Crude Approximation	19
	2.5.2	Estimation of the Inertia Matrix	
		Using Intelligent Schemes	20
2.6	Exper	t System	23
2.7	Know	ledge-Based System (KBS and	
	the In	ference Engine	25
	2.7.1	Knowledge Investigation &	
		Validation	26
	2.7.2	Knowledge Representation	27
	2.7.3	Knowledge Acquisition	29
	2.7.4	Knowledge Processing &	
		Inference Engine	30
2.8	Concl	usion	31

CHAPTER III

KNOWLEDGE INVESTIGATION OF THE AFC SCHEMES

3.1	Introduction	32
3.2	Features/Knowledge Investigation	32

3.3	Simulation of the AFC Schemes		34
	3.3.1	Knowledge Investigation of the	
		AFCCA Scheme	37
	3.3.2	Knowledge Investigation of the	
		AFCANN Scheme	39
	3.3.3	Knowledge Investigation of the	
		AFCAIL Scheme	41
3.4	Facts	and Rules	43
3.5	Concl	usion	43

CHAPTER IV ACTIVE FORCE CONTROL AND KNOWLEDGE-BASED SYSTEM (AFCKBS) SCHEME

4.1	Introduction		45
4.2	The Proposed AFCKBS Scheme		46
4.3	Know	ledge Validation of the	
	Know	ledge Investigation	47
	4.3.1	Analysis of the Track Errors	
		(TE)	48
	4.3.2	Bayesian Approach	51
4.4	Know	ledge Representation of the	
	Robot	Arm and Its Environment	54
	4.4.1	The Track Error Signal Pattern-	
		Based Semantic Network	55
4.5	Know	ledge Acquisition & Processing	57
	4.5.1	Proposed Rules	58
	4.5.2	Rules Interpretation in the	
		Inertia Matrix Estimator	59
4.6	Simul	ation	60
	4.6.1	Prescribed Trajectory	64
	4.6.2	Disturbances	65

	4.6.3	Simulation Procedures	66
4.7	Result	ts and Discussion	68
	4.7.1	Experimenting the IN Estimator	
		to Seek the Optimum K _{gain}	68
	4.7.2	Effects of the Harmonic Force	
		Disturbances	76
	4.7.3	Effects of the Changes in the	
		Payload Masses	79
4.8	Concl	lusion	80

CHAPTER V ACTIVE FORCE CONTROL AND EXTENDED KNOWLEDGE-BASED SYSTEM (AFCEKBS) SCHEME

5.1	Introd	uction	8 1
5.2	The AFCEKBS Scheme		82
	5.2.1	Analysis of Harmonic	
		Frequency of the Input Function	83
	5.2.2	Knowledge Acquisition &	
		Processing of the Extended KBS	
		Rules	84
5.3	Simul	ation	85
	5.3.1	The SIMULINK® Diagram of	
		AFCEKBS Scheme	86
	5.3.2	The Simulation Parameters	89
	5.3.3	The Prescribed Trajectory	90
	5.3.4	The Applied Disturbances	91
	5.3.5	The Simulation Procedures	91
5.4	Result	ts and Discussion	92
	5.4.1	Experimenting the IN Estimator	
		by Determining the Optimum h_f	92
	5.4.2	Experiment with the Harmonic	

		Force Disturbance, F_h	97
	5.4.3	Experiment with the Changes of	r
		Payload Mass, F_m	99
5.5	Concl	usion	100

CHAPTER VI COMPARATIVE STUDY OF THE SCHEMES

6.1	Introduction	101
6.2	Specifications of the AFC Schemes	102
6.3	Track Error Analysis	103
	6.3.1 Trajectory Tracking with no	
	Disturbance, F_0	103
	6.3.2 Trajectory Tracking with Spring	
	Disturbance, F_k	104
	6.3.3 Trajectory Tracking with	
	Harmonic Force Disturbance, F_h	104
	6.3.4 Trajectory Tracking with the	
	Change of Payload Mass, F_m	105
6.4	Comparison of the Estimated Inertia	
	Matrix, IN	106
6.5	Comparison of the Applied Currents &	
	Torques	109
6.6	Conclusion	112

CHAPTER VII THE EXPERIMENTAL ROBOT ARMS

7.1	Introduction	113
7.2	Mechanical-Based Design	114
	7.2.1 Isometric View of the Rig	114
7.3	Electronic Circuits Section	116

