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ABSTRACT

This thesis presents a method to improve the response of a robotic control
system in order to obtain a more robust system performance using an active force
control with a knowledge-based system method called the Active Force Control and
Knowledge-Based System (AFCKBS). The focus of the study is the implementation
of a mechanism to refine the trajectory error generated by an Active Force Control
(AFC) scheme applied to a two-link robotic planar arm. This is accomplished by
utilizing features of the signal patterns produced by the input and output functions.
Based on the previous research that employed a number of robotic control schemes,
knowledge of the trajectory track error pattern was obtained when a specific
trajectory tracking command was forced to the system. The correlation between the
generated track error pattern and the input function of the robot scheme provides the
essential knowledge to be utilized via the proposed technique. A simulation and
experimental study was performed and the result obtained was consequently

analyzed and compared to show the performance enhancement in the proposed
method.



vi

ABSTRAK

Tesis ini membincangkan suatu kaedah untuk memperbaiki sambutan
daripada sistem kawalan robot untuk memperolehi prestasi sistem yang lebih lasak
menggunakan kawalan daya aktif dan satu kaedah berasaskan pengetahuan yang
dipanggil Active Force Control and Knowledge-Based System (AFCKBS).
Penumpuan utama daripada penyelidikan ini ialah tentang penerapan suatu
mekanisme untuk membaiki ralat trajektori yang dihasilkan oleh skema Active Force
Control (AFC) dan diuji pada sebuah lengan planar robot dua sendi. Hal ini dapat
dilakukan dengan mengambilkira ciri-ciri khas yang terdapat pada isyarat paten
yang dihasilkan oleh fungsi masukan dan luaran. Berdasarkan kepada kajian yang
dibuat terhadap beberapa jenis skema kawalan robot sebelum ini, pengetahuan
tentang ralat jejak trajektori dapat diperolehi apabila suatu arahan penjejakan
trajektori diberikan kepada sistem. Korelasi bentuk isyarat ralat trajektori terhasil dan
Jjuga fungsi masukan daripada skema robot menyajikan suatu pengetahuan yang
diperlukan serta boleh diterapkan melalui teknik yang dicadangkan. Suatu kajian
melibatkan kedua-dua penyelakuan dan ujikaji sebenar telah dilakukan dan hasil
kajian dapat dihurai serta dibandingkan secara saksama untuk menunjukkan
pembaikan dan peningkatan prestasi menggunakan kaedah yang dicadangkan.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

A robust and stable performance of a robot arm is essential as it deals with
the capability of the arm to compensate for the disturbance effects, uncertainties,
parametric and non-parametric changes, which are prevalent in the system
particularly when the arm is executing tasks involving the interaction of the robot’s
end-effector with the environment. Often, manufacturing processes which are
executed by industrial robots such as deburring, contour tracking, profile cutting,
grinding and burnishing, demand a certain degree of accuracy, stability and
robustness to produce high quality finishes or end-products. Thus, the coordinated
motion and force control of a robot arm is an important subject area of research,
which can directly contribute to the accomplishment of such objective. A very
desirable and effective robot control system is one in which the issue of robustness is
well accounted for. Many robot control methods have been proposed such as
Proportional-Integral-Derivative (PID) control (Seraji, 1998), adaptive control as in
Slotine and Li (1987) and Craig et al. (1987), hybrid force/position control as in
Raibert and Craig (1981) and Kawamura et al. (1985), computed-torque control (Fu
et al., 1987), intelligent control (Jung and Hsia, 1995) and active force control (AFC)
(Hewit and Burdess, 1986).

It is a well-known fact that the conventional PID control is the most widely

and practically used scheme in industrial robots due to its good stability



characteristic, simple controller structure, and reliability (Seraji, 1998). It provides a
medium to high performance when it comes to robot’s operation at relatively low
speed with little or no disturbance effects. On the contrary, the performance suffers
severe setbacks when adverse conditions prevail. A number of researches have been
conducted to seriously address the issue and determine ways to counter the
weaknesses (Arimoto et al., 1984, 1986).

