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PART 5 
 
 
 

ABSTRACTS 
 
 
 
 

Applications of Fe(III) Leaching and Biooxidation for the Recovery of Au from 

Refractory Gold Ores 

 

 

Mohammad Azri Bunyok  

 

 

 

Biooxidation studies were carried out on gold ores isolated from Jugan and 

Pejiru, Sarawak. The gold and arsenic contents of the Pejiru and Jugan ores are 29.4 

ppm, 48.7% and 13.5 ppm and 58.29% respectively. Due to its high concentration of 

gold, the Pejiru ore was then subjected to biooxidation studies using L.ferrooxidans, 

A.ferrooxidans, mesophilic local isolate, S.thermosulfidiooxidans, A.brierleyi and 

thermophilic local isolates (5B and C cultures). Significant gold recoveries (39.5, 76.09 

and 68.16%) were obtained using L.ferrooxidans, S.thermosulfidiooxidans and 

A.brierleyi respectively. Low gold recoveries from other strains used could be due to 

arsenic toxicity. Fe(III) pretreatment of the ores was carried out to study its effectiveness 

in dissolution of arsenic from the ores. The optimized parameters for Fe(III) leaching is 

as follow; 0.2 M Fe2(SO4)3, 45°C, pulp density 10% and a stirring speed of 200 rpm. 

Indeed higher amounts of gold (73.59, 76.49 and 80.4%) were recovered after 

biooxidation of Fe(III) leached ore using L.ferrooxidans , S.thermosulfidiooxidans and 

A.brierleyi. 
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Bioleaching of Sungai Lembing Tin Mine By-Product Using Mesophilic and 

Thermophilic Bacteria 

 

 

Abu Bakar Mustaffa@Ramli  

 

 

 

Abandoned or disused mines posses an environmental problem because of the 

possibility of heavy metals presents to be leached out into groundwater or natural river 

system. This issue needs to be addressed because of the toxicity effects that might affect 

humans. A possible solution is the use of bioleaching technology to treat the low-grade 

ores, which are normally left idle. For this study, ores from the disused Sungai Lembing 

mine in Pahang was subjected to ferric leaching and bioleaching using mesophilic and 

thermophilic bacteria namely A. ferrooxidans, A. thiooxidans, L. ferrooxidans and S. 

thermosulfidooxidans respectively. Optimization of ferric leaching was carried out using 

Fe2(SO4)3 and FeCl3 at concentrations ranging from 0.2 to 1.0 M. The results of the 

experiment showed that FeCl3 1M was the best solution for the ferric leached of copper 

with 86.70% Cu leached. The otherwise, result from bioleaching experiment showed 

that A.ferrooxidans was the highest among the others bacteria with 77.05% Cu was 

extracted. Parameters optimized during the bioleaching process include Eh, temperature 

and Cu and Fe solubilization. The copper from the bioleached ores will be recovered 

using solvent extraction and stripping process. 
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Recovery of Copper in Printed Circuit Board and Sludge from Semiconductor 

Industry Using Bioleaching and Chemical Leaching 

 

 

Nurhayati Deris  

 

 

 

With the increasing need of using semiconductor in this millennium, the disposal 

of printed circuit board has received much attention from the viewpoints of 

environmental protection and resource utilization. In this research both bioleaching and 

chemical leaching process for the recovery of copper in printed circuit board sample and 

sludge sample of the semiconductor solid wastes were attempted. The copper contents of 

the printed circuit board and sludge sample are 23.17% and 4.89%. In the bioleaching 

process, mesophilic bacteria; T.ferrooxidans, L.ferrooxidans, T.thiooxidans and 

moderate thermophilic/thermophilic; S.thermosulfidiooxidans and A.brierlyi were used. 

Chemical leaching involves the use of oxidizing agents such as ferric chloride, ferric 

sulphate, acetic acid, sodium thiosulphate and sodium hypochlorite. In bioleaching of 

the sludge sample, high copper recoveries were obtained using T.thiooxidans (5.58%) 

while for printed circuit board sample high recoveries were obtained using 

L.ferrooxidans (60.84%). Copper in printed circuit board sample and sludge sample 

were efficiently recovered by ferric chloride leaching (93.30%) and sodium thiosulphate 

leaching (15.30%) respectively. 
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Mior Ahmad Khushairi Mohd Zahari 

 

 

The gold mining industry is an exhaustive process whereby large amounts of ore 

have to be processed to extract the metal. Also, limitations of the techniques used in gold 

processing leads to the incomplete recoveries of gold, which normally ends up in the 

tailings. In this study, biooxidation using mixed cultures consisting of Thiobacillus 

thiooxidans (TT), Thiobacillus ferrooxidans (TF), Leptospirillum ferrooxidans (LF) and 

Caldibacillus ferrivorus (CF) was carried out in a Continuous Stirred Tank Reactor 

(CSTR) to recover gold from mines tailings. Biooxidation studies were first conducted 

using shake flasks, where a mixed culture consisting of TT, TF, LF and CF at a ratio of 

3:1:1:3 was found to decrease the percentage of preg-robbing by a factor of 3 compared 

to the control. Biooxidation was also carried out in a bioreactor using the batch and 

continuous modes. Results from the batch experiments show that the solubilisation of 

iron for the 3:1:1:3 (TT: TF: LF: CF) cultures is 0.52 times higher than the 1:1:1:1 (TT: 

TF: LF: CF) cultures and 1.08 times higher than the control. For the continuous mode, 

the best iron solubilisation was obtained under the following operating conditions i.e. 

temperature, 38oC; stirring speed, 350 rpm; pulp density, 15%; bacterial ratio, 3:1:1:3 

(TT: TF: LF: CF); pH, 2.00 and 3 days residence time. There was also a great reduction 

in the heavy metal content of the tailings after biooxidation i.e. 83.02% Fe, 53.09% Cd, 

65.00% Cu, 30.16%Pb and 54.72% Zn were solubilised from the tailings. The recovery 

of gold from the biooxidation process was then carried out using cyanide. The highest 

gold recovery (>95%) was achieved under the following set of conditions; 30% pulp 

density, 1000-ppm cyanide and with aeration. However, the amounts of gold recovered 

after electrorefining process was low i.e. 46.71%. 
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ABSTRACT 
 
 

 

 The use of thermophilic bacteria organisms in industrial processes is gaining 

importance due to the many advantages conferred by these organisms.  This work 

reports on the isolation, characterization and application of thermophilic organisms in 

the recovery of metals from spent dry cell batteries.  Column studies were conducted 

using Thiobacillus ferrooxidans, Leptospirilium ferrooxidans, Thiobacillus thiooxidans, 

Sulfobacillus thermosulfodioxidans, Acidianus brierleyi and SL5B.  The leaching of 

roasted batteries using Thiobacillus thiooxidans yielded 95% Zn and 12% Mn.  Roasting 

at 200 – 300oC increased yields i.e. 98% using FeCl3 and 96% using SL5B culture.  It 

was also observed that shredding the battery into the different components is necessary 

before the bioleaching step.  A pilot scale work on bioleaching of batteries was also 

proposed. 
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ABSTRAK 

 

 Penggunaan organisma termofilik di dalam industri pemprosesan semakin 

mendapat perhatian disebabkan kelebihan-kelebihan yang diperolehi melalui 

penggunaan organisma-organisma ini.  Kajian ini melaporkan tentang pemencilan, 

pencirian dan aplikasi organisma termofilik ini di dalam perolehan semula logam dari 

bateri sel kering terpakai.  Kajian turus dijalankan menggunakan Thiobacillus 

ferrooxidans, Leptospirilium ferrooxidans, Thiobacillus thiooxidans, Sulfobacillus 

thermosulfodioxidans, Acidianus brierleyi and SL5B.  Kajian larut lesap bagi bateri yang 

telah dipanaskan pada suhu tinggi menggunakan kultur Thiobacillus thiooxidans 

menghasilkan 95% Zn dan 12% Mn.  Pemanasan pada suhu 200 – 300oC meningkatkan 

lagi peratusan hasil sebanyak 98% menggunakan FeCl3 dan 96% menggunakan kultur 

SL5B.  Selain itu, pemecahan bateri kepada komponen-komponen berbeza adalah 

penting sebelum proses larut lesap bio.  Kajian larut lesap bio bagi bateri pada skala loji 

pandu juga dicadangkan di dalam laporan ini. 
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PART 1 
 
 
 
 

ISOLATION OF THERMOPHILIC BACTERIA 
 
 
 
 
1.0 Isolation of Thermophilic Organisms 

 

 The population of microbial community in a habitat is related to their 

physical and chemical requirements. Acidothermophilies are the second main group 

among the archaea and is taxonomically very heterogonous. Various members of the 

acidothermophilies have been isolated from high temperature and low pH 

environments. Such prokaryotes may be present in metal and sulfur rich habitats such 

as hot springs, thermal acidic soil, volcanoes, thermal vents and coal pile drainage. It 

generally exists as a mixed population and not as pure culture. The enrichment 

culture technique is the most appropriate isolating technique. This technique involves 

the use of selective culture medium and a set of incubation condition to inhibit the 

undesired culture. Repeated agar plate streaking procedure is a frequent method to 

obtain a pure culture.  

 

 The success of enrichment culture technique is dependent on the inoculum 

source. The most appropriate local habitat of acidothermophilic archaea is a hot 

spring and abandoned ore pile 

 

 The only geothermal resource which exists in Malaysia is hot spring. The 

thermal spring commonly emerged at low level adjacent to topographic highs. All the 

local springs are found in Mesozoic sedimentary rocks and located along faults and 

sheared zones. A smell of H2S is noted at most springs i.e. Tambun and Pedas Hot 

Spring. Spring water of sulfur i.e. Balung (Sabah) and Annah Rais (Sarawak) are 
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acidic and surrounding rocks are coated with sulfur. This is evident of the presence 

of a metal-sulfur oxidizing bacteria. 

 Besides hot spring, abandoned ore pile also has a potential for habitats of 

acidothermophiles archaea. Elevated temperature at the centre of pile during the 

natural sulfide oxidation promotes the growth of large communities of thermophilic 

archaea. 

 

 
 
1.1 Isolation of thermophilic organisms from Hot springs 

 

1.1.1 Material and Methods 

 

The Pedas Hot Spring area and its vicnity was chosen as the site for bacteria 

isolation.  At each site, 10mL of sample recovered by sterile syringe was transferred 

to each of the bottles, consisting of 100mL media in a 500mL sterilised Schott bottle. 

The sampling was conducted in replicates. The bottles were then immediately 

immersed in hot water to maintain the temperature. All samples were sent to the 

laboratory within a period of three hours and incubated at 70OC with shaking at 60 

rpm in a water shaker. After 24 hours, a sample from each flask was transferred to 

fresh medium and incubated for a further 3 days at 70OC. The medium used for 

isolation is shown in Table 1.1. 
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Table 1.1: Medium for hot spring isolation 

 
Medium 

9K Solution A 

3.00g (NH4)2SO4, 0.50g K2HO4.3H2O, 0.50g MgSO4. 7H20, 0.10g KCl,  

700ml distilled-deionised water. pH adjusted to 2.0 using H2SO4, autoclaved at 

121OC for 15 minutes.  

Solution B 

44.22g FeSO4.7H2O, 300ml distilled-deionised water, pH adjusted to 2.0 and 

sterilised using filtration 

9K+Y Composition similar with 9K either with 1% w/v yeast extract and 20ml of distilled-

deionised water water. 

TT 0.1g (NH4)Cl, 3.0g KH2PO4, 0.1g MgCl.6H2O and 0.14g CaCl.2H2O, 1L distilled-

deionised water water, pH adjusted to 4.2 using H2SO4, autoclaved at 121OC for 15 

minutes. 1% sulfur, Sterilised by steaming for 3 hours on each of 3 successive days. 

TT+Y Composition similar with TT either with 1% w/v yeast extract and 20ml of distilled-

deionised water water. 
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1.1.2 Result and discussion  

 

 The condition of pool 1 and 2 of Pedas hot spring is shown in Table 1.2. 

 

Table 1.2: Temperature and pH of Pedas hot spring sampling area 
 
 Temperature pH 

Pool 1 52.8 6.45 

Pool 2 43.7 5.87 

 

  

 After several inoculations in the respective media, growth was only observed 

in the 9K+Y medium with water sample from Pool 1 and 2. Growth was observed 

under the microscope, using hanging drop technique. No growth was observed in the 

9K, TT and TT+Y medium. 

 

 In a mesophilic system, bacterial growth can be predicted by visual 

observation, i.e. changing of the medium colour from light green to yellow indicating 

the oxidation of Fe(II) to Fe(III). The sedimentation of sulfur powder is an indication 

of sulphur oxidation. However, in a thermophilic system, the change in colour and 

sedimentation of sulfur powder also observed in a controlled medium, an indication 

that iron and sulfur are spontaneously oxidized at high temperatures. 

 

The good growth of organism in Pedas hot spring on a 9K+Y medium was 

shown by the presence of huge amounts of heterophilic iron oxidizer population in 

the samples. 
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1.2 Solid Medium 

 

1.2.1 Material and Methods 

 

 A non-overlay, ferrous iron-yeast extract medium was used for culturing 

heterotrophic acidophilic bacteria. This medium was prepared using three different 

solutions. 

 

Solution I 

 NH4SO40.45g/L, KCl0.05g/L, MgSO4.7H2O0.5g, Ca(NO2)30.01 g/L, 

KH2PO4 0.05g and yeast extract 0.2g/L. pH adjusted to 2.5 using H2SO4 and 

autoclaved at 121OC for 20 minutes.  

 

Solution II 

 A suspension of 4% (w/v) agarose type I, low EEO was melted in the 

microwave oven for 2 minutes, and then autoclaved at 121OC for 20 minutes. 

 

Solution III 

 FeSO4.7H2O (1M) was prepared by adding 4.42g of FeSO4.7H2O in 30mL 

distilled water. The pH of the solution was adjusted to 2.0 using H2SO4, the mix was 

then filtered sterilized. 

  

 Solution I and III were cooled prior to mixing it a ratio of 7:3. Solution B was 

then added to the above mixture at a ratio of 3:1 (A-C:B) and the mixture was poured 

into sterile Petri dishes. 