	7.3.1	Computer-Based Controller	117
	7.3.2	Data Acquisition System Card	
		DAS1602	118
	7.3.3	Sensor, Actuator Circuits and	
		Signal Conditioning	119
	7.3.4	External Power Supply Unit	125
7.4	Techn	ical Specifications of the Robot	
	Arms		126
7.5	Exper	iment with the Single-Link Robot	
	Arm		127
7.6	Exper	iment with the Two-Link Robot	
	Arm		131
	7.6.1	Experimental Results of the PD	
		Scheme	133
	7.6.2	Experimental Results of the	
		AFCKBS Scheme	136
7.7	Concl	usion	140

CHAPTER VIII CONCLUSION AND

1

1

Ç

RECOMMENDATION	14	1

- 8.1Conclusions1418.1.1Simulation Study142
 - 8.1.2 Experimental Study 143
- 8.2 Recommendation for Future Works 144

APPENDIX

Appendices A – L (in a CDROM)	150
Appendix M	151

LIST OF TABLES

TABLE	SUBJECT	PAGE
6.1	Specifications of the AFC schemes	102
7.1	Some important specifications ADXL105EM-1	124
7.2	Technical specifications of the arms	126
7.3	The main parameters used in the two-link arm	
	experiments	132

LIST OF FIGURES

FIGURE SUBJECT

PAGE

1.1	A representation of an AFC scheme	3
1.2	Research strategy in a flowchart	5
2.1	An illustration of the robot world	9
2.2	The basic position control of robot arm	12
2.3	An illustration of a speed/rate control of robot arm	13
2.4	An illustration of an acceleration control of robot arm	14
2.5	A representation of a two-link robot arm	15
2.6	A schematic diagram of the AFC scheme applied to a	
	robot arm	18
2.7	The algorithm to find the optimum K_i used by Musa	
	(1998)	20
2.8	An illustration of a generic expert system	24
2.9	An illustration of KBS	25
2.10	An illustration of the semantic network	28
2.11	Illustration of an inference strategy	30
3.1	An illustration of input/output relation	33
3.2	An illustration of the complete rig of two-link robot	
	arm	35
3.3	A display of main simulation parameters setting	36
3.4	(a) A display of the trajectory tracking animation, and	37
	(b) The desired trajectory tracking.	37
3.5	A Schematic diagram of the AFCCA scheme	37

3.6	SIMULINK [®] model of the AFCCA scheme	38
3.7	Trajectory Track Error of the AFCCA scheme	38
3.8	Schematic diagram of the AFCANN scheme	39
3.9	SIMULINK [®] model of the AFCANN scheme	39
3.10	Training results of 3037 epochs (iterations)	40
3.11	Trajectory Track Error of the AFCANN scheme	40
3.12	Schematic diagram of the AFCAIL scheme	41
3.13	SIMULINK [®] model of the AFCAIL scheme	42
3.14	Trajectory Track Error of the AFCAIL scheme	42
4.1	The principle of AFC with KBS scheme	46
4.2	A schematic of the AFCKBS scheme	47
4.3	The extended graphs of the track error results of the	
	AFCCA scheme	48
4.4	The extended graphs of the track error results of 10	
	cycles	49
4.5	Curve looping vs circular form trajectory and the	
	hills and valleys forms	50
4.6	The general semantic network of the knowledge	54
4.7	An illustration of the track-error (TE) signal pattern-	
	based semantic network	56
4.8	A representation of the occurrence of hills & valleys	
	pattern	57
4.9	The main rules of the AFCKBS scheme	58
4.10	The IN estimator of the AFCKBS scheme	59
4.11	Transition of $(K_i + KBS_v)$ in IN _{KBS}	60
4.12	The SIMULINK [®] diagram of the complete AFCKBS	
	scheme	61
4.13	The SIMULINK [®] diagram of the <i>Trajectory Planner</i>	
	model	61
4.14	The SIMULINK [®] diagram of the RMAC-PD model	62
4.15	The SIMULINK [®] diagram of the AFC model	62
4.16	The SIMULINK [®] diagram of the Robot's Dynamics	
	model	63