Almost all the robot control methods contained the classical elements (of the
PID control), which contribute to the better overall performance of the system. One
such robot control method, which is of particular interest, is the active force control
strategy first proposed by Hewit in the late seventies (Hewit and Burdess, 1981).
The main feature of this type of control method is the potential application of the
AFC concept to dynamical systems including robot control. By implementing AFC
to the system, the effects due to any known or unknown disturbances (internal or
external), parametric changes and varied operating conditions can be significantly
compensated or eliminated. The AFC method involves a direct measurement of the
acceleration and force quantities plus the appropriate estimation of the inertia matrix

to effect its control strategy.

The research study is aimed at investigating the AFC strategy with an
intelligent mechanism using a Knowledge-Based-System (KBS) method applied to
the control of rigid robotic arm. Both the theoretical and experimental aspects were

highlighted in the study to illustrate the practical viability of the proposed scheme.

1.2 Research Background

The active force control strategy is one of the potential and practical force
control methods, which can be implemented in encountering the robot force control
problem. The advantage of the AFC method is that it has the ability to compensate
the unpredictable external (and internal) forces effectively and reliably without
rigorous mathematical computations. The capability of AFC method greatly depends

on how efficient the estimated inertia matrix of the robot arm being computed.



Various methods have been developed by researchers to estimate the inertia matrix
such as by using crude approximation method (Active Force Control with Crude
Approximation - AFCCA), reference of a look-up table and intelligent methods such
as neural network (Active Force Control And Neural Network - AFCANN) and
iterative learning (Active Force Control And Iterative Learning - AFCAIL)
algorithms (Musa, 1998). A new novel intelligent technique of computing the
estimated inertia matrix using a knowledge-based system (KBS) is proposed and

investigated in this thesis.

Q
Xdesi E T ’ 1 1 1
i I + a L »
. Sl ™ G‘s)l* 1 - s [t
Estimated
r inertia
matrix
+ -
Ql

Figure 1.1: A representation of an AFC scheme

A representation of an AFC scheme is shown in Figure 1.1. With reference to
the figure and considering a continuous robot arm operation with known and or
unknown disturbances, the acquisition of the estimated inertia matrix (I’) in AFC
scheme should be obtained appropriately and in real-time due to the non-linear
characteristics of the robot and its environment. It is therefore necessary to propose
and implement an intelligent control mechanism such as a KBS method. A set of
inference mechanisms is formulated such that the proposed control scheme could
compute the inertia matrix of the robot arm continuously and on-line. This is done
while the arm is performing its task under various loading and operating conditions.

In this way, the robustness of the scheme can also be investigated and analyzed.



1.3  Research Objectives

The objectives of the research are:

e to investigate theoretically the feasibility of applying the concept of KBS
method to the control of a robot arm with AFC strategy in the form of a
detailed simulation study.

e to evaluate the system’s performance in terms of its robustness and
effectiveness.

e to integrate the hardware and software in the form of an experimental robot
arm with the implementation of the on-line KBS algorithm to estimate the
real-time inertia matrix of a robot arm in the active force control feedforward

loop.

1.4  Research Scope, Methodology and Strategy

The scope of the project encompasses both the theoretical and experimental
aspects of the proposed robot control strategy. The study focuses on the
implementation of an intelligent mechanism, particularly the knowledge-based
method in conjunction with a number of selected AFC schemes (AFCCA, AF CANN
and AFCAIL); this is applied to a robotic system comprising a rigid two-link planar
manipulator that is assumed to operate horizontally, i.e., without any reference to any
gravitational torques. The theoretical framework involves the study of the various
underlying principles related to the AFC methods, dynamics of the system, and
knowledge-based technique. This is transformed into a rigorous modeling and
simulation study of the integrated schemes assuming a number of prescribed
conditions and limitations. The performance of the proposed system is evaluated and
consequently compared to the classical PD control counterpart for the purpose of
benchmarking. A design and development of the hardware (to complement the
theoretical part) in the form of an experimental two-link planar robotic arm was
envisaged using mechatronics approach; integrating robot arm with the sensors,

actuators via a PC-based controller.
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Figure 1.2: Research strategy in a flowchart