 

 Culture previously grown in the 9K+Y liquid medium were then streaked 

onto the solid media plate sand the plates were incubated at 70OC.  
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1.2.2 Result and discussion 

 

 After 2 days of incubation at 70OC, four distinct colonies were observed on 

the solid medium. A colony was restreaked onto fresh plates and the same pattern of 

growth was observed after several transferred on the solids plates. The pattern of 

each colony is as shown in Table 1.3. 

 

Table 1.3: Description of colonies obtained on the solid medium 
 
Medium  Pool  Named (Remark)  
9K-Y 1 C Yellow colonies, 

formation of clear zone 

around the colony 

 1 XC Yellow colonies 

 2 Y Yellow colonies 

 2 W White colonies 

   

 

 

1.3 Bioleaching Test 

 

1.3.1 Material and Methods 

 

 The mineral used in this experiment was pyrite (FeS2) obtained from Peru. 

The mineral was ground using ball mill in acetone and sieved to 75 µm. The mineral 

was then washed with HNO3 (1M) for 1 minute to get rid of any metal oxides. Slurry 

obtained was then filtered, washed 3 times with DI water and dried using acetone. 

The treated mineral was stored in the freezer to avoid natural oxidation. 

 

Biooxidation was carried out in 500ml Schott bottle containing 100ml 

respective medium and treated mineral (1g). The bottle was inoculated with 

respective culture (20ml) and incubated at 70OC with shaking at 60 rpm for 10 days. 

Aliquots, 10mL were taken every 5 days and check for pH, Eh and metal content.    
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1.3.2 Result and discussion 

 

1.3.2.1 Pyrite biooxidation 

 

 The main elemental content of pyrite used in this experiment is shown in 

table 1.4. 

 

Table 1.4: Elemental composition of pyrite  
 
 S% C% Fe% 

Pyrite  24.2 0.593 46.28 

 

Leaching profile for pyrite oxidation of single and mixed culture of bacteria isolated 

from Pedas Hot Spring was shown in figures 1.1, 1.2 and 1.3. 

 

 

 

 

 

 

 

 

 

 

 

Figures 1.1: pH profile of bacteria obtained from Pedas Hot spring 
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Figures 1.2: Eh profile of bacteria obtained from Pedas Hot spring 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1.3: [Fe] from pyrite disoololution in the presence of bacteria obtained from 

Pedas Hot spring 
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the Eh value was constantly low at 570 mV. High value of initial Eh and low pH 

value is very important in accelerating pyrite dissolution. It was shown in figure 3.3, 

the highest [Fe] content in solution was xc and c. However, rate of iron dissolution 

for c was highest then xc for the first 5 days of inoculation. 

 

 

 

1.3.2.2 Biooxidation of pyrite using culture C at various pH 

 

 Culture C was then chosen for further experiments to determine the optimum 

pH for biooxidation of pyrite. The profiles of oxidation at various pH are shown in 

figures 1.4, 1.5 and 1.6. 

 

 

 

 

 

 

 

 

 

 

Figures 1.4: pH profile of pyrite oxidation of culture C at various pH 
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Figures 1.5: Eh profile of pyrite oxidation of culture C at various pH  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1.6: Fe solubilization profile of pyrite oxidation by culture C at various pH  
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observed from day 5 to day 10. At low pH i.e. 1.0 and 1.5, iron solubilization 

constantly increased until day 10.Possibly due to the prevention of jarosite 

precipitation at low pH (.Nemati et al,1998)     

 

    

 

1.4 Isolation of bacteria from abandoned ore pile 

 

1.4.1 Isolation procedure 

 
 Field sampling was conducted based on in vitro culturing method, explained 

in 1.1.1. Samples were taken from two abandoned ore piles. Descriptions of the 

sampling site are as follows: 

 

Ulu Sukor  

 Abandoned heap leaching plant, heap containing 40,000t of sulfidic-

carbonaceous gold ores. Samples were taken from a drainage channel emanating 

from a heap. Temperature and pH of sample taken were 33OC and 4.17 respectively. 

The plant was left idle without operation for 2 years. 

 

Sg. Lembing 

 Samples were taken from the slumps around the copper concentrate piles. 

The concentrate contains chalcopyrite, chalcosite, copper oxide, pyrite and 

arsenopyrite. The concentrate was left idle due to the strict legal restriction by the 

Japanese Government on the arsenic limit content in roasting industries. 

Temperatures and pH of sample were 39OC and 1.97. Bacteria were cultivated 

aerobically in 13 different media listed in table 1.5 

 

 Aerobic culturing was conducted in a 20ml universal bottle, containing a 

mixture of 5 ml of respective medium and 1ml of sample. The bottle was then 

immediately immersed in hot water to maintain the temperature. The bottles were 

kept at 70OC during transportation to the laboratory. 
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Table 1.5: Medium used for isolation from abandoned ore piles 

Medium 1: SULFOLOBUS MEDIUM 

(NH4)2SO4 (1.30), KH2PO4 (0.28g), MgSO4.7 H2O ( 0.25 g), CaCl2.2 H2O ( 0.07g), 
FeCl3.6 H2O   (0.02 g) MnCl2.4 H2O (1.80mg), Na2B4O7.10 H2O (4.50 mg), ZnSO4.7 H2O 
( 0.22 mg), CuCl2.2 H2O (0.05 mg), Na2MoO4.H2O ( 0.03mg), VOSO4.2 H2O(0.03mg), 
CoSO4 (0.01 mg), Yeast extract (Difco) (1.00g) and Water, freshly distilled 
(1000ml).Adjust pH to 2.0 with 10 N H2SO4  
 
Medium 2:SULFOLOBUS SOLFATARICUS MEDIUM 

Yeast extract (Difco) (1.00g), Casamino acids (Difco)(1.00g), KH2PO4 (3.10g), (NH4)2 
SO4  (2.50g),MgSO4 x 7 H2O (0.20 g), CaCl2 x 2 H2O (0.25 g), MnCl2 x 4 H2O (1.80mg), 
Na2B4O7 x 10 H2O (4.50 mg), ZnSO4 x 7 H2O  (0.22 mg), CuCl2 x 2 H2O (0.05mg), 
Na2MoO4 x 2 H2O (0.03 mg), VOSO4 x 2 H2O ( 0.03 mg), CoSO4 x 7 H2O (0.01mg), 
Distilled water (1000.00 ml).Adjust pH to 4.0 - 4.2 with 10 N H2SO4 
 
Medium 3: METALLOSPHAERA MEDIUM 

Use medium 1 either with 0.1% Difco yeast extract, or 0.05% powdered sulfur Sterilize 
substrates separately: sulfur by steaming for 1 h on three subsequent days. 
 
Medium 4: ACIDIANUS BRIERLEYI MEDIUM 

(NH4)2SO4  (3.00g), K2HPO4 x 3 H2O (0.50 g), MgSO4 x 7 H2O (0.50 g),KCl  (0.10  g), 
Ca(NO3)2 (0.01 g), Yeast extract  (0.20g) ,Sulfur (flowers) (10.00 g), Distilled water 
(1000.00ml),Adjust pH with 6 N H2SO4 to 1.5 - 2.5. Yeast extract (10% w/v in distilled 
water) is autoclaved separately. Sulfur is sterilized by steaming for 3 hours on each of 3 
successive days. 
 
Medium 5: SULFOBACILLUS MEDIUM 

Solution A: 
 (NH4)2SO4 ( 3.00 g), KCl (0.10 g), K2HPO4 (0.50 g), MgSO4 x 7 H2O (0.50 g), 
Ca(NO3)2, (0.01 g),Distilled water  (700.00   ml),Adjust pH to 2.0 - 2.2 with sulfuric acid. 
Solution B: 
 FeSO4 x 7 H2O (44.20    g), Distilled water (300.00   ml), H2SO4, 10 N (1.00   ml), 
Solution C: 
Yeast extract (1% w/v in water) (20.00   ml), 
After autoclaving, combine the three solutions. Medium pH 1.9 - 2.4. 
 
Medium 6: ACIDIMICROBIUM MEDIUM (Heterotrophic) 
MgSO4 x 7 H2O (0.5    g), (NH4)2SO4   (0.4 g), K2HPO4   ( 0.2g), KCl   (0.1g), Distilled 
water( 1000 ml), 
Adjust pH to 2.0 with H2SO4.To the medium add 10.0 mg/l of FeSO4 x 7 H2O. After 
autoclaving add yeast extract from sterile stock solution to final concentration of 0.25 g/l. 
 
 
Medium 7: ACIDIMICROBIUM MEDIUM (Autotrophic) 
MgSO4 x 7 H2O (0.5g), (NH4)2SO4  (0.4 g), K2HPO4  (0.2g), KCl  (0.1 g), Distilled water 
(1000ml), 
To the medium add 13.9 g/l of FeSO4 x 7 H2O and adjust medium pH to 1.7 with H2SO4 
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prior to autoclaving 
 
Medium 8: SULFOBACILLUS DISULFIDOOXIDANS MEDIUM 

(NH4)2SO4 (3.0g), KCl   (0.1g), KH2PO4 (0.5 g), MgSO4 x 7 H2O (0.5g), Ca(NO3)2 x 4 
H2O ( 0.1 g),Yeast extract (0.1g), Distilled water (1000ml),Adjust pH to 2.25 prior to 
autoclaving. Before use add per liter 10 ml of a filter sterilized 10% (w/v) glutathione 
solution. 
 
Medium 9: MS-MEDIUM Thiobacillus caldus For DSM 2392 
(NH4)2SO4 (2.00g), MgSO4 x 7 H2O  (0.25g), K2HPO4 (0.10g), KCl (0.10g), Distilled 
water (1000. ml), 
Adjust pH of MS-medium to 2.2 with 4 N H2SO4 prior toautoclaving. Before use, add 
0.25 ml  40%  (w/v) FeSO4 x 7 H2O solution (dissolved in 0.2 N H2SO4 and filter 
sterilized or autoclaved under N2) per 5 ml MS-Medium. 
 
Medium 10: MS-MEDIUM Thiobacillus caldus For DSM 9465 
(NH4)2SO4 (2.00g), MgSO4 x 7 H2O  (0.25g), K2HPO4 (0.10 g), KCl (0.10g), Distilled 
water (1000ml), 
: Adjust pH of MS-medium to 2.2 with 4 N H2SO4 prior to autoclaving. Before use, add 
0.25 ml  40%  (w/v) FeSO4 x 7 H2O solution (dissolved in 0.2 N H2SO4 and filter 
sterilized or autoclaved under N2) per 5 ml MS-Medium. 
 
Medium 11: MS-MEDIUM Thiobacillus caldus DSM 9467 
(NH4)2SO4 (2.00g), MgSO4 x 7 H2O ( 0.25g), K2HPO4  (0.10 g), KCl (0.10g), Distilled 
water  (1000),For: Adjust pH of MS-medium to 3.0 with 2N H2SO4 prior to autoclaving. 
Before use, add 0.2% glucose from filter sterilized 10% w/v stock solution, and 0.01% 
yeast extract from autoclaved 1% stock solution 
 
Medium 12: 9K  
 Solution A: 
 (NH4)2SO4 (3.00g), KCl   (0.10g), K2HPO4 (0.50g), MgSO4 x 7 H2O ( 0.50g), Distilled 
water (700ml), 
Adjust pH to 2.0 - 2.2 with sulfuric acid. 
Solution B: 
 FeSO4 x 7 H2O (44.20g), Distilled water (300.00   ml), 
 Solution C: 
 Yeast extract (1% w/v in water) (20.00   ml) 
After autoclaving, combine the three solutions. Medium pH 1.9 - 2.4. 
 
Medium 13:  Thiobacillus  thiooxidans  
NH4Cl (0.1g), KH2PO4 (3.0g), MgCl2.6H2O (0.1g) and CaCl2.2H2O (0.14g) in a 1L 
distilled water, sulfuric acid was added to adjust the pH to 4.2 before sterilising using the 
autoclave.  Sterilised sulphur powder (1120C, 10mins) final concentration 5% was added 
to the solution upon cooling 
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1.4.2 Results and discussion 

 

 The visual and microscopic examination of isolates obtained from Ulu Sokor 

and Sungai Lembing is shown in Tables 1.6, 1.7, 1.8 and 1.9: 

 

Table 1.6.: Visual observation of isolates obtained from Ulu Sokor   
 

pH Eh Medium  initial final initial final Remarks 

1 1.89 1.87 625.3 636.1 No colour change  
2 4.32 4.11 564.6 589.1 Colourless brown, black precipitation 
3 1.90 1.90 606.3 613.3 No colour change 
4 1.93 1.97 618.1 640.7 No colour change, sulphur sediment 
5 1.84 1.92 572.3 607.1 Green light yellow, yellow precipitation 
6 1.84 1.83 617.2 629.8 Green light yellow, white precipitation 
7 1.68 1.68 609.8 619.9 Green colourless, yellow precipitation 
8 2.15 2.11 541.3 572.2 No colour change 
9 2.14 2.10 590.6 578.9 No colour change, yellow precipitation 
10 3.63 3.69 591.4 581.8 No colour change 
11 3.09 3.11 609.9 606.1 No colour change 
12 1.73 1.72 597.9 613.5 Green light yellow, yellow precipitation 
13 4.02 4.00 417.7 528.5 No colour change 

 

 

 Table 1.7.: Microscopic observation of isolates obtained from Ulu Sokor 
 

Medium Cell 
concentration 

Cell motility Colony 
(Based on motility 
and shape) 

Remarks 

1 Low Low Mix  
2 Medium Active Single Cell agglomeration 
3 Very low Low 3  
4 -ND- - Single  
5 Very low Active 4  
6 Very high Active Single  
7 Very low Low Mix  
8 -ND- - -  
9 Very low Low Single  
10 Very low Low Single  
11 -ND- - -  
12 Low Low Single Cell attachment on precipitate 
13 Low Active Single  
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Table 1.8.: Visual observation of isolated obtained from Sungai Lembing 
 

pH Eh Medium  initial final initial final Remarks 

1 2.04 1.93 621.1 638.8 No colour change 
2 4.16 4.16 546.6 553.9 Colourless yellow, yellow precipitation 
3 1.94 1.95 614.4 618.8 No colour change 
4 1.93 1.95 617.7 624.1 Colourless cloudy, sulphur 

sedimentation 
5 2.06 1.92 551.4 600.9 Green light yellow, yellow precipitation 
6 1.95 1.95 617.7 623.6 Green cloudy yellow, white 

precipitation 
7 1.68 1.67 581.6 602.2 Green light yellow, yellow precipitation 
8 2.18 2.17 538.5 561.4 No colour change 
9 2.11 2.12 622.6 614.0 No colour change, yellow precipitation 
10 2.77 2.49 635.1 624.4 Cloudy, sulphur sedimentation 
11 3.03 3.09 588.3 591.2 No colour change 
12 1.88 1.95 547.2 593.4 Green light yellow, yellow precipitation 
13 3.82 3.79 409.0 419.8 Cloudy, sulphur sedimentation 
Acidianus 
Brierleyi 

1.99 2.00 517.4 541.0 No colour change 

  

 

Table 1.9.: Microscopic observation of isolates obtained from Sungai Lembing 
 

Medium Cell 
concentration 

Cell motility Colony 
(Based on motility 
and shape) 

Remarks 

1 Low Low Mix  
2 Low Low Mix Large crystal appears 
3 Very low Very low Single  
4 Very high High 2  
5 Very low Low 2  
6 -ND- - -  
7 Medium Medium 2  
8 Low Low Single  
9 High High Single  
10 Very high High Single Cell agglomeration  
11 High High Single  
12 Medium High Single  
13 Medium High Single  
Acidianus 
Brierleyi 

Medium Active Single  
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1.5 Solid medium preparation 

 
1.5.1 Material and Methods 

 

 Solid medium was prepared according to the ingredients used in liquid 

medium described in Table 1.5. The medium consists of the following: 

 

A. 70 mL of liquid medium which is listed in table 1.5. Sulfur powder in the 

ingredients was replaced with sodium thiosulfate solution. 