4.17	The SIMULINK [®] diagram of the Disturbances	
	model	63
4.18	The SIMULINK [®] diagram of the KBS core model	64
4.19	The prescribed trajectory	65
4.20	The applied disturbances	66
4.21	A flowchart showing the simulation procedures	67
4.22	Results for <i>one-cycle</i> operation, $K_{gain} = 0.005$ to 0.05	69
4.23	TTEs for <i>one-cycle</i> operation, $K_{gain} = 0.020$ for all	
	values of k	69
4.24	Results for <i>five-cycles</i> operation, $K_{gain} = 0.005$ to 0.05	70
4.25	TTEs for <i>five-cycles</i> operation, $K_{gain} = 0.020$ for all	
	values of k	70
4.26	TTEs for <i>five-cycles</i> operation, $k = 200$ N/m, $K_{gain} =$	
	0.01, 0.02, 0.03, 0.04 and 0.05	71
4.27	TTEs for <i>five-cycles</i> operation, $k = 300$ N/m, $K_{gain} =$	
	0.01, 0.02, 0.03, 0.04 and 0.05	72
4.28	TTEs for <i>five-cycles</i> operation, $k = 400$ N/m, $K_{gain} =$	
	0.01, 0.02, 0.03, 0.04 and 0.05	72
4.29	TTEs for <i>one-cycle</i> operation, $k = 200$ N/m, $K_{gain} =$	
	0.01, 0.02, 0.03, 0.04 and 0.05	73
4.30	TTEs for <i>one-cycle</i> operation, $k = 300$ N/m, $K_{gain} =$	
	0.01, 0.02, 0.03, 0.04 and 0.05	73
4.31	TTEs for <i>one-cycle</i> operation, $k = 400$ N/m, $K_{gain} =$	
	0.01, 0.02, 0.03, 0.04 and 0.05	74
4.32	IN _{<i>KBS</i>} for <i>five-cycles</i> operation, $K_{gain} = 0.01, 0.02,$	
	0.03, 0.04 and 0.05	75
4.33	T_{i1} for <i>five-cycles</i> operation, $K_{gain} = 0.01, 0.02, 0.03,$	
	0.04 and 0.05	75
4.34	T_{i2} for <i>five-cycles</i> operation, $K_{gain} = 0.01, 0.02, 0.03,$	
	0.04 and 0.05	76
4.35	TTEs for <i>one-cycles</i> operation, F_{h1} , $H_{peak} = 20, 30$,	
	40, 50 and 60 N	77

4.36	The described vs. prescribed trajectory for <i>one-cycle</i>	
4 27	operation, F_{h1}	78
4.37	TTEs for <i>one-cycle</i> operation, F_{h2} , $H_{peak} = 20, 30, 40,$	
4 2 9	50 and 60 N	78
4.38	The described vs. prescribed trajectory for <i>one-cycle</i>	-
4 20	operation, F_{h2}	79
4.39	The effects of the changes in the payload mass, F_m to	
4 40	the TTE	79
4.40	The described vs. prescribed trajectory for <i>one-cycle</i>	
5 1	operation, F_m	80
5.1	The principal of AFC with EKBS scheme	82
5.2	AFC with EKBS in the system	82
5.3	The proposed rules induction of AFCEKBS	84
5.4	Figure 5.4: Transition of $(K_i + KBS_v + EKBS_v)$	85
5.5	The SIMULINK [®] diagram of the AFCEKBS scheme	86
5.6	The SIMULINK [®] diagram of the Trajectory Planner	86
5.7	The SIMULINK [®] model of the RMAC-PD	87
5.8	The SIMULINK [®] model of the AFC section	87
5.9	The SIMULINK [®] diagram of the Robot's Dynamics	
	section	88
5.10	The SIMULINK [®] diagram of the Disturbances	88
5.11	The SIMULINK [®] diagram of the EKBS core	89
5.12	The prescribed trajectory	90
5.13	A flowchart showing the simulation procedure	91
5.14	TTEs of AFCEKBS for $K_{gain} = 0.020$, $k = 0$ N/m, $h_f =$	
	2, 3, 4, 5, 6 and 7	93
5.15	TTEs of AFCEKBS for $K_{gain} = 0.020$, $k = 100$ N/m,	
	$h_f = 2, 3, 4, 5, 6 \text{ and } 7$	93
5.16	TTEs of AFCEKBS for $K_{gain} = 0.020$, $k = 200$ N/m,	
	$h_f = 2, 3, 4, 5, 6 \text{ and } 7$	93
5.17	TTEs of AFCEKBS for $K_{gain} = 0.020$, $k = 300$ N/m,	
	$h_f = 2, 3, 4, 5, 6 \text{ and } 7$	94