The proposed research strategy in the form of a flow chart is graphically

shown in Figure 1.2. The research methodology pertaining to the project can be
briefly described as follows:

¢ Review literatures on areas of robot, force control and intelligent control.
¢ Study the AFC mechanism and related works applied to the control of robot
arm. Simulate some of the AFC strategies as proposed in the literatures.

e Identify the problems of the existing AFC strategies and other related issues.



e Design the inference mechanisms for the KBS method. A suitable database
should also be gathered for the decision making process.

e Test the robustness of the scheme by introducing a number of disturbances.
Analyze the results and compare the system performance with other methods.

¢ Design and fully develop a laboratory scale two degrees-of-freedom (d.o.f)
rigid robot arm to verify the proposed method. This includes the
development of the KBS hardware and software (C program), electronic
interfacing devices, motors, sensors and mechanical robot arm.

e Perform a series of experiments on the arms. Analyze the results, discuss and

compare them to those obtained theoretically.

1.5  Expected Results

The proposed study is expected to produce:

® anew approximation method that could make decision to compute
continuously and on-line the appropriate inertia matrix of the robot arm in
order to improve the AFC strategy.

e results that show the effectiveness and robustness of the proposed scheme.

e alaboratory scale two d.o.frigid robot arm to verify the proposed method.
This includes the development of the system hardware (electronic interfacing
devices, motors, sensors and mechanical robot arm) and software (a graphical

and real-time monitoring plus online control in C program).

1.6  Organization of Thesis

The thesis is organized into eight chapters. In Chapter II, the fundamental
concepts, underlying theories and reviews of the main topics of research pertaining to

robot arm control, AFC, expert system and knowledge-based system are described.



The basic principles of the pure AFC method is first discussed with special attention
focused on the method to enhance the strategy using intelligent means such as the
use of neural network, fuzzy logic, and KBS methods. For KBS, the inference
mechanism is discussed plus the knowledge investigation and validation, knowledge
representation, knowledge acquisition and knowledge processing as well as the KBS
procedures. A review on the use of the expert system and/or knowledge-based

system methods to robot control is also included.

Chapter III describes the knowledge investigation procedure performed on
the AFC robot control schemes. A number of selected AFC schemes (AFCCA,
AFCANN and AFCAIL) were revisited in view of trying to obtain features of the
trajectory track error signals to be investigated. The knowledge investigation
procedure is the first and foremost phase of the KBS method and thus investigated.
The results of the investigation would lead to the acquisition of the essential
knowledge to be implemented into the proposed AFC scheme with the KBS feature.
Chapter IV presents a simulation study of the new novel proposed scheme — AFC
with KBS (AFCKBS), based on the knowledge investigation described in Chapter 3.
The detailed procedures after the knowledge investigation phase as described earlier
were highlighted in this chapter. These procedures are knowledge validation,
representation, acquisition and processing. A simple Bayesian approach to perform

the knowledge validation process is also given.

Chapter V elaborates an extended KBS method based on AFCKBS described
in Chapter IV. The strategy is called AFCEKBS, an acronym for AFC with Extended
KBS. 1t implies an extended rule is employed in the system. A simulation study with
the same parameters used in the previous scheme was performed. Chapter VI
provides a comparative study of the AFCKBS and AFCEKBS methods. The
comparison is mainly focused on the generated track errors signal patterns, the
computed estimated inertia matrix and the applied starting current and torques due to
a number of varied external disturbances. Chapter VII describes the design and
development of the experimental robot arm (a two-link planar manipulator) with
graphical and real-time monitor control-programming feature. Some important

design parameters are also given and discussed. This chapter also provides a



programming and experimental procedure based on the AFCKBS scheme (described
in Chapter III).

Finally, Chapter VIII concludes the research project. The directions and
recommendations for future research works are also outlined. Some of the executable
programs designed for the experimental robot arms and list of publications related to

the study are enclosed in the appendices.