B. 30 mL of gelling solution containing 1.67g agarose, sigma type1. 

C. 1mL of sodium thioglycolate solution (1.1g/L) 

 

 For aerobic culturing, solutions A and B were mixed and poured into petri 

plates. The plates were then incubated at 300C overnight to detect any contamination. 

Cultures from respective liquid media were then transferred using streak-plate and 

spread-plate techniques and incubated at 700C for 24 hours. 

 

 The anaerobic culture isolation was conducted using molten agar technique. 

Culture (1mL) from respective liquid medium was transferred into sterilized tube 

test. Molten agar (5mL) containing solutions A, B and C were mixed with respective 

culture without aeration. It was then allowed to solidify prior to incubation at 700C. 

 

 

 

1.5.2 Results and discussion 

 

 After 24 hours of incubation, yellow-orange colonies grew on solid medium 5 

and 12 for both Ulu Sokor and Sungai Lembing sample. Growth of colonies were not 

detected on the other plates. 

 

 The same observation was also seen in the anaerobic condition. Yellow-

orange precipitates were observed at the surface of medium 5 and 12. This is 

indicates of the successful isolation of obligate aerobic, iron oxidizing organisms. 
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 Work is in progress to purify the colony of other organisms.   
 

 

 

1.6 Bioleaching test  

 

1.6.1 Material and Methods 

 

 Bioleaching test of mixed culture obtained from Ulu Sokor and Sungai 

Lembing were conducted as discussed in section 1.3.1. 

 

Biooxidation of ore was carried out in 500ml Schott bottle containing 100ml 

respective medium and 50g of ore. The bottle were inoculated with respective culture 

(20ml) and incubated at 70OC with shaking at 60 rpm for 3 days.  

 

 The sulfidic gold ore used in this study was obtained from Penjom-Avecot 

Gold Mine, Pahang. The ore was first treated with cyanide to eliminate the free gold. 

 

The copper concentrate was obtained from Sungai Lembing Tin Mine, 

Pahang. The concentrate was washed with tap water at a ratio of 10:1 

(water:concentrate) to get rid of any water soluble copper. 

 

 

 

1.6.2 Results and discussion 

 

1.6.2.1 Pyrite Oxidation 

 

Ulu Sokor Culture 

 
Table 1.10: Percentages of pyrite oxidation using Ulu Sokor Culture 
 

Medium 1 2 3 4 5 6 7 8 9 10 11 12 13 
Fe 
solubilize 
(%) 

1.55 22.14 22.16 2.62 45.04 9.58 0.00 2.09 5.72 2.79 1.64 7.95 15.06
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Sungai Lembing Culture 
 
Table 1.11: Percentages of pyrite oxidation using Sungai Lembing Culture 
 

Medium 1 2 3 4 5 6 7 8 9 10 11 12 13 
Fe 
solubilize 
(%) 

1.43 1.57 6.99 1.06 45.12 15.55 0.38 2.23 8.92 1.67 2.26 16.2 1.22 

 
Percentages of pyrite solubilization using Acidianus Brierleyi: 0.38 

 

 

 

1.6.3 Penjom sulfidic ore oxidation 

 

Ulu Sokor Culture 

 
Table 1.12: pH change and amount of gold extraction after biooxidation treatment 
using Ulu Sokor Culture for 3 days. 
 

pH Medium 
initial final 

Gold extracted (ppm) 

1 1.87 6.86 3.12 
2 4.11 7.47 28.52 
3 1.90 7.29 2.87 
4 1.97 7.61 9.83 
5 1.83 4.25 26.87 
6 1.92 6.88 5.23 
7 1.68 5.93 1.14 
8 2.11 7.84 7.43 
9 2.10 7.68 11.41 
10 3.69 7.61 3.86 
11 3.11 7.62 5.18 
12 1.72 4.44 9.54 
13 4.00 6.32 3.43 
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 Sungai Lembing Culture 

 
Table 1.13: pH change and amount of gold extraction after biooxidation treatment 
using Sungai Lembing Culture for 3 days. 
 

pH Medium 
initial final 

Gold extracted (ppm) 

1 1.93 7.08 6.56 
2 4.16 7.59 32.12 
3 1.95 7.59 16.13 
4 1.95 7.60 10.04 
5 1.92 4.40 10.62 
6 1.95 7.08 6.43 
7 1.67 6.12 5.69 
8 2.17 7.81 18.03 
9 2.12 7.83 2.84 
10 2.49 7.71 4.48 
11 3.05 7.37 6.38 
12 1.95 4.04 8.93 
13 3.79 6.27 2.83 
 
Amount of gold extraction using Acidianus Brierleyi: 12.32 ppm (pH: 2.00-7.36) 

Amount of gold extraction without biooxidation: 1.44 ppm 
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1.6.4 Sungai Lembing copper concentrate oxidation 

 

Ulu Sokor Culture 

 

Table 1.14: pH change and amount of iron and copper extraction after 3 days 
bioleaching using Ulu Sokor Culture. 
 

pH Medium 
initial final 

Fe solubilize (%) Copper extracted (%) 

1 1.90 2.03 8.00 0.6 
2 2.09 2.10 0 0 
3 1.95 2.09 4.10 4.2 
4 2.11 2.12 4.31 2.7 
5 1.91 1.99 39.34 1.9 
6 2.14 1.92 11.45 0.5 
7 1.92 2.48 17.69 0.5 
8 2.18 2.07 12.98 0.2 
9 2.40 2.48 14.52 0.9 
10 2.75 2.52 5.92 0.1 
11 2.58 2.61 6.46 0 
12 1.85 1.96 13.6 0.1 
13 1.97 2.16 11.06 0.1 
 
  
Sungai Lembing Culture 
 
Table 1.15: pH change and amount of iron and copper extraction after 3 days 
bioleaching using Sungai Lembing Culture. 
 

pH Medium 
initial final 

Fe solubilize (%) Copper extracted (%) 

1 2.05 2.08 8.9 2.0 
2 2.04 2.12 3.8 1.84 
3 2.06 2.13 4.9 3.2 
4 2.12 2.08 12.37 3.1 
5 1.95 1.97 8.90 5.2 
6 2.27 2.32 9.90 4.7 
7 1.90 2.09 7.58 0.1 
8 2.19 2.20 15.31 4.7 
9 2.42 2.10 5.98 0.02 
10 2.66 2.01 4.72 0.1 
11 2.59 2.69 4.98 0.1 
12 1.63 2.06 18.20 1.1 
13 2.31 2.26 8.54 0.02 
 
Percentages of copper extraction using Acidianus Brierleyi: 0.4% (pH: 2.16-2.19) 
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The highest pyrite leaching were obtained in a presence of culture in medium 

5 (isolated from Sungai Lembing and  Ulu Sokor), about 45% of iron was oxidize in 

medium 5 compared to 0.38% oxidation by culture in Acidianus brierleyi medium. 

Culture from Ulu Sokor in medium 5 also shows the highest amount of iron leaching 

(39%) for Sungai Lembing concentrate but low amount of copper leaching (1.9%). 

This shows that the pyrite oxidation was dominating the leaching process and not 

chalcopyrite. Compared to the culture in medium 5 i.e. Sungai Lembing isolate, 

highest amount of copper solubilization (5.2%) was occurs at low iron oxidation 

(8.9%), shows that most of the mineral oxidized were chalcopyrite.  

  

 The highest gold extraction was obtained from the ore, which is treated by 

culture in medium 2, 32.12 ppm for Sungai Lembing isolate and 28.5 ppm for Ulu 

Sokor isolate. This shows that the bioleaching is very selective on a nature of mineral 

in the ore, depending on the type of culture used. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

PART 1 
 
 
 
 

ISOLATION OF THERMOPHILIC BACTERIA 
 
 
 

 
1.0 Isolation of Thermophilic Organisms 

 

 The population of microbial community in a habitat is related to their 

physical and chemical requirements. Acidothermophilies are the second main group 

among the archaea and is taxonomically very heterogonous. Various members of the 

acidothermophilies have been isolated from high temperature and low pH 

environments. Such prokaryotes may be present in metal and sulfur rich habitats such 

as hot springs, thermal acidic soil, volcanoes, thermal vents and coal pile drainage. It 

generally exists as a mixed population and not as pure culture. The enrichment 

culture technique is the most appropriate isolating technique. This technique involves 

the use of selective culture medium and a set of incubation condition to inhibit the 

undesired culture. Repeated agar plate streaking procedure is a frequent method to 

obtain a pure culture.  

 

 The success of enrichment culture technique is dependent on the inoculum 

source. The most appropriate local habitat of acidothermophilic archaea is a hot 

spring and abandoned ore pile. 

 

 The only geothermal resource which exists in Malaysia is hot spring. The 

thermal spring commonly emerged at low level adjacent to topographic highs. All the 

local springs are found in Mesozoic sedimentary rocks and located along faults and 

sheared zones. A smell of H2S was noted at most springs i.e. Tambun and Pedas Hot 

Spring. Spring water at Balung (Sabah) and Annah Rais (Sarawak) are acidic and the 
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surrounding rocks are coated with sulfur. This is evident of the presence of a metal-

sulfur oxidizing bacteria. 

 

 Besides hot spring, abandoned ore pile also has a potential for habitats of 

acidothermophiles archaea. Elevated temperature at the centre of pile during the 

natural sulfide oxidation promotes the growth of large communities of thermophilic 

archaea. 

 

 

 

1.1 Isolation of thermophilic organisms from Hot springs 

 
1.1.1 Material and Methods 

 

The Pedas Hot Spring area and its vicnity was chosen as the site for bacteria 

isolation.  At each site, 10mL of sample recovered by sterile syringe was transferred 

to each of the bottles, consisting of 100mL media in a 500mL sterilised Schott bottle. 

The sampling was conducted in replicates. The bottles were then immediately 

immersed in hot water to maintain the temperature. All samples were sent to the 

laboratory within a period of three hours and incubated at 70OC with shaking at 60 

rpm in a water shaker. After 24 hours, a sample from each flask was transferred to 

fresh medium and incubated for a further 3 days at 70OC. The medium used for 

isolation is shown in Table 1.1. 
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Table 1.1: Medium for hot spring isolation 

 
Medium 

9K Solution A 

3.00g (NH4)2SO4, 0.50g K2HO4.3H2O, 0.50g MgSO4. 7H20, 0.10g KCl,  

700ml distilled-deionised water. pH adjusted to 2.0 using H2SO4, autoclaved at 121OC for 

15 minutes.  

Solution B 

44.22g FeSO4.7H2O, 300ml distilled-deionised water, pH adjusted to 2.0 and sterilised 

using filtration 

9K+Y Composition similar with 9K either with 1% w/v yeast extract and 20ml of distilled-

deionised water water. 

TT 0.1g (NH4)Cl, 3.0g KH2PO4, 0.1g MgCl.6H2O and 0.14g CaCl.2H2O, 1L distilled-

deionised water water, pH adjusted to 4.2 using H2SO4, autoclaved at 121OC for 15 

minutes. 1% sulfur, Sterilised by steaming for 3 hours on each of 3 successive days. 

TT+Y Composition similar with TT either with 1% w/v yeast extract and 20ml of distilled-

deionised water water. 

 

 

 

1.1.2 Results and discussion  

  

 The condition of pool 1 and 2 of Pedas hot spring is shown in Table 1.2. 

 

Table 1.2: Temperature and pH of Pedas hot spring sampling area 
 
 Temperature pH 

Pool 1 52.8 6.45 

Pool 2 43.7 5.87 

  

 After several inoculations in the respective media, growth was only observed 

in the 9K+Y medium with water sample from Pool 1 and 2. Growth was observed 

under the microscope, using the hanging drop technique. No growth was observed in 

the 9K, TT and TT+Y medium. 
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 In a mesophilic system, bacterial growth can be predicted by visual 

observation, i.e. changing of the medium colour from light green to yellow indicating 

the oxidation of Fe(II) to Fe(III). The sedimentation of sulfur powder is an indication 

of sulphur oxidation. However, in a thermophilic system, the change in colour and 

sedimentation of sulfur powder was also observed in a controlled medium, an 

indication that iron and sulfur was spontaneously oxidized at high temperatures. 

 

The good growth of organism in Pedas hot spring on a 9K+Y medium was 

shown by the presence of huge amounts of heterophilic iron oxidizer population in 

the samples. 

 

 

 

1.2 Solid Medium 

 

1.2.1 Material and Methods 

 

 A non-overlay, ferrous iron-yeast extract medium was used for culturing 

heterotrophic acidophilic bacteria. This medium was prepared using three different 

solutions. 