5.18	TTEs of AFCEKBS for $K_{gain} = 0.020$, $k = 400$ N/m,	
	$h_f = 2, 3, 4, 5, 6$ and 7	94
5.19	TTEs for <i>five-cycles</i> , $K_{gain} = 0.020$, $h_f = 5$, $k = 0$, 100,	
	200, 300 and 400 N/m	95
5.20	TTEs of AFCEKBS and AFCKBS for different	
	spring stiffness	95
5.21	IN_{EKBS} for <i>one-cycle</i> at both links, $h_f = 2, 3, 4, 5, 6$	
	and 7	96
5.22	<i>Ti</i> for <i>five-cycles</i> operation at both links, $K_{gain} =$	
	0.020, $k = 300$ N/m, $h_f = 5$	96
5.23	TTEs of AFCEKBS, $h_f = 5$, F_{h1} , $H_{peak} = 20$, 30, 40,	
	50, and 60 N	97
5.24	TTEs of AFCEKBS, $h_f = 5$, F_{h2} , $H_{peak} = 20$, 30, 40,	
	50, and 60 N	97
5.25	TTEs for AFCEKBS vs. AFCKBS, F_{h1} , $H_{peak} = 60$ N	98
5.26	TTEs for AFCEKBS vs. AFCKBS, F_{h2} , $H_{peak} = 60$ N	98
5.27	AFCEKBS vs. AFCKBS on trajectory tracking, H_{peak}	
	= 200 N	99
5.28	The effects of the changes of the payload mass, F_m	99
5.29	AFCEKBS vs. AFCKBS on the effect of the larger	
	payload mass, F_m for <i>five-cycles</i> operation	100
6.1	TTEs of all schemes with F_0	103
6.2	TTEs of all schemes with F_k at $k = 200 \text{ N/m}$	104
6.3	TTEs of all schemes with F_h at $H_{peak} = 60$ N, $h_c = 4$	104
6.4	TTEs of all schemes with $F_m = 1.0 \text{ kg}$	106
6.5	TTEs of all schemes with $F_m = 2.5 \text{ kg}$	106
6.6	IN of the AFC schemes, <i>five-cycles</i> operation with F_0	107
6.7	IN of the AFC schemes, <i>five-cycles</i> operation with F_k	
	at $k = 200 \text{ N/m}$	107
6.8	IN of the AFC schemes, <i>five-cycles</i> operation with F_h	
	at $H_{peak} = 60 \text{ N}, h_c = 4$	108
6.9	IN of the AFC schemes, <i>five-cycles</i> operation with	
	$F_m = 1.0 \text{ kg}$	108

.

6 10		
6.10	IN of the AFC schemes, <i>five-cycles</i> operation with	
6 11	$F_m = 2.5 \text{ kg}$	108
6.11	T_q of all the schemes, <i>five-cycles</i> operation with F_0	110
6.12	T_q of all the schemes, <i>five-cycles</i> operation with F_k at	
	k = 200 N/m	110
6.13	T_q of all the schemes, <i>five-cycles</i> operation with F_h at	
	$H_{peak} = 60 \text{ N}, h_c = 4$	111
6.14	T_q of all the schemes, <i>five-cycles</i> operation with $F_m =$	
	1.0 kg	111
6.15	T_q of all the schemes, <i>five-cycles</i> operation with $F_m =$	
	2.5 kg	111
7.1	Isometric view of the rig	115
7.2	The experimental robot arms	115
7.3	Photograph of the integrated rig	116
7.4	Schematic Diagram the RAFCON System	116
7.5	Photograph showing the electronics part of the rig	117
7.6	A photograph of the DAS-1602 card	118
7.7	The mounting of DAS1602 card in the PC	119
7.8	Wiring connection of the potentiometer to DAS1602	120
7.9	Current sensor wiring connection to DAS1602	120
7.10	The actuator circuit	121
7.11	The current signal conditioning circuit	123
7.12	Photograph of the designed electronics interface	123
7.13	The mounting of accelerometer on link-1 and link-2	124
7.14	The power supply unit of RAFCON	125
7.15	Experimental procedure for a single-link arm	127
7.16	Results of the PD scheme for a step input function	128
7.17	Results of the PD scheme for sinusoidal input	
	function with $V_{cut} = 0.05 \text{ m/s}$	128
7.18	Results of the AFC scheme for a step input function	129
7.19	Results of the AFC scheme for sinusoidal input	
	function with $V_{cut} = 0.05 \text{ m/s}$	129
7.20	Results of the PD scheme for sinusoidal input	-
	function with $V_{cut} = 0.2$ m/s	130
		100

7.21	Results of the AFC scheme for sinusoidal input	
	function with $V_{cut} = 0.2 \text{ m/s}$	130
7.22	Program containing the over current protection part	
	(shown in bold)	131
7.23	Experimental procedure for the two-link robot arm	133
7.24	RAFCON Display of the PD scheme with no	
	disturbance and $V_{cut} = 0.02 \text{ m/s}$	134
7.25	RAFCON Display of the PD scheme with elastic	
	disturbance and $V_{cut} = 0.02 \text{ m/s}$	134
7.26	Trajectories of the PD scheme with elastic	
	disturbance and $V_{cut} = 0.02 \text{ m/s}$	134
7.27	RAFCON Display of the PD scheme with elastic	
	disturbance and $V_{cut} = 0.2 \text{ m/s}$	135
7.28	Trajectories of the PD scheme with elastic	
	disturbance and $V_{cut} = 0.2 \text{ m/s}$	135
7.29	RAFCON Display of the AFCKBS scheme with no	
	disturbance and $V_{cut} = 0.02 \text{ m/s}$	136
7.30	Trajectories of the AFCKBS scheme with no	
	disturbance and $V_{cut} = 0.02 \text{ m/s}$	136
7.31	RAFCON Display of the AFCKBS scheme with no	
	disturbance, $V_{cut} = 0.2 \text{m/s}$	137
7.32	Trajectories of the AFCKBS scheme with no	
	disturbance and $V_{cut} = 0.2 \text{ m/s}$	137
7.33	RAFCON Display of the AFCKBS scheme with	
	elastic disturbance and $V_{cut} = 0.2 \text{m/s}$	138
7.34	Trajectories of the AFCKBS scheme with elastic	
	disturbance and $V_{cut} = 0.2 \text{ m/s}$	138
7.35	RAFCON Display of the AFCKBS scheme with	
	elastic disturbance and $V_{cut} = 0.02 \text{m/s}$	138
7.36	Trajectories of the AFCKBS scheme with elastic	
	disturbance and $V_{cut} = 0.02 \text{ m/s}$	139

xx

7.37	RAFCON Display of the AFCKBS scheme with	
	elastic disturbance, $V_{cut} = 0.2$ m/s and 10 cycles of	
	operation	139
7.38	Trajectories of the AFCKBS scheme with elastic	
	disturbance, $V_{cut} = 0.2$ m/s and 10 cycles of operation	139

xxi

LIST OF SYMBOLS

SYMBOL SUBJECT

α	Angular acceleration of the link (arm)	
θ	Joint angle of the robot arm	
θ_{I}	Joint angle of the robot arm, link-1	
θ_2	Joint angle of the robot arm, link-2	
θ_{d1}	Joint velocity of the robot arm, link-1	
θ_{d2}	Joint velocity of the robot arm, link-2	
$ heta_{bar}$	Desired joint angle	
θ_d	Joint velocity of the robot arm	
θ_{dbar}	Desired joint velocity	
$\boldsymbol{\theta}_{dd}$	Joint acceleration of the robot arm	
$ heta_{ddbar}$	Desired joint acceleration	
θ_{ddref}	Joint acceleration command vector	
A	Magnitude of the force applied at the end of	
	second link	
ADC	Analog to Digital Converter	
AFC	Active Force Control	
AFCANN	Active Force Control And Neural Network	
AFCAIL	Active Force Control And Iterative Learning	
AFCEKBS	Active Force Control with Extended KBS	
AFCKBS	Active Force Control with KBS	
ATE	Average Track Error	
С	A command vector	

xxii

cf	Confidence factor
CTE	Cumulative Track Error
DAC	Digital to Analog Converter
EKBS _v	Extended KBS value applied in the IN
F _h	Harmonic force applied at the end of second link
F_k	Spring force applied at the end of second link
F _m	Like F_o plus a change in the mass of payload at
	the end effector
Fo	No visible external disturbance
ø	Acceleration due to gravity (m/s ²)
G(s)	A function in La place domain representing the
	feedforward gain in the AFC loop
$G_c(s)$	A function in La place domain representing the
	controller gain
H(s)	A function in La place domain representing the
	compensated gain in the AFC loop
h	Vector of the coriolis and centrifugal torques
h _c	Harmonic frequency coefficient of disturbance
h _f	Harmonic Factor in AFCEKBS parameters
Ia	Compensated current vector
Ic	Command or reference current vector
IN	Estimated inertia matrix
IN _{KBS}	Estimated inertia matrix of AFCKBS scheme
IN _{EKBS}	Estimated inertia matrix of AFCEKBS scheme
It	Motor torque current vector
k	Spring stiffness
KA	Knowledge Acquisition
K _d	Derivative gain
K _p	Proportional gain
K _{tn}	Motor torque constant
KBS	Knowledge-Based System
KBS _v	KBS value applied in the IN