 

Solution I 

  

 NH4SO40.45g/L, KCl0.05g/L, MgSO4.7H2O0.5g, Ca(NO2)30.01 g/L, 

KH2PO4 0.05g and yeast extract 0.2g/L. pH adjusted to 2.5 using H2SO4 and 

autoclaved at 121OC for 20 minutes.  

 

Solution II 

  

 A suspension of 4% (w/v) agarose type I, low EEO was melted in the 

microwave oven for 2 minutes, and then autoclaved at 121OC for 20 minutes. 
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Solution III 

  

 FeSO4.7H2O (1M) was prepared by adding 4.42g of FeSO4.7H2O in 30mL 

distilled water. The pH of the solution was adjusted to 2.0 using H2SO4,and the 

mixture was then filtered sterilized. 

  

Solution I and III were cooled prior to mixing it at a ratio of 7:3. Solution B 

was then added to the above mixture at a ratio of 3:1 (A-C:B) and the mixture was 

poured into sterile Petri dishes. 

 

 Culture previously grown in the 9K+Y liquid medium were then streaked 

onto the solid media plate sand the plates were incubated at 70OC.  

 

 

 

1.2.2 Results and discussion 

 

 After 2 days of incubation at 70OC, four distinct colonies were observed on 

the solid medium. A colony was restreaked onto fresh plates and the same pattern of 

growth was observed after several transferred on the solids plates. The pattern of 

each colony is as shown in Table 1.3. 

 

Table 1.3: Description of colonies obtained on the solid medium 
 
Medium  Pool  Designation  
9K-Y 1 C Yellow colonies, formation of 

clear zone around the colony 

 1 XC Yellow colonies 

 2 Y Yellow colonies 

 2 W White colonies 
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1.3 Bioleaching Test 

 

1.3.1 Material and Methods 

 

 The mineral used in this experiment was pyrite (FeS2) obtained from Peru. 

The mineral was ground using ball mill in acetone and sieved to 75 µm. The mineral 

was then washed with HNO3 (1M) for 1 minute to get rid of any metal oxides. Slurry 

obtained was then filtered, washed 3 times with DI water and dried using acetone. 

The treated mineral was stored in the freezer to avoid natural oxidation. 

 

Biooxidation was carried out in 500ml Schott bottle containing 100ml 

respective medium and treated mineral (1g). The bottle was inoculated with 

respective culture (20ml) and incubated at 70OC with shaking at 60 rpm for 10 days. 

Aliquots, 10mL were taken every 5 days and checked for pH, Eh and metal content.    

 

 

 

1.3.2 Result and discussion 

 

1.3.2.1 Pyrite biooxidation 

  

The main elemental content of pyrite used in this experiment is shown in table 1.4. 

 
Table 1.4: Elemental composition of pyrite  
 
 S% C% Fe% 

Pyrite  24.2 0.593 46.28 

 

Leaching profile for pyrite oxidation of single and mixed culture of bacteria isolated 

from Pedas Hot Spring was shown in figures 1.1, 1.2 and 1.3. 
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Figures 1.1: pH profile of bacteria obtained from Pedas Hot spring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1.2: Eh profile of bacteria obtained from Pedas Hot spring 
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Figures 1.3: [Fe] from pyrite disoololution in the presence of bacteria obtained from 
Pedas Hot spring 
 

 Figures 1.1 showed that the pH decreased from 2.0 to 1.6 for cultures y, w, 

ab, and control. pH also decreased to 1.35 for cultures xc, c, p1 and p2. The highest 

Eh values were obtained for cultures c and xc (600 and 603 respectively) after 5 days 

of incubation. Eh values for both culture decreased to 575 and 570 for culture c and 

xc. Compared to standard culture of Acidianus brierleyi (AB), which acted as control, 

the Eh value was constantly low at 570 mV. High value of initial Eh and low pH 

value is very important in accelerating pyrite dissolution. It was shown in figure 1.3, 

that the highest [Fe] content in solution was xc and c.. 

 

 

 
1.3.2.2 Biooxidation of pyrite using culture C at various pH 

  

 Culture C was then chosen to determine the optimum pH for biooxidation of 

pyrite. The profiles of oxidation at various pH are shown in figures 1.4, 1.5 and 1.6. 
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Figures 1.4: pH profile of pyrite oxidation of culture C at various pH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1.5: Eh profile of pyrite oxidation of culture C at various pH  
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Figures 1.6: Fe solubilization profile of pyrite oxidation by culture C at various pH  

 

 The pH profiles for each set of experiment showed a significant trend (Fig 

1.4). Every set showed a slight decrease in pH for the first 5 days of inoculation of 

culture, followed by the increase to the initial pH at day ten. Compared to the pH 

profile, Eh trends decrease constantly from day 1 to day 10 for every set of 

experiment (Fig 1.5). Highest iron solubilization was observed when pH of the 

medium was at 2.0 during the first 5 days of inoculation. A constant iron content was 

observed from day 5 to day 10. At low pH i.e. 1.0 and 1.5, iron solubilization 

constantly increased until day 10.Possibly due to the prevention of jarosite 

precipitation at low pH (.Nemati et al,1998)     

 

 

 

1.4 Isolation of bacteria from abandoned ore pile 

 

1.4.1 Isolation procedure 

 
 Field sampling was conducted based on in vitro culturing method, explained 

in 1.1.1. Samples were taken from two abandoned ore piles. Descriptions of the 

sampling site are as follows: 
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Ulu Sukor  

  

Abandoned heap leaching plant, heap containing 40,000t of sulfidic-

carbonaceous gold ores. Samples were taken from a drainage channel emanating 

from a heap. Temperature and pH of sample taken were 33OC and 4.17 respectively. 

The plant was left idle without operation for 2 years. 

 

Sg. Lembing 

  

Samples were taken from the slumps around the copper concentrate piles. 

The concentrate contains chalcopyrite, chalcosite, copper oxide, pyrite and 

arsenopyrite. The concentrate was left idle due to the strict legal restriction by the 

Japanese Government on the arsenic limit content in roasting industries. 

Temperatures and pH of sample were 39OC and 1.97. Bacteria were cultivated 

aerobically in 13 different media listed in table 1.5 

  

Aerobic culturing was conducted in a 20ml universal bottle, containing a mixture of 

5 ml of respective medium and 1ml of sample. The bottle was then immediately 

immersed in hot water to maintain the temperature. The bottles were kept at 70OC 

during transportation to the laboratory. 
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Table 1.5: Medium used for isolation from abandoned ore piles 
Medium 1: SULFOLOBUS MEDIUM 

(NH4)2SO4 (1.30), KH2PO4 (0.28g), MgSO4.7 H2O ( 0.25 g), CaCl2.2 H2O ( 0.07g), FeCl3.6 H2O   (0.02 g) 
MnCl2.4 H2O (1.80mg), Na2B4O7.10 H2O (4.50 mg), ZnSO4.7 H2O ( 0.22 mg), CuCl2.2 H2O (0.05 mg), 
Na2MoO4.H2O ( 0.03mg), VOSO4.2 H2O(0.03mg), CoSO4 (0.01 mg), Yeast extract (Difco) (1.00g) and 
Water, freshly distilled (1000ml).Adjust pH to 2.0 with 10 N H2SO4  
 
Medium 2:SULFOLOBUS SOLFATARICUS MEDIUM 

Yeast extract (Difco) (1.00g), Casamino acids (Difco)(1.00g), KH2PO4 (3.10g), (NH4)2 SO4  (2.50g),MgSO4 
x 7 H2O (0.20 g), CaCl2 x 2 H2O (0.25 g), MnCl2 x 4 H2O (1.80mg), Na2B4O7 x 10 H2O (4.50 mg), ZnSO4 
x 7 H2O  (0.22 mg), CuCl2 x 2 H2O (0.05mg), Na2MoO4 x 2 H2O (0.03 mg), VOSO4 x 2 H2O ( 0.03 mg), 
CoSO4 x 7 H2O (0.01mg), Distilled water (1000.00 ml).Adjust pH to 4.0 - 4.2 with 10 N H2SO4 
 
Medium 3: METALLOSPHAERA MEDIUM 

Use medium 1 either with 0.1% Difco yeast extract, or 0.05% powdered sulfur Sterilize substrates 
separately: sulfur by steaming for 1 h on three subsequent days. 
 
Medium 4: ACIDIANUS BRIERLEYI MEDIUM 

(NH4)2SO4  (3.00g), K2HPO4 x 3 H2O (0.50 g), MgSO4 x 7 H2O (0.50 g),KCl  (0.10  g), Ca(NO3)2 (0.01 g), 
Yeast extract  (0.20g) ,Sulfur (flowers) (10.00 g), Distilled water (1000.00ml),Adjust pH with 6 N H2SO4 to 
1.5 - 2.5. Yeast extract (10% w/v in distilled water) is autoclaved separately. Sulfur is sterilized by 
steaming for 3 hours on each of 3 successive days. 
 
Medium 5: SULFOBACILLUS MEDIUM 

Solution A: 
 (NH4)2SO4 ( 3.00 g), KCl (0.10 g), K2HPO4 (0.50 g), MgSO4 x 7 H2O (0.50 g), Ca(NO3)2, (0.01 g),Distilled 
water  (700.00   ml),Adjust pH to 2.0 - 2.2 with sulfuric acid. 
Solution B: 
 FeSO4 x 7 H2O (44.20    g), Distilled water (300.00   ml), H2SO4, 10 N (1.00   ml), 
Solution C: 
Yeast extract (1% w/v in water) (20.00   ml), 
After autoclaving, combine the three solutions. Medium pH 1.9 - 2.4. 
 
Medium 6: ACIDIMICROBIUM MEDIUM (Heterotrophic) 
MgSO4 x 7 H2O (0.5    g), (NH4)2SO4   (0.4 g), K2HPO4   ( 0.2g), KCl   (0.1g), Distilled water( 1000 ml), 
Adjust pH to 2.0 with H2SO4.To the medium add 10.0 mg/l of FeSO4 x 7 H2O. After autoclaving add yeast 
extract from sterile stock solution to final concentration of 0.25 g/l. 
 
Medium 7: ACIDIMICROBIUM MEDIUM (Autotrophic) 
MgSO4 x 7 H2O (0.5g), (NH4)2SO4  (0.4 g), K2HPO4  (0.2g), KCl  (0.1 g), Distilled water (1000ml), 
To the medium add 13.9 g/l of FeSO4 x 7 H2O and adjust medium pH to 1.7 with H2SO4 prior to 
autoclaving 
 
Medium 8: SULFOBACILLUS DISULFIDOOXIDANS MEDIUM 

(NH4)2SO4 (3.0g), KCl   (0.1g), KH2PO4 (0.5 g), MgSO4 x 7 H2O (0.5g), Ca(NO3)2 x 4 H2O ( 0.1 g),Yeast 
extract (0.1g), Distilled water (1000ml),Adjust pH to 2.25 prior to autoclaving. Before use add per liter 10 
ml of a filter sterilized 10% (w/v) glutathione solution. 
 
Medium 9: MS-MEDIUM Thiobacillus caldus For DSM 2392 
 
(NH4)2SO4 (2.00g), MgSO4 x 7 H2O  (0.25g), K2HPO4 (0.10g), KCl (0.10g), Distilled water (1000. ml), 
Adjust pH of MS-medium to 2.2 with 4 N H2SO4 prior toautoclaving. Before use, add 0.25 ml  40%  (w/v) 
FeSO4 x 7 H2O solution (dissolved in 0.2 N H2SO4 and filter sterilized or autoclaved under N2) per 5 ml 
MS-Medium. 
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Medium 10: MS-MEDIUM Thiobacillus caldus For DSM 9465 
(NH4)2SO4 (2.00g), MgSO4 x 7 H2O  (0.25g), K2HPO4 (0.10 g), KCl (0.10g), Distilled water (1000ml), 
: Adjust pH of MS-medium to 2.2 with 4 N H2SO4 prior to autoclaving. Before use, add 0.25 ml  40%  
(w/v) FeSO4 x 7 H2O solution (dissolved in 0.2 N H2SO4 and filter sterilized or autoclaved under N2) per 5 
ml MS-Medium. 
 
Medium 11: MS-MEDIUM Thiobacillus caldus DSM 9467 
(NH4)2SO4 (2.00g), MgSO4 x 7 H2O ( 0.25g), K2HPO4  (0.10 g), KCl (0.10g), Distilled water  (1000),For: 
Adjust pH of MS-medium to 3.0 with 2N H2SO4 prior to autoclaving. Before use, add 0.2% glucose from 
filter sterilized 10% w/v stock solution, and 0.01% yeast extract from autoclaved 1% stock solution 
 
Medium 12: 9K  
 Solution A: 
 (NH4)2SO4 (3.00g), KCl   (0.10g), K2HPO4 (0.50g), MgSO4 x 7 H2O ( 0.50g), Distilled water (700ml), 
Adjust pH to 2.0 - 2.2 with sulfuric acid. 
Solution B: 
 FeSO4 x 7 H2O (44.20g), Distilled water (300.00   ml), 
 Solution C: 
 Yeast extract (1% w/v in water) (20.00   ml) 
After autoclaving, combine the three solutions. Medium pH 1.9 - 2.4. 
 