K _{gain}	Gain of KBS value applied in AFCKBS and
	AFCEKBS
l	Length of the link
l _c	Length of the link from the joint to the center of
	gravity of link
m	Mass of the link
mot	Mass of the motor
Q	General disturbance torque vector
$\boldsymbol{\varrho}^{\star}$	General estimated disturbance torque
RMAC	Resolved Motion Acceleration Control
<i>S</i>	Extension or compression of the spring
Τ	General torque vector
T_i	Torque output of IN estimator
t	Time
TE	Track Error
TTE	Trajectory Track Error
TTEs	Trajectory Track Errors
T_q	Actuator torque
tstop	Simulation terminating time
V _{cut}	Tangential end point velocity of link
W(s)	A decoupling transfer function in La place
	domain
x	Actual position of the end effector in Cartesian
	space
X	Output displacement vector
<i>x_{bar}</i>	Desired position of the end effector in Cartesian
	space
X _{dbar}	Desired velocity of the end effector in Cartesian
	space
X _{ddbar}	Desired acceleration of the end effector in
	Cartesian space
X _{ddref}	Linear acceleration command vector
X _{desired}	Desired displacement vector

. . . .

LIST OF APPENDICES

APPENDIX	SUBJECT

Α	Executable Program for the RMAC-PD scheme	
	of the single-link robot arm: OL_PD.EXE (in a	
	CDROM)	151
В	Executable Program for the RMAC-PD scheme	
	of the single-link robot arm: OL_AFC.EXE (in a	
	CDROM)	151
С	Executable Program for the RMAC-PD scheme	
	of the two-link robot arm: TL_PD.EXE (in a	
	CDROM)	151
D	Executable Program for the RMAC-PD scheme	
	of the two-link robot arm: TL_AFC.EXE (in a	
	CDROM)	151
E	Datasheet of the DC Motor link-1:	
	MOTOR1OL.PDF & MOTOR1TL.PDF (in a	
	CDROM)	151
F	Datasheet of the DC Motor link-2:	
	MOTOR2.PDF (in a CDROM)	151
G	Datasheet of DAS-1602 card: DAS-1602.PDF	
	(in a CDROM)	151
Н	Datasheet of Accelerometer: ADXL105.PDF (in	
	a CDROM)	151

xxv

PAGE

Ι	Datasheet of MC7824K: MC7824.PDF (in a	
	CDROM)	151
J	Datasheet of MC7924K: MC7924.PDF (in a	
	CDROM)	151
K	Datasheet of 2N3055: 2N3055.PDF (in a	
	CDROM)	151
L	Datasheet of MJ2955: MJ2955.PDF (in a	
	CDROM)	151
Μ	List of Publications	152

·····

CHAPTER I

INTRODUCTION

1.1 General Introduction

A robust and stable performance of a robot arm is essential as it deals with the capability of the arm to compensate for the disturbance effects, uncertainties, parametric and non-parametric changes, which are prevalent in the system particularly when the arm is executing tasks involving the interaction of the robot's end-effector with the environment. Often, manufacturing processes which are executed by industrial robots such as deburring, contour tracking, profile cutting, grinding and burnishing, demand a certain degree of accuracy, stability and robustness to produce high quality finishes or end-products. Thus, the coordinated motion and force control of a robot arm is an important subject area of research, which can directly contribute to the accomplishment of such objective. A very desirable and effective robot control system is one in which the issue of robustness is well accounted for. Many robot control methods have been proposed such as Proportional-Integral-Derivative (PID) control (Seraji, 1998), adaptive control as in Slotine and Li (1987) and Craig et al. (1987), hybrid force/position control as in Raibert and Craig (1981) and Kawamura et al. (1985), computed-torque control (Fu et al., 1987), intelligent control (Jung and Hsia, 1995) and active force control (AFC) (Hewit and Burdess, 1986).

It is a well-known fact that the conventional PID control is the most widely and practically used scheme in industrial robots due to its good stability characteristic, simple controller structure, and reliability (Seraji, 1998). It provides a medium to high performance when it comes to robot's operation at relatively low speed with little or no disturbance effects. On the contrary, the performance suffers severe setbacks when adverse conditions prevail. A number of researches have been conducted to seriously address the issue and determine ways to counter the weaknesses (Arimoto *et al.*, 1984, 1986).