Medium 13:  Thiobacillus  thiooxidans  
NH4Cl (0.1g), KH2PO4 (3.0g), MgCl2.6H2O (0.1g) and CaCl2.2H2O (0.14g) in a 1L distilled water, sulfuric 
acid was added to adjust the pH to 4.2 before sterilising using the autoclave.  Sterilised sulphur powder 
(1120C, 10mins) final concentration 5% was added to the solution upon cooling 
 
 

 

 

1.4.2 Results and discussion 

 

 The visual and microscopic examination of isolates obtained from Ulu Sokor 

and Sungai Lembing is shown in Tables 1.6, 1.7, 1.8 and 1.9: 

 
Table 1.6.: Visual observation of isolates obtained from Ulu Sokor   
 

pH Eh Medium  initial final initial final Remarks 

1 1.89 1.87 625.3 636.1 No colour change  
2 4.32 4.11 564.6 589.1 Colourless brown, black precipitation 
3 1.90 1.90 606.3 613.3 No colour change 
4 1.93 1.97 618.1 640.7 No colour change, sulphur sediment 
5 1.84 1.92 572.3 607.1 Green light yellow, yellow precipitation 
6 1.84 1.83 617.2 629.8 Green light yellow, white precipitation 
7 1.68 1.68 609.8 619.9 Green colourless, yellow precipitation 
8 2.15 2.11 541.3 572.2 No colour change 
9 2.14 2.10 590.6 578.9 No colour change, yellow precipitation 
10 3.63 3.69 591.4 581.8 No colour change 
11 3.09 3.11 609.9 606.1 No colour change 
12 1.73 1.72 597.9 613.5 Green light yellow, yellow precipitation 
13 4.02 4.00 417.7 528.5 No colour change 

 

 



 14

 Table 1.7.: Microscopic observation of isolates obtained from Ulu Sokor 
 

Medium Cell 
concentration 

Cell motility Colony 
(Based on 
motility and 
shape) 

Remarks 

1 Low Low Mix  
2 Medium Active Single Cell agglomeration 
3 Very low Low 3  
4 -ND- - Single  
5 Very low Active 4  
6 Very high Active Single  
7 Very low Low Mix  
8 -ND- - -  
9 Very low Low Single  
10 Very low Low Single  
11 -ND- - -  
12 Low Low Single Cell attachment on precipitate 
13 Low Active Single  

 

Table 1.8.: Visual observation of isolated obtained from Sungai Lembing 
 

pH Eh Medium  initial final initial final Remarks 

1 2.04 1.93 621.1 638.8 No colour change 
2 4.16 4.16 546.6 553.9 Colourless yellow, yellow precipitation 
3 1.94 1.95 614.4 618.8 No colour change 
4 1.93 1.95 617.7 624.1 Colourless cloudy, sulphur sedimentation 
5 2.06 1.92 551.4 600.9 Green light yellow, yellow precipitation 
6 1.95 1.95 617.7 623.6 Green cloudy yellow, white precipitation 
7 1.68 1.67 581.6 602.2 Green light yellow, yellow precipitation 
8 2.18 2.17 538.5 561.4 No colour change 
9 2.11 2.12 622.6 614.0 No colour change, yellow precipitation 
10 2.77 2.49 635.1 624.4 Cloudy, sulphur sedimentation 
11 3.03 3.09 588.3 591.2 No colour change 
12 1.88 1.95 547.2 593.4 Green light yellow, yellow precipitation 
13 3.82 3.79 409.0 419.8 Cloudy, sulphur sedimentation 
Acidianus 
brierleyi 

1.99 2.00 517.4 541.0 No colour change 
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Table 1.9.: Microscopic observation of isolates obtained from Sungai Lembing 
 

Medium Cell 
concentration 

Cell motility Colony 
(Based on 
motility and 
shape) 

Remarks 

1 Low Low Mix  
2 Low Low Mix Large crystal appears 
3 Very low Very low Single  
4 Very high High 2  
5 Very low Low 2  
6 -ND- - -  
7 Medium Medium 2  
8 Low Low Single  
9 High High Single  
10 Very high High Single Cell agglomeration  
11 High High Single  
12 Medium High Single  
13 Medium High Single  
Acidianus 
brierleyi 

Medium Active Single  
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1.5 Solid medium preparation 

 

1.5.1 Material and Methods 

  

Solid medium was prepared according to the ingredients used in liquid medium 

described in Table 1.5. The medium consists of the following: 

 

A. 70 mL of liquid medium which is listed in table 1.5. Sulfur powder in the 

ingredients was replaced with sodium thiosulfate solution. 

B. 30 mL of gelling solution containing 1.67g agarose, sigma type1. 

C. 1mL of sodium thioglycolate solution (1.1g/L) 

  

For aerobic culturing, solutions A and B were mixed and poured into petri plates. 

The plates were then incubated at 300C overnight to detect any contamination. 

Cultures from respective liquid media were then transferred using streak-plate and 

spread-plate techniques and incubated at 700C for 24 hours. 

  

The anaerobic culture isolation was conducted using molten agar technique. 

Culture (1mL) from respective liquid medium was transferred into sterilized tube 

test. Molten agar (5mL) containing solutions A, B and C were mixed with respective 

culture without aeration. It was then allowed to solidify prior to incubation at 700C. 

 

 

 

1.5.2 Results and discussion 

  

After 24 hours of incubation, yellow-orange colonies grew on solid medium 5 

and 12 for both Ulu Sokor and Sungai Lembing sample. Growth of colonies were not 

detected on the other plates. 

  

The same observation was also seen in the anaerobic condition. Yellow-

orange precipitates were observed at the surface of medium 5 and 12. This indicates 

the successful isolation of obligate aerobic, iron oxidizing organisms. 
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1.6 Bioleaching test  

 

1.6.1 Material and Methods 

 

Bioleaching test of mixed culture obtained from Ulu Sokor and Sungai 

Lembing were conducted as discussed in section 1.3.1. 

 

Biooxidation of ore was carried out in 500ml Schott bottle containing 100ml 

respective medium and 50g of ore. The bottle were inoculated with respective culture 

(20ml) and incubated at 70OC with shaking at 60 rpm for 3 days.  

  

The sulfidic gold ore used in this study was obtained from Penjom-Avecot 

Gold Mine, Pahang. The ore was first treated with cyanide to eliminate the free gold. 

 

The copper concentrate was obtained from Sungai Lembing Tin Mine, 

Pahang. The concentrate was washed with tap water at a ratio of 10:1 

(water:concentrate) to get rid of any water soluble copper. 

 

 

 

1.6.2 Results and discussion 

 

1.6.2.1 Pyrite Oxidation 

 

Ulu Sokor Culture 

 
Table 1.10: Percentages of pyrite oxidation using Ulu Sokor Culture 
 

Medium 1 2 3 4 5 6 7 8 9 10 11 12 13 
Fe 
solubilize 
(%) 

1.55 22.14 22.16 2.62 45.04 9.58 0.00 2.09 5.72 2.79 1.64 7.95 15.06 
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Sungai Lembing Culture 
 
Table 1.11: Percentages of pyrite oxidation using Sungai Lembing Culture 
 

Medium 1 2 3 4 5 6 7 8 9 10 11 12 13 
Fe 
solubilize 
(%) 

1.43 1.57 6.99 1.06 45.12 15.55 0.38 2.23 8.92 1.67 2.26 16.2 1.22 

 
Percentages of pyrite solubilization using Acidianus brierleyi: 0.38 

 

 

 

1.6.3 Penjom sulfidic ore oxidation 

 

Ulu Sokor Culture 
 
Table 1.12: pH change and amount of gold extraction after biooxidation treatment 
using Ulu Sokor Culture for 3 days. 
 

pH Medium 
initial final 

Gold extracted (ppm) 

1 1.87 6.86 3.12 
2 4.11 7.47 28.52 
3 1.90 7.29 2.87 
4 1.97 7.61 9.83 
5 1.83 4.25 26.87 
6 1.92 6.88 5.23 
7 1.68 5.93 1.14 
8 2.11 7.84 7.43 
9 2.10 7.68 11.41 
10 3.69 7.61 3.86 
11 3.11 7.62 5.18 
12 1.72 4.44 9.54 
13 4.00 6.32 3.43 
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 Sungai Lembing Culture 

 
Table 1.13: pH change and amount of gold extraction after biooxidation treatment 
using Sungai Lembing Culture for 3 days. 
 

pH Medium 
initial final 

Gold extracted (ppm) 

1 1.93 7.08 6.56 
2 4.16 7.59 32.12 
3 1.95 7.59 16.13 
4 1.95 7.60 10.04 
5 1.92 4.40 10.62 
6 1.95 7.08 6.43 
7 1.67 6.12 5.69 
8 2.17 7.81 18.03 
9 2.12 7.83 2.84 
10 2.49 7.71 4.48 
11 3.05 7.37 6.38 
12 1.95 4.04 8.93 
13 3.79 6.27 2.83 
 
Amount of gold extraction using Acidianus brierleyi: 12.32 ppm (pH: 2.00-7.36) 

Amount of gold extraction without biooxidation: 1.44 ppm 

 
 

 
1.6.4 Sungai Lembing copper concentrate oxidation 

 

Ulu Sokor Culture 
 
Table 1.14: pH change and amount of iron and copper extraction after 3 days 
bioleaching using Ulu Sokor Culture. 
 

pH Medium 
initial final 

Fe solubilize (%) Copper extracted (%) 

1 1.90 2.03 8.00 0.6 
2 2.09 2.10 0 0 
3 1.95 2.09 4.10 4.2 
4 2.11 2.12 4.31 2.7 
5 1.91 1.99 39.34 1.9 
6 2.14 1.92 11.45 0.5 
7 1.92 2.48 17.69 0.5 
8 2.18 2.07 12.98 0.2 
9 2.40 2.48 14.52 0.9 
10 2.75 2.52 5.92 0.1 
11 2.58 2.61 6.46 0 
12 1.85 1.96 13.6 0.1 
13 1.97 2.16 11.06 0.1 
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Sungai Lembing Culture 
 
Table 1.15: pH change and amount of iron and copper extraction after 3 days 
bioleaching using Sungai Lembing Culture. 
 

pH Medium 
initial final 

Fe solubilize (%) Copper extracted (%) 

1 2.05 2.08 8.9 2.0 
2 2.04 2.12 3.8 1.84 
3 2.06 2.13 4.9 3.2 
4 2.12 2.08 12.37 3.1 
5 1.95 1.97 8.90 5.2 
6 2.27 2.32 9.90 4.7 
7 1.90 2.09 7.58 0.1 
8 2.19 2.20 15.31 4.7 
9 2.42 2.10 5.98 0.02 
10 2.66 2.01 4.72 0.1 
11 2.59 2.69 4.98 0.1 
12 1.63 2.06 18.20 1.1 
13 2.31 2.26 8.54 0.02 
 
Percentages of copper extraction using Acidianus brierleyi: 0.4% (pH: 2.16-2.19) 
 

 

The highest pyrite leaching were obtained in a presence of culture in medium 

5 (isolated from Sungai Lembing and  Ulu Sokor), about 45% of iron was oxidized in 

medium 5 compared to 0.38% oxidation by culture in Acidianus brierleyi medium. 

Culture from Ulu Sokor in medium 5 also showed the highest amount of iron 

leaching (39%) for Sungai Lembing concentrate but low amount of copper leaching 

(1.9%). This shows that the pyrite oxidation was dominating the leaching process 

and not chalcopyrite. Compared to the culture in medium 5 i.e. Sungai Lembing 

isolate, highest amount of copper solubilization (5.2%) occurred at low iron 

oxidation (8.9%), suggesting that most of the mineral oxidized was chalcopyrite.  

  

The highest gold extraction was obtained from the ore, which is treated by 

culture in medium 2, 32.12 ppm for Sungai Lembing isolate and 28.5 ppm for Ulu 

Sokor isolate. This shows that bioleaching is very selective on the nature of mineral 

in the ore, and is dependent on the types of culture used. 

 

 
 
 



 
 
 
 
 

PART 2 
 
 
 
 

Column studies on gold ores and its concentrates 
 

 
 
 
2.0 Introduction 

 

 This chapter will discuss on the feasibility studies of the gold ores and its 

concentrates in the biooxidation process in a column. However, before the test can be 

carried out, it is important to characterize the type of ore and whether microorganisms 

can be used to treat the ore. Some basic tests have been conducted to characterize the ore 

which will be used in the bioleaching process 

 
 

 

2.1 World commercial bioleaching plant 

 

Bioleaching would best be performed in reactors. For commercial bioleaching 

application of biohydrometallurgy, a continuous stirred tank reactor, CSTR, appears to 

be as the first choice. The use of reactors would allow a good control of the pertinent 

variables, resulting in a better performance in metal extraction (Avecedo, 2000). The 

processes use mesophilic or moderate thermophilic mixed cultures at approximately 40– 

50oC. Since 1999, Billiton and Mintek/Bactech, two companies involved in the 

development of bioleaching processes in agitated tanks, have been publishing results 

concerning continuous bioleaching testwork on chalcopyrite concentrates with 

thermophilic bacteria (Dew et al., 1999; Miller et al., 1999; Gericke and Pinches, 1999; 

Gericke et al., 2001). 
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2.1.1 Refractory gold pretreatment 

 

There are several plants were been commissioned for biooxidation pretreatment 

of sulphidic-refractory gold concentrates. These plants were used to extract gold from 

pyrite and arsenopyrite minerals which lock the gold values. For gold bioleaching, 

stirred tank reactors were being used to process flotation concentrates, although a few 

use heaps for low-grade ores and tailings. The commercial gold pre-treatment were 

shown in Table 2.1 

 

Table 2.1: The world’s commercial gold pre-treatment plants. 
 

Plant Years in operation Size (tonnes/day) 

Fairview, South Africa 1986, 1991–Present 35 

Sao Bento, Brazil 1990–Present 150 

Harbour Lights, Australia 1992–1994 40 

Wiluna, Australia 1993–Present 115 

Ashanti, Ghana 1994–Present 1000 

Youanmi, Australia 1994–1998 120 

Tamboraque, Peru 1999–Present 60 
 

 

These plants used moderate thermophilic bacteria to pretreat the gold ores. 

 The Youanmi plant used the BacTech Australia technology, which uses a moderately 

thermophilic bacterial culture similar to Sulfobacillus thermosulfidooxidans. The 

biooxidation were carried out at temperatures between 45oC and 55oC (6a). The other 

six plants use the BIOX® process, which is a mixed culture of Thiobacillus and 

Leptospirillum operating at 40oC to about 45oC (7a). Figure 2.3 shows the Youanmi 

BIOX plant situated at Western Australia. 
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Figure 2.1: The Youanmi BIOX plant 

 

The commercial metal industries are facing an increasing number of problems 

nowadays including pollution and others. Therefore, there is a need to find a simple and 

a cheap process to resolve the problem faced by the industries. Biohydrometallurgical 

processes are the best answer to all the problems arising from the typical 

pyrometallurgical processes. It is a solution for extracting metals from low grade after 

the depletion of high grade ores.  

 

In the fields of biohydrometallurgy, bioreactor can be classified by the method of 

agitation and the mode of continuous phase i.e. liquid or gas phase. Bioreactor operation 

can be done by mechanical agitation or by air sparging using external pump. The typical 

bioreactors used in biohydrometallurgy are mechanically agitated bioreactor and air lift 

bioreactor. Other types of reactors that have been studied for their application in 

biomining are the percolation column, the Pachuca tank, the air-lift column, and some 

special designs such as rotary reactors (Barrette and Couillard, 1993 and Rossi, 1999). 

 

Gold deposit, can be classified into free milling ores and refractory ores. Free 

milling ores exist in the form of gold nugget at an alluvial deposit and a native gold 

element in a host rock (reef gold).  Gravity separation and direct cyanidation are the best 

processes for extracting gold from this type of ores. Refractory gold ore is one in which 

the gold is found in association with sulphides and carbonaceous material.  Low 
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recoveries of gold was observed upon cyanidation due  to the gold being locked up by 

sulphide minerals such as pyrite and arsenopyrite and also due to adsorption of 

solubilized gold by carbonaceous materials in the ore.(Brierley and Hill, 1993). 

 

 The ores associated with biooxidation is usually known as sulphide ores, which 

can be  categorized into 4 major groups as follows; porphyry deposits, where by 

sulphide and other minerals are scattered uniformly and the grade maybe low but it is 

important for large scale with low capital cost. Secondly, massive sulphide deposits with 

higher metal concentration, oxide ore originates from upper portion and sulphide ore 

from lower portion. Third, native ores occurring unadulterated in nature. Fourth, the 

mixed ores, where usually ores being accompanied with other metal in nature such as 

copper, nickel, zinc, lead and platinum. These ores have been mined for gold but at the 

same time the other metals are sold as by product (Gasparini, 1993). 

 

 In Malaysia, gold is mainly found in the states of  Kelantan, Terengganu, 

Sarawak and the Central Belt in Semenanjung Malaysia. However, gold production in 

Malaysia has decreased due to the closure of  mines as a result of exhaution of good 

grade ores. 
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2.1.2 Mineral concentrate 

 

 Direct gold extraction from low-grade refractory ores is not an economical 

process as excessive amounts of cyanide have to be used which then leads to 

environmental problems. Instead of pre-treatment process, i.e: biooxidation and roasting, 

the ores are usually concentrated using   froth floatation process. The purpose of this 

technique is to provide a small volume of material for extraction process (King, 1997). 

 

 Flotation process is a widely utilised technique for mineral processing and is 

based on the principle of the different minerals having different wetting characteristics. 

These processes generally separate the copper sulphide from other minerals such as 

copper oxide and other metals. This process was carried out with the help of reagents 

termed as depressants and activators.The depressants and activators are reagents that 

will reduce and increase the tendency of mineral to float respectively (Walter, 1996). 

Selective collectors and specific conditions are used to achieve higher recovery of metal. 

The collectors enhance the mineral to bind with the bubble from the air sparged. 

Generally, a copper sulphide collector containing hydrocarbon radical is attached to a 

polar group, which plays an important role in binding with copper sulphide surface. 

 

 Usually the floatation process takes place in the floatation cell or column which 

contains ore slurry that needs to be concentrated. Air is sparged through the cell causing 

hydrophobic particles to stick to the bubble and float (Arbiter et.al, 1995). Then the 

floating particles consisting of the Cu are collected, whereas the unfloat particles are 

transferred to another floatation cell, the conditions of which have been modified to get 

the desired byproduct. An overview of the floatation process is shown in figure 2.1. 

(Arbiter et.al, 1995). 
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Figure 2.2: General overview of a simple floatation process 
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2.1.3 Cyanidation 

 
Chemical extraction refers to the separation of desired metal and compound from 

finely ground ore by dissolution.  As gold does not dissolve directly in acidic condition, 

there is a need to complex the gold to form a more soluble gold-complex ion.  Some 

lixiviant solutions which have been used include cyanide, thiourea and thiosulphate 

(Jefri, 2002). 

 

 Direct cyanidation technique is used for mustard gold which is finely 

disseminated in the host rock of which gravity separation method had not been 

successful in extracting the gold.  As a lixiviant solution, cyanide complexes with the 

gold and will leach out gold from the ore.  There are two types of direct cyanidation; 

flooded and static beds. (Institut Penyelidikan Galian Malaysia, 1988). 

 

McArthur and Forest patented the basic process of cyanidation in 1887.  Among 

the earlier established mine, which utilised cyanidation in its operation, are Crown Mine, 

New Zealand (1889) and the Bau Mine, Sarawak (1899).  This technique has been a 

dominant method for gold dissolution (Ubaldini et al, 1996) until the present day. 

  

Au (1) forms a strong cationic complex with cyanide in an alkaline solution with 

oxygen as the oxidising agent (Equation. 2.1). 

 

4Au + 8CN- + O2 + 2H2O              4Au(CN)2- +  4OH-                                     

 (Equation. 2.1) 
 

This can be considered as a very effective and viable process because of the high 

amounts of gold obtained even at low concentrations of cyanide.  Overall recovery of 

free milling ore is around 97% (Kettle, 1982). 
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2.1.4 Bio-heap leaching of low grade refractory ore 

 

 Bio-heap leaching is synonymous to heap leaching, the only difference being the 

incorporation of bacteria for bio-heap.  The bio-heap process has been applied in the Mt.  

Leyshon Mine in Queensland, Australia at a capacity of 1370tonne/day with an ore 

grade of 1.73ppm since 1992.  In 1995 this operation was also commissioned in 

Newmont-Carlin Mine, Nevada, USA.  The process capacity is 10,000tonnes/day with 

an ore grade of 1ppm 

 

 The advantages of this process are the low energy and chemical reagent 

consumption and investment cost.  It is also a clean process, which does not pollute the 

environment and economical exploitation of low-grade deposits.  Bio-heap leaching is 

an alternative to the stirred tank reactor, roaster and autoclave which low-grade ore 

process cannot support because of the cost.  It has been suggested that bio-heap leaching 

is an alternative process in developing countries (Brierley, 1997). 

 

 To fully utilize the potential of bacterial oxidation, several experimental 

techniques will be evaluated.  The shake flask and stirred tank reactor techniques can be 

used to simulate a commercial continuous tank reactor process. However, due to the 

differences in conditions; i.e. size of ore, proper aeration and mixing of slurry.  The 

results obtained from those studies cannot be applied to large scale heap leaching. 

(Rossi, 1990).   

 

 In a percolating leaching system; i.e. heap and dump, the ore was inadequately 

prepared and solid liquid contact was not efficient.  The oxygen and carbon dioxide 

transfer may be low or even non-existent whilst the temperature could vary considerably 

between different zones of heaps.  Hence, the behavior of a heap will be much more 

complex and for these reasons, experiments were carried out in a column (Monuz et al, 

1995) which provides fairly accurate conditions for heap leaching. 
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 The column apparatus is quite simple, the ore was packed in the column where 

solution was sprayed at the top of the column and the metal laden solution collected at 

the bottom.  Various parameters for example, the size range of suitable ore, height of the 

dump or heap, biooxidation and leaching profiles and flow of liquid can be studied 

before applying to a large scale heap.  The use of columns also avoid the failure of more 

expensive semi-commercial pilot scale testing using several hundred or thousand tonnes 

of ore. 

 

 

 

2.1.5 Technical consideration for heap leaching 

 

 Heap leaching is a relatively simple process where a low-grade ore is stacked on 

leach pad.  There are significant amounts of technical information on heap leaching 

(Readett and Miller, 1997).  However, most information is theoretically based, with 

reference to commercial experiences. 

 

 There are many critical factors to be considered when selecting the type of heap 

leach operation; these factors include material characteristics, height, leach cycle, 

production level, project life, economic viability and site topography.  Overlooking any 

of the critical factors can affect the overall leaching performance. It is important to 

ensure that the ore is properly stacked. Failure to do so might affect solution spraying in 

general and the whole leaching process in particular. 

 

 

 

2.1.5.1 Spraying irrigation 

 

 It is really important to ensure that heap is kept wet and well drained.  Solution 

distribution over the heap surface can affect the rate of gold recovery which can be 

carried out using sprayer or dripper. 
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 Drip irrigation system does not only minimize evaporation, but also prevent 

freezing up in frigid climates and allow minimum impact force on a heap surface.  

However, based on pilot plant experiences, it was very difficult to ensure a good 

solution distribution. Furthermore, cost for dripper piping system is higher than spraying 

system. 

 

 Rainbird sprinkler and wobbler sprinkler is commonly used in irrigation systems.  

It covers a large area and can be installed quickly.  Sprinkler provides the best solution 

for surface distribution and increases the DO by air diffusion.  Disadvantages of the 

sprinkler include rapid evaporation due to exposure to wind friction and cyanide 

degradation due to exposure to ultra violet rays. 

 

 

 

2.1.5.2 Aeration 

 

 Biooxidation and thiosulphate leaching require a rich oxygen supply for the 

biochemical and chemical reactions.  Large amounts of air as a source of oxygen must 

be provided via the bottom of the heap or in the collecting pond.  

 

 

 

2.1.5.3 Pad and lining 

 

 Heap base must be constructed with minimal earth works, utilising the natural 

topography as much as possible.  Pad area is cut and filled as required and trimmed to 

achieve the desired slope of 0.5 to 1o.  Nevertheless, some earth works such as bund 

wall, interior drainage ditches and leak detection drain are inevitable.  Pad must be 

layered using clay or sand.  The complete pad is carefully inspected before a plastic liner 

is installed. 
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 The chemicals used in the process can affect the pad and liner material.  If a toxic 

reagent i.e. cyanide is used, HDPE geomembrane (0.5mm thickness) covered with 

geotextile is suggested (Readett and Miller, 1997).  Cyanide leakage detector must be 

placed under the pad to avoid contamination.  However, if a non-toxic reagent i.e. 

thiosulphate is used, a thin PVC liner is sufficient.  A layer of clay (30cm) can be used 

as an alternative for the plastic liner.  Selection of liner can have a big impact on the 

capital cost of a heap leaching project. 

 

 Generally, the pad used in heap leaching construction can be divided into 2 types 

that is permanent pad and reusable pad (Martin, 1998).  Permanent pad allows ore to be 

stacked in a multiple lift of heap.  Meanwhile, ore is stacked on one lift in a reusable 

pad, leached, reclaimed and then replaced with a new one.  Permanent pad is a common 

and widely accepted type of pad. 

 

 Reusable pad is usually applied on a biooxidation heap plant, in which the ore is 

handled many times.  Double handling of the ore provides a good metallurgical control 

but producing it might be uneconomical.  However, in many cases, it is actually less 

expensive to handle ore twice rather than to elevate it and pump the solution to higher 

lifts on a permanent pad (Martin, 1998). 

 

 Permanent pad is a simple process but it is more difficult to monitor the solution 

through the heap because of the stacking height.  Recovered metal can be precipitated if 

the condition is not correctly balanced.  However, intermediate liner or clay can be 

placed on the existing heap to reduce the amount of solution that might seep through the 

old heap. 
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2.1.5.4 Stacking 

 

 Stacking of ore in a heap can be achieved using truck dumping, excavator 

loading and conveyor stacking.  Selection of the method of stacking is dependant on the 

actual project duration and the amounts of material to be stacked.  Ore must be stacked 

properly in the heap to ensure the overall efficiency of the heap. 

 

 Excavator loading allows the ore to be placed uncompacted but it is slow, heap 

height is restricted by the loader lift capacity which is about 3m.  In a commercial 

operation, excavator is not used for ore stacking. 

 

 Truck dumping is considered as a standard method in the mining industry.  It is a 

fairly straight forward method, for ores which do not require crushing.  It is the best 

method for a cost sensitive project in terms of contract hauling, low fuel and labour cost, 

whether it is purchased, leased or hired.  Its manoeuvrability allows ore to be stacked on 

an extreme or irregular pad shape (Martin, 1998) 

 

 However, ground pressure impact by truck dumping can lead to compaction and 

reduced heap permeability. The truck is not efficient to climb a slope of more than 8o 

inclination due to the increased haul times, fuel consumption and maintenance of truck.  

A track can be prepared during stacking to reduce the heap slope.  

 

 Conveyor loading is commonly used in combination with agglomerator and 

crusher.  There must be sufficient ore deposit to recover the capital investment of a 

conveyor.  It is commonly employed on a project which is sensitive to heap 

permeability, i.e. ore used is clayey or heap is to high, compaction could damage the 

overall process. 
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2.1.5.5 Climatic factors 

 

 The major reason for the lack of commercial interest of heap leaching in a 

tropical country is because of the rainy season.  In Malaysia, the rainy season starts from 

October till February. 

 

 A slight amount of rain is good for the heap leaching operation; it increases the 

heap moisture, subsequently decreasing evaporation.  However, long periods of heavy 

rain can cause problems on a heap leaching process.  High impact of rain water on a 

heap surface leads to a reduced heap porosity and permeability.  Channeling of the 

solution may occur in the heap.  Excess solution volume in the heap can cause heap 

flooding and damaging the heap structure.  Pregnant solution can be diluted during the 

rainy season which will result in low gold recovery. 

 

 However, some measures to counter the rainy season have been suggested. 

Canvas or plastic sheet may be used to cover the heap.  The canvas should be placed 2m 

from the surface to allow spraying.  However, strong wind can blow the canvas.  

Workers must recover the canvas immediately, a dangerous task during the rainy season 

and especially when cyanide is being used. 

 

 The other alternative is by placing the canvas on the heap surface.  Although 

dripper may be applied, it is still very difficult to control the solution distribution.  Pyrite 

oxidation releases heat and heat build up during biooxidation leads to jarosite 

precipitation which will inhibit bacterial activities. 

 

 Another point worth considering is to agglomerate the ore with cyanide and lime.  

Heap can then be left during the rainy season.  The rain water can solubilize the cyanide 

and extract the gold.  The idea sounds practical but it is difficult to control cyanide 

concentration.  It may be higher during the initial stages but can be lower towards the 

end of the process.  The discharge solution may contain concentrated cyanide and gold.  

Agglomeration is quite costly to implement. 
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 To overcome problems faced during the rainy season, a new heap set up is 

proposed, as shown in figure 2.3.  When rainfall starts, the pump (P1) will be 

automatically turned off.  The rainwater could be diluting the cyanide and when the 

cyanide concentration falls below 200ppm (minimum concentration to extract gold), the 

valve (V1) controlling the pregnant pond closes automatically and the solution is then 

by-passed into the overflow pond.  A level regulator is used to control valves (V2 and 

V3).  If the overflow pond is full, the controller automatically opens V2, close V3 and 

vice versa.  The diluted cyanide solution then flows into the discharge pond.  Water in 

the overflow pond can be recirculated, while cyanide must be degraded using biological 

and chemical treatment before being released to the environment.  There is no need to 

cover the discharge pond as the rain water can dilute the cyanide, whereas direct sunlight 

can degrade the cyanide.  The discharge pond is too large and too expensive to cover.  