Almost all the robot control methods contained the classical elements (of the PID control), which contribute to the better overall performance of the system. One such robot control method, which is of particular interest, is the active force control strategy first proposed by *Hewit* in the late seventies (Hewit and Burdess, 1981). The main feature of this type of control method is the potential application of the AFC concept to dynamical systems including robot control. By implementing AFC to the system, the effects due to any known or unknown disturbances (internal or external), parametric changes and varied operating conditions can be significantly compensated or eliminated. The AFC method involves a direct measurement of the acceleration and force quantities plus the appropriate estimation of the inertia matrix to effect its control strategy.

The research study is aimed at investigating the AFC strategy with an intelligent mechanism using a Knowledge-Based-System (KBS) method applied to the control of rigid robotic arm. Both the theoretical and experimental aspects were highlighted in the study to illustrate the practical viability of the proposed scheme.

1.2 Research Background

The active force control strategy is one of the potential and practical force control methods, which can be implemented in encountering the robot force control problem. The advantage of the AFC method is that it has the ability to compensate the unpredictable external (and internal) forces effectively and reliably without rigorous mathematical computations. The capability of AFC method greatly depends on how efficient the estimated inertia matrix of the robot arm being computed. Various methods have been developed by researchers to estimate the inertia matrix such as by using crude approximation method (Active Force Control with Crude Approximation - AFCCA), reference of a look-up table and intelligent methods such as neural network (Active Force Control And Neural Network - AFCANN) and iterative learning (Active Force Control And Iterative Learning - AFCAIL) algorithms (Musa, 1998). A new novel intelligent technique of computing the estimated inertia matrix using a knowledge-based system (KBS) is proposed and investigated in this thesis.

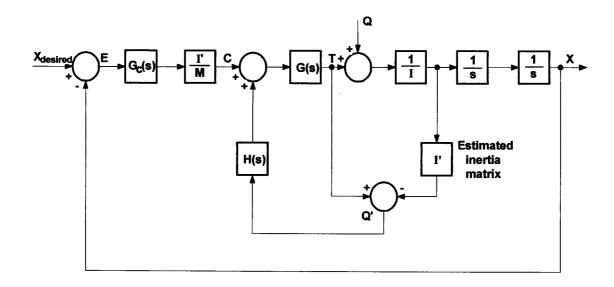


Figure 1.1: A representation of an AFC scheme

A representation of an AFC scheme is shown in Figure 1.1. With reference to the figure and considering a continuous robot arm operation with known and or unknown disturbances, the acquisition of the estimated inertia matrix (**I**') in AFC scheme should be obtained appropriately and in real-time due to the non-linear characteristics of the robot and its environment. It is therefore necessary to propose and implement an intelligent control mechanism such as a KBS method. A set of inference mechanisms is formulated such that the proposed control scheme could compute the inertia matrix of the robot arm continuously and on-line. This is done while the arm is performing its task under various loading and operating conditions. In this way, the robustness of the scheme can also be investigated and analyzed.

1.3 Research Objectives

The objectives of the research are:

- to investigate theoretically the feasibility of applying the concept of KBS method to the control of a robot arm with AFC strategy in the form of a detailed simulation study.
- to evaluate the system's performance in terms of its robustness and effectiveness.
- to integrate the hardware and software in the form of an experimental robot arm with the implementation of the on-line KBS algorithm to estimate the real-time inertia matrix of a robot arm in the active force control feedforward loop.

1.4 Research Scope, Methodology and Strategy

The scope of the project encompasses both the theoretical and experimental aspects of the proposed robot control strategy. The study focuses on the implementation of an intelligent mechanism, particularly the knowledge-based method in conjunction with a number of selected AFC schemes (AFCCA, AFCANN and AFCAIL); this is applied to a robotic system comprising a rigid two-link planar manipulator that is assumed to operate horizontally, i.e., without any reference to any gravitational torques. The theoretical framework involves the study of the various underlying principles related to the AFC methods, dynamics of the system, and knowledge-based technique. This is transformed into a rigorous modeling and simulation study of the integrated schemes assuming a number of prescribed conditions and limitations. The performance of the proposed system is evaluated and consequently compared to the classical PD control counterpart for the purpose of benchmarking. A design and development of the hardware (to complement the theoretical part) in the form of an experimental two-link planar robotic arm was envisaged using mechatronics approach; integrating robot arm with the sensors, actuators via a PC-based controller.