However periodic sampling must be carried out to check the cyanide discharge level 

(must be lower than 0.1ppm). (Environmental Quality Act, 1974) 
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V1: Pregnant pond valve 
V2: Discharge pond valve 
V3: Overflow pond valve 
P1 : Heap pump 
P2 : Recycle solution pump 
 
Figure 2.3: Heap leaching process diagram 
 

 

Column studies on gold ores and its concentrates 

2.2 Materials and methods 

 
2.2.1 Ore and concentrate characterisation 

 
The characterisation of the ore was carried out as follows: elemental analysis 

using AAS and fire assay (Malaysia Mining Co.  Laboratory), sulphur and carbon 

determination using carbon and sulphur determination ( Leco HF-400, Antara Steel Pte. 

Ltd., Pasir Gudang).  The refractory characteristic of the ore was carried out using 
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sequential extraction methods).  Acid consumption test and Biological acid producing 

potential was carried out to assess the suitability of ore for biooxidation. 

 
 
 

2.2.1.1 Chemicals 
 

All experiments were carried out using analytical grade chemicals and all 

glassware used was soaked in 10% HNO3 overnight, washed with tap water and rinsed 

with distilled deionized water. 

 

 

 

2.2.1.2 Gold ore and concentrated sample 

 

The gold concentrate used throughout this chapter was obtained from the 

Penjom-Avocet Gold Mine, Sungai Lembing, Pahang, Malaysia.  The ore was ground 

using industrial ball miller to liberate the mineral particle. Froth flotation process for 

separating sulfide from gangue in the ore bodies was carried out using surfactants and 

wetting agents. The reagent was to achieve a hydrophobic surface condition on the 

sulfide particle. The separation of a binary solids mixture may be accomplished by the 

selective attachment of hydrophobic solid particles to air bubbles. The unattached 

hydrophobic solid particles remain in the water. The difference in the density between 

the air bubbles and water provides buoyancy that preferentially lifts the hydrophobic 

solids particles to the surface where they remain entrained in a froth which can be 

drained off. The gold in the concentrate was then extracted using alkaline cyanide 

solution. (2% NaCN, NaOH used to adjust pH to 10). The tailing from this process was 

then collected and tagged as a sample of gold concentrated in this work.  

 

 The sample of gold concentrate used was washed using 10:1 ratio of tap 

water:sample in order to remove the NaCN and neutralized the pH. The sample then 

dried at 80oC overnight. 
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 Ore sample were obtained from various local gold mines i.e: Penjom-Avocet 

Gold Mine, Pahang; Lubuk Mandi Gold Mine, Terengganu; Raub-Australia Gold Mine, 

Pahang; and Buffalo Reef, Pahang. The ores were crushed using jaw-impact crusher to a 

size of 0.5mm to 5mm. The ores were then mixed before use in the column study. 

 

 The gold ore and concentrate sample was ground using fine-impact mill grinder 

and sampling was carried out using the coning and quartering technique.(International 

Atomic Energy Agency, 1990). 

 

 

 

2.2.1.3 Acid digestion 

 

Dried and finely ground ore, 25g was roasted at 600oC for 2 hours.  Aqua regia 

(100mL) consisting of a mixture of concentrated HCl : HNO3 at a ratio of 3:1 was then 

added to the dried ore.  The slurry was heated gently for 1.5hrs at 70-80oC.  Upon 

cooling, the slurry was transferred into a 250mL volumetric flask.  The volume was then 

made up to the mark and an additional 4mL of water was added to replace the 

undissolved ore.  Under this condition, all the metal was assumed to dissolve in the 

solution.  The sample was analysed using AAS.  For gold analysis, 20mL of the solution 

was extracted with 5mL DIBK (Diisobutyl ketone) to avoid any interference from iron 

and to concentrate the gold. 

  

 

 

2.2.1.4 Carbon and sulphur content 

 

Dried method analysis was conducted at Antara Steel Sdn Bhd, Pasir Gudang 

Johor Malaysia for carbon and sulphur determination while samples for fire assay were 

conducted at Malaysia Mining Co.  Laboratory, Batu Caves, Selangor.   

 



 39

2.2.1.5 Size analysis 

 

Dried gold concentrate was sieved using standard sieve size 75µm, 106µm, 125 

µm, 180 µm, 250µm, 500µm, 1mm, 2mm and 4mm respectively.  The ore in each sieve 

was weighed to determine the size distribution. 

 

 

 

2.2.1.6 Sequential extraction 

 

The purpose of this test is to asses the association of gold in the host minerals i.e. 

either as free gold, unextracted gold, gold associated with iron oxide or pyrite. 

 

 

 

2.2.1.7 Free gold test 

 

Finely ground and sieved ore 10% (200g) was mixed with 2.0L of water in a 10L 

Schott bottle. Lime was added to the mixture to maintain the pH between 10 and 11.5. 

Then, NaCN (2.0g) was added to the mixture and placed in a bottle, and rolled for 24 hrs 

at 50rpm. Finally, the mixture was filtered and the filtrate was assayed using AAS. 

 

 

 

2.2.1.8 H2SO4 treatment 

 

Finely dried residue from the free gold test was mixed with 2.0L of H2SO4 

(1.0M) and the mixture was heated gently for 1.5hrs at 70-80oC.  Upon cooling, the 

slurry was then filtered and the residue was washed with 2.0L water. The mixture was 

again filtered and the gold content was determined using the procedure outlined in 

2.2.1.7 
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2.2.1.9 HCI treatment 

 

Finely dried residue from the free gold test was mixed with 2.0L of HCl (20%) 

and the mixture was then stirred for 4 hrs at ambient temperature in the orbital shaker. 

The mixture was then filtered and the residue was washed with 2L water. The mixture 

was again filtered and the gold content was determined following the procedure outlined 

in 2.2.1.7 

 

 

 

2.2.1.10 HN03 treatment 

 

The residue from the HCI treatment was mixed with 2.0L HNO3 (30%) and the 

mixture was then stirred for 4 hrs at 80°C. Again, the gold content was determined 

following the procedure outlined in 2.2.1.7. The final residue was then digested as 

described in 2.2.1.3. 

 

 

 

2.2.1.11    Acid consumption test  

 

 Slurry containing 10g of ore and 100mL water was stirred for 15 min, and the pH 

was then recorded.  H2SO4, 5M was added to the slurry in order to adjust the pH to 3.5.  

Acid was added every 30 min to maintain the pH at 3.5.  After 4 hrs and when the 

increase in pH was below 0.1 units, the experiment was terminated (Bruynesteyn and 

Duncan, 1979). 
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2.2.1.12     Biological acid producing potential  

 

 The pulverized ore was dried overnight before adding to the basal salt medium 

(30g ore in 70mL basal salt).  The pH of the mixture was adjusted to 2.5 using sulphuric 

acid.  The flasks were then placed in the orbital shaker at 200rpm, 300C for 4 hrs.   

 

 Following this, a fresh culture of bacteria (10%v/v) was inoculated aseptically.  

Pure cultures of T. ferrooxidans Sb. thermosulfodooxidans and A. brierleyi were used in 

this test.  The flasks were then returned to the orbital shaker, and shaken at 200rpm, 

300C for 4 hrs.   

 

 For the first 3 days, the pH of the mixture was monitored daily to ensure that it 

remained below 2.5.  When the pH reached 2.5 and remained constant, it was further 

monitored until there was no drop in pH value.  Then half of the initial ore’s weight 

(15g) was added into the flasks and the flasks were shaken.  The pH value was then 

monitored and the experiment was terminated when the pH remained below 3.5 

(Brierley, 1997). 

 

 

 

2.2.1.13   Preg-robbing test 

 

 Dried tailings, 200g was mixed with 500mL water to achieve 40% pulp density 

in a 2L bottle. Soluble gold, 5 ppm was added to the slurry and pH adjustment to 10 – 

11.5 was made using lime. NaCN, 0.05g was added to the mixture and the bottle was 

rolled at 50 rpm for 24 hours. Slurry was then filtered and the gold content in the filtrate 

was determined using AAS. 
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2.2.2 Column Leaching Test 

2.2.2.1 Leaching test  

 
 Biooxidation experiments were conducted in 8 columns.  The plastic columns 

measured 1.5m in height and 12.0cm in internal diameter. A HDPE support plate with 

multiple 3mm holes was placed at the bottom of each column. Each column was packed 

with approximately 25kg of gold concentrate and 50kg of gold ore. The mixture of gold 

ore and concentrate were agglomerated with 5% w\w of respective cultures. 

Agglomeration was conducted in a 2L roller bottle for an hour in order to ensure better 

attachment of gold concentrate on the ore surface. Sand at a height of 15 cm was packed 

at the bottom of the column to enable uniform dispersion of air in the columns. It was 

then packed with 25kg agglomerated ore, added with 5cm sand and the procedure 

repeated twice. Finally, 15 cm sand was placed on the top of the column to ensure even 

flow of lixiviant solution (figure 2.4.). The column was then tightly using PVC cover to 

prevent solution lost via evaporation. The column was fed with the bacterial solution (24 

hours growth using bioreactor) using a peristaltic pump at a rate of 50ml/min. The 

solution was applied to the surface of the column using a 4 point drip irrigation systems. 

The leach solution was passed through the ore sample by gravity and re-circulated 

through a side loop with a peristaltic pump. The pregnant solution was collected using 

10L plastic container. The solution level was maintained at a sufficient height by 

provide a freshly cultured medium into container.  

 

 In order to control the column temperature, the columns was placed in a 

1mx0.5mx1.7m steel box, which was covered by 2cm fibrous insulation material. Each 

box was supported by 2 units of high temperature fan and heater with temperature 

controller (figure 2.4). For the column at ambient temperature, the column was covered 

by 2cm fibrous insulation material to prevent heat loss via column surface.  The 

pregnant solution was sampled and analyzed to determine metal concentrations, pH and 

EH.  
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Figure. 2.4:  Schematic diagram of the column leaching apparatus  
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The column test was conducted using different type of bacterial strains and at the 

temperatures suitable for the optimum growth of the strains. The column was first 

biooxidized using the sulfur oxidizing starins followed by the iron oxidizing strains (table 

2.2. 

 

Table 2.2. Column condition and strains used for each column. 

 

Column\Time (Days) Day 1st – Day 40th   Day 45st  - Day 60th   Day 70st  - Day 120th   

A  
(THERMOPHILIC TEST)  

Culture: A. brierleyi 

Medium: A. brierleyi medium 

Temperature: 70oC 

Culture: SL5B 

Medium: Sb thermosulfidiooxidan medium 

Temperature: 70oC 

B  
(THERMOPHILIC CONTROL) 

Culture: - nil- 

Medium: A. brierleyi medium 

Temperature: 70oC 

Culture: - nil- 

Medium: Sb thermosulfidiooxidan medium 

Temperature: 70oC 

C 
(MOD. THERMO. TEST) 

Culture: T. caldus 

Medium: T. caldus medium 

Temperature: 45oC 

Culture: Sb thermosulfidiooxidan 

Medium: Sb thermosulfidiooxidan medium 

Temperature: 45oC 

D  
(MOD. THERMO. CONTROL) 

Culture: - nil- 

Medium: T. caldus medium 

Temperature: 45oC 

Culture: - nil- 

Medium: Sb thermosulfidiooxidan medium 

Temperature: 45oC 

E 
 (MESOPHILIC TEST) 

Culture: T.thiooxidans 

Medium: T.thiooxidans medium 

Temperature: ambient temperature 

Culture: T. ferrooxidans, L. ferrooxidans 

Medium: 9K medium 

Temperature: ambient temperature 

F  
(MESOPHILIC CONTROL) 

Culture: - nil- 

Medium: T.thiooxidans medium 

Temperature: ambient temperature 

Culture: - nil- 

Medium: 9K medium 

Temperature: ambient temperature 

G  
(VARIABLE TEMP. TEST) 

Culture: : Thiobacillus thiooxidans T. 
ferrooxidans  and L. ferrooxidans 

Medium: 9K medium 

Temperature: ambient temperature 

Culture: , T. caldus and Sb 
thermosulfidiooxidan  

Medium: Sb.T. medium 

Temperature: 45oC 

Culture: A. brierleyi and SL5B 

 

Medium: Sb.T. medium 

Temperature: 70oC 

H  
(VARIABLE TEMP. CONTROL) 

Culture:- nil- 

Medium: 9K medium 

Temperature: ambient temperature 

Culture: - nil- 

Medium: Sb.T. medium 

Temperature: 45oC 

Culture: - nil- 

Medium: Sb.T. medium 

Temperature: 70oC 

* Columns were shutting down at days 20-25th , 40-45th, 60-70th, 90-100th and 120th for sampling and re-condition of columns. 
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2.2.2.2  Gold cyanidation 

 

 After the biooxidation process, the columns were sprayed with distilled water 

overnight until the collected solution becomes clear. Lime solution (CaOH, 1% w/v) was 

applied on the column in order to maintain the pH of solution to more than 10 for 

subsequent cyanide leaching. 

 

 The columns were then sprayed with a gold-lixiviant solution containing 400ppm 

of NaCN.  The pH of the solution was maintained at 9-11 using lime.  The concentration 

of gold extracted in cyanide solution was analyzed every 3 days using AAS. At the end 

of test, the agglomerates were dried, sieved and weighed to determine the weight lost. 

 

 

 

2.2.2.3 Column analysis 

 

 During the off irrigation period, days i.e: 20-25, 40-45, 60-70, 90-100 and 120. 

The agglomerated ore sample (approximated 1000g) was carefully taken out from each 

section of the column [Top (0m-0.5m), middle (0.5m-1.0m) and bottom (1.0m-1.5m)].  

Sample from each column section, approximately 2.5g was transferred into 25mL of its 

respective medium (table 2.2). The slurry was shaken for 48hrs, at its respective 

temperature. The free ore-suspended solution then transferred into fresh medium. The 

culture was incubated for 48hrs before inoculation into oxygen-saturated fresh medium. 