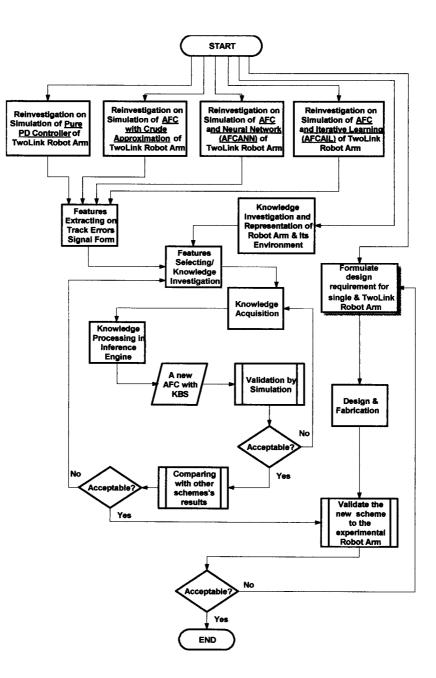


Figure 1.2: Research strategy in a flowchart

The proposed research strategy in the form of a flow chart is graphically shown in Figure 1.2. The research methodology pertaining to the project can be briefly described as follows:

- Review literatures on areas of robot, force control and intelligent control.
- Study the AFC mechanism and related works applied to the control of robot arm. Simulate some of the AFC strategies as proposed in the literatures.
- Identify the problems of the existing AFC strategies and other related issues.

- Design the inference mechanisms for the KBS method. A suitable database should also be gathered for the decision making process.
- Test the robustness of the scheme by introducing a number of disturbances. Analyze the results and compare the system performance with other methods.
- Design and fully develop a laboratory scale two degrees-of-freedom (d.o.f) rigid robot arm to verify the proposed method. This includes the development of the KBS hardware and software (C program), electronic interfacing devices, motors, sensors and mechanical robot arm.
- Perform a series of experiments on the arms. Analyze the results, discuss and compare them to those obtained theoretically.

1.5 Expected Results

The proposed study is expected to produce:

- a new approximation method that could make decision to compute continuously and on-line the appropriate inertia matrix of the robot arm in order to improve the AFC strategy.
- results that show the effectiveness and robustness of the proposed scheme.
- a laboratory scale two d.o.f rigid robot arm to verify the proposed method. This includes the development of the system hardware (electronic interfacing devices, motors, sensors and mechanical robot arm) and software (a graphical and real-time monitoring plus online control in C program).

1.6 Organization of Thesis

The thesis is organized into eight chapters. In Chapter II, the fundamental concepts, underlying theories and reviews of the main topics of research pertaining to robot arm control, AFC, expert system and knowledge-based system are described.

The basic principles of the pure AFC method is first discussed with special attention focused on the method to enhance the strategy using intelligent means such as the use of neural network, fuzzy logic, and KBS methods. For KBS, the inference mechanism is discussed plus the knowledge investigation and validation, knowledge representation, knowledge acquisition and knowledge processing as well as the KBS procedures. A review on the use of the expert system and/or knowledge-based system methods to robot control is also included.

Chapter III describes the knowledge investigation procedure performed on the AFC robot control schemes. A number of selected AFC schemes (AFCCA, AFCANN and AFCAIL) were revisited in view of trying to obtain features of the trajectory track error signals to be investigated. The knowledge investigation procedure is the first and foremost phase of the KBS method and thus investigated. The results of the investigation would lead to the acquisition of the essential knowledge to be implemented into the proposed AFC scheme with the KBS feature. Chapter IV presents a simulation study of the new novel proposed scheme – AFC with KBS (AFCKBS), based on the knowledge investigation described in Chapter 3. The detailed procedures after the knowledge investigation phase as described earlier were highlighted in this chapter. These procedures are knowledge validation, representation, acquisition and processing. A simple *Bayesian* approach to perform the knowledge validation process is also given.

Chapter V elaborates an extended KBS method based on AFCKBS described in Chapter IV. The strategy is called AFCEKBS, an acronym for *AFC* with *Extended KBS*. It implies an extended rule is employed in the system. A simulation study with the same parameters used in the previous scheme was performed. Chapter VI provides a comparative study of the AFCKBS and AFCEKBS methods. The comparison is mainly focused on the generated track errors signal patterns, the computed estimated inertia matrix and the applied starting current and torques due to a number of varied external disturbances. Chapter VII describes the design and development of the experimental robot arm (a two-link planar manipulator) with graphical and real-time monitor control-programming feature. Some important design parameters are also given and discussed. This chapter also provides a programming and experimental procedure based on the AFCKBS scheme (described in Chapter III).

Finally, Chapter VIII concludes the research project. The directions and recommendations for future research works are also outlined. Some of the executable programs designed for the experimental robot arms and list of publications related to the study are enclosed in the appendices.

•