The dissolve oxygen consumption was monitored periodically for 48 hrs. The activity of 

the bacterial cultured was also monitored under the microscope.  

 

 The ore and concentrate were dried and separated using ordinary kitchen sieve. 

The ore was then pulverized to a size of 75µm. Pulverized ore and concentrate (each 

100g) was then added with 1L of distilled water containing 400ppm of NaCN at a pH of 

10 – 11.5 in 2L bottles separately.  The bottles were placed on a roller at 50rpm for 

24hrs. The residue was then treated with 1.0L of H2SO4 (1.0M) and the mixture was 
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heated gently for 1.5hrs at 70-80oC.  Upon cooling, the slurry was then filtered and the 

residue was washed with 2.0L water. The mixture was again filtered and the cyanide 

gold leaching was determined using the procedure outlined section 2.2.1.7 (free gold 

determination). The sample was then subsequently treated with 2.0L of HCl (20%), 

stirred for 4 hrs at ambient temperature in the orbital shaker and with 2.0L HNO3 (30%), 

stirred for 4 hrs at 80°C. The residual sample was acid digested as described in section 

2.2.1.3. The gold and iron content from each sequent steps were analyzed using the 

Atomic Adsorption Spectrometer.    

 

 

 

2.3 Results and discussion 

 

2.3.1 Elemental analysis 

 

The elemental analysis of the gold concentrate used in this study is shown in table 2.3  

 

Table 2.3: Elemental analysis of gold concentrate from Penjom Avocet Mine, Lipis 
Pahang, Malaysia 
 
Gold concentrate  
Gold, Au 140.694 ppm 

(mg/I) 
Iron, Fe 34.089 %  
Sulfur, S 27.450 % 
Carbon, C 0.042 % 
Zinc, Zn  0.590 % 
Silver, Ag  0.608 % 
Aluminum, Al  179.900 ppm 

(mg/kg) 
Manganese, Mn  24.838 ppm  

(mg/kg) 
Copper, Cu  8.248 ppm  

(mg/kg) 
Arsenic, As  3.461 ppm 
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((mg/kg) 
Nikel, Ni  0.101 ppm  

(mg/kg) 
Cadmium, Cd  0.424 ppm  

(mg/kg) 
Chromium, Cr  4.55 ppm  

(mg/kg) 
Cobalt, Co  0.586 ppm  

(mg/kg) 
Lead, Pb  0.129 ppm 

(mg/kg) 
 

 

 From the results obtained, it was clearly shown that the penjom gold concentrate 

contains a substantial amount of gold (120.694ppm), silver (0.608 %) and Zinc (0.590 

%). The concentrate also contains high amounts of iron (34.089%). Due to the high 

amounts of sulfur (27.45 %) and low carbon content (0.042 %), the concentrate is 

suspected to be a sulfidic refractory mineral. High amounts of iron and other metals in 

the gold concentrate can affect the cyanidation process used in gold recovery in which 

the metals will compete with gold to form complexes with cyanide which can contribute 

to high cyanide consumption for gold recovery. It has been reported that Fe3+ and Fe2+ 

have a greater tendency to form complexes with cyanide compared to Au. The following 

reaction shows the strengths of the various ions in forming complexes with cyanide 

(Zhang et-al, 1997). 

 

Gold-cyanide complexes 

Au+ + 2CN-                   Au(CN)2-                                         log k = 38.9 

(Equation 2.2) 

 

Other complexes 

Ag+ + 4 CN-             Ag(CN)4 3-                                           log k= 21.90 

(Equation 2.3) 
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Cu2+ + 4CN- + H2O  Cu(CN)32- + CNO- + 2H+                 log k= 35.20 

(Equation 2.4) 

 

Fe2+ +6CN-               Fe(CN)6 4-                                           log k=35.40 

(Equation 2.5) 

 

Fe3+ +6CN-               Fe(CN)6 3-                                           log k=43.60 

 (Equation 2.6) 

 
 Cyanide also forms complexes with other metals including nickel and zinc to 

form (NiCN)4
2- and Zn(CN)4

2- and also with silver to form Ag(CN)4
3-. The formation of 

these complexes will decrease free cyanide availability in the slurry to leach the gold 

hence increasing cyanide consumption and eventually affecting, gold recovery. 

 

 Instead of valuable metals such as gold, zinc and copper, the concentrate 

contains a high amount of toxic metal i.e: arsenic (3.461ppm) and chromium (4.55 ppm) 

The high metal content in the concentrate can be toxic to the bacteria, thus affecting the 

bioleaching process. T.ferrooxidans, believed to be the dominant bacteria in metal 

sulphide solubilization has been reported to be affected by high metal content. The 

tolerance level of T.ferrooxidans grown in Fe2+ ion towards other metal ion is as 

follows; 0.4 g Cr3+/l, 10 g Cu2+/l, 10 g Cd2+/l, 30 g Zn2+/l and 30 g Ni2+/l (Cabrera et al, 

2005). The tolerance level of T. ferrooxidans towards As ion was 1.4 x 102µM (Shafnaz 

Shahir,1998). Hallberg (1996) also reported a lower metal tolerance level on a 

thermophilic biooxidation related bacteria, The IC50 for S. acidocaldarius strain BC (iron 

oxidizing extremely thermophile) was found to be approximately 0.5 mM for both 

arsenite and arsenate. For T.caldus strain which is an iron oxidizing moderate 

thermophile), the IC50 was 8.5 mM and 74 mM for arsenite and arsenate respectively. 

 

 The thermophilic strains such as Sulfolobus and Acidianus spp are sensitive to 

metal concentration as they lack a rigid peptidoglycan cell wall. Further the fluidity of 

cellular membrane increases with temperature. A combination of these factors 
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contributes to sensitivity to high metal concentrations in the leaching systems. (Nemati 

and Harrison, 2000) 

 

 However, it is believed that continuous subculturing of bacteria at higher metal 

concentrations can produce a high metal tolerant strain which is better suited for the 

bioleaching process (Natarajan et.al. 1997). Escobar,2000 has reported that the the 

maximum arsenic concentration on a adapted culture Sulfolobus BC was 370 mg/1 in the 

bacterial leaching solution and 420 mg/l in the ferric solution.. 

 

 Besides the metal content, the effects of chemicals used in preparation of mineral 

concentrates for example flotation utilizing collectors (xanthates, thiocarbamic,acid 

esters, and aliphatic and aromatic dithiophosphates) to the bacterial activity should be 

considered. Frother Flotanol C-7 for example decreased the chalcopyrite leaching rate 

by S. metallicus. and the potassium ethyl xanthate is the most toxic flotation chemical to  

T. ferrooxidans (Tuovinen, 1978). This is probably due to inhibition of oxygen transfer 

during bioleaching (Dopson, 2006 and Okibe and Johnson, 2002).  

 

The elemental content of various mixture of ore, is shown in table 2.4. 

 

Table 2.4: Elemental analysis of gold ore from a mixture of ore collected from various 
local gold field.  
 
Gold ore  
Gold, Au 5.748 ppm ((mg/kg) 
Iron, Fe 7.622 % 
Sulfur, S 6.087 % 
Carbon, C 4.777 % 
Zinc, Zn  25.867 ppm 

(mg/kg) 
Silver, Ag  48.250 ppm 

(mg/kg) 
Aluminum, Al  129.600 ppm 

(mg/kg) 
Manganese, Mn  1.373 ppm (mg/kg) 
Copper, Cu  50.653 ppm 
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(mg/kg) 
Arsenic, As  0.6743 ppm 

(mg/kg) 
Nikel, Ni  3.541 ppm (mg/kg) 
Cadmium, Cd  191.467 ppm 

(mg/kg) 
Chromium, Cr  1.8437 ppm 

(mg/kg) 
Cobalt, Co  29.857 ppm 

(mg/kg) 
Lead, Pb  306.767 ppm 

(mg/kg) 
 

From the data presented, it was shown that the gold ore contains a substaintial  

amount of gold (5.748 ppm). The ore can be classified as moderate grade. It is important 

to note that the ore grade varies from mine to mine, depending on gold price and 

operation cost.  Newmont Mining Co. for example defined low grade ore as one 

containing 1.0 to 3.0ppm gold (Brierley, 2000b Personal communication). 

 

 It was also observed that the concentrations of other metals in the ore were 

greatly lower compared to the gold concentrate (table 2.3.). The ore contained 48.25 

mg/kg silver, 50.65 mg/kg copper, 129.6 mg/kg Al and 29.9 mg/kg cobalt. At these 

levels, the metal are not worthy for recovery. However, low metal content in the ore 

bodies is advantages to the cyanidation process. 

 

 It is important to note, that the froth flotation process is able to increase the gold 

concentration 24.5 times higher compared to the original ore. This is due to the ability of 

froth chemical to concentrate iron sulfide mineral from the ore bodies. The flotation 

process also increased the concentration of other valuable metals which is naturally 

associated with sulfides i.e Zn (19.2 times folds), Ag (120 times fold) Al (3.7 fold) and 

Mn (18.1 fold). The concentration of arsenic also increased 5.13 times due to the 

presence of Arsenopyrite (FeAsS) in the ore body.    
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2.3.2 Sequential extraction 

 

 Sequential extraction method using different leaching agents was carried out to 

elucidate the speciation of iron in the minerals used (Brierley, 2000b Personal 

communication). Figures 2.5 and 2.6 show the percentages of iron in a different species. 

Treatment with H2SO4 was conducted to determine the concentration of iron in the form 

of jarosite and HCl to determine the dolomite, while HNO3 treatment was conducted to 

determine the concentration of iron in the form of pyrite and sulphide mineral (Brierley, 

2000b Personal communication).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 From the results obtained, it was observed that the iron in both mineral is mostly 

present as a sulfide mineral. The concentration of sulfide mineral i.e: pyrite, sphalerite 

and arsenopyrite increased to 82.37% from 52.46% using froth flotation process. 

jarosite
3.45% dolomite

14.19%

sulfide
82.37%

Figure 2.5: Iron speciation in a gold 
concentrate 
 
█ Iron in the form of jarosites 

█ Iron in the form of dolomite 

█

 
 

jarosite
10.23%

dolomite
37.30%

sulfide
52.46%

Figure 2.6: Iron speciation in a gold ore 
 
█ Iron in the form of jarosites 

█ Iron in the form of dolomite 

█ Iron in the form of sulfide mineral 
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However, the iron in the form of dolomite and jarosite was reduced drastically from 

37.30% and 10.23% to 14.19% and 3.45% respectively. 

 

During the sequential leaching test, the extraction using cyanide roller bottle test 

was conducted at each level to elucidate the association of gold with the different iron 

minerals (Brierley, 2000 Personal communication). Figures 2.7 and 2.8 shows the 

distribution of gold particles in the concentrate and ore based on the sequential 

extraction test carried out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The results show that the concentrate contains only 0.277% free gold using direct 

cyanidation. This also implies that 99.7% of the gold is unextractable. For the gold ore 

(figure 2.8) only 58.9% of the gold is unextractable. The ore and concentrate is 

 
 

dolomite
22.023%

oxide
15.404%

free
41.085%

pyrite
21.488%

Figure 2.8: Gold speciation in a gold ore 
█ Free gold 
█ Gold locked in a jarosite or iron oxide 
pracipitate 
█ Gold locked in a dolomite mineral 
█ Gold locked in a sulfide mineral 

pyrite
68.905%

oxide
12.410%

free
0.277%

dolomite
18.408%

Figure 2.7: Gold speciation in a gold 
concentrate 
█ Free gold 
█ Gold locked in a jarosite or iron oxide 
pracipitate 
█ Gold locked in a dolomite mineral 
█ Gold locked in a sulfide mineral
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considered as highly refractory because of the free gold content is less than 80% 

(Brierley, 2000b personal communication).  

 

 After treatment with HNO3, further 68.9% and 21.5% gold in the concentrate and 

ore respectively, were obtained upon extraction with cyanide indicating that the gold 

was physically trapped in sulphide mineral such as pyrite and chalcopyrite(Brierley, 

2000b Personal communication).  Biooxidation may be required to break up the sulphide 

in order to render gold amenable to the subsequent cyanide leaching. 

 

 

 

2.3.3 Size analysis 

 

 Particle size analysis is very important for the leaching optimization study. 

Figures A-1 and A-2 shows the size distribution of gold concentrate and ore used for 

columns study. Based on size distribution analysis used dry sieved method, average size 

(based on 80% of accumulated size distribution) the ore and concentrate size is 1.63mm 

and 169 µm respectively. The size is nearly suitable for tank leaching (concentrate) and 

heap operation (ore). As suggested by Sia Hok Kiang, 2000. Personal communication 

and (Brierley, 1997) the suitable size for tank biooxidation and heap leaching was 75µm 

and 8mm respectively. The correlation between mineral size distribution with rate of 

bioleaching is due to the, enzymatic (direct) and Fe3+ abiatic (indirect) reaction, 

occurring on the particle. Hence, the rate of bioleaching should increase with decrease 

particle size of the ore since the smaller the particles, the larger the surface area per unit 

weight. Indeed it is well documented that the highest solubilization rates were achieved 

for pyrite, chalcopyrite and sphalerite at the smallest particle size fraction i.e 25 µm 

(Rossi, 1990).    

 

 However, grinding operation the ore to such size is a very expensive operation. 

Optimum biooxidation operation should be based on a compromise between grinding 

cost and profit deriving from recovery rates. In this case, ultra fine grinding of mineral 
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ore will produce an increase in surface dislocation densities on the mineral surface and 

therefore greater instability of the crystal structure which will deactivate the bacterial 

activity (Rossi, 1990). 

 

 The first-order deactivation rate of bacterial cells was found to increase with 

decreasing particle size down to a certain size of 63 µm to 45 µm (Deveci, 2004). 

The action of solid particles on the cells will cause damage to bacterial cells and 

therefore results in the loss of viability of bacterial cells. The attrition of bacterial cells is 

also effected depending upon the impeller type, solids concentration, and intensity of 

agitation. It was suggested (Deveci, 2004) that exposure of microorganisms in general to 

shear environments could result in the lysis of cells, the inhibition of growth or product 

synthesis, the denaturation of extracellular proteins, the change in morphology, or the 

thickening of the cell wall. In bioleaching processes, the shear conditions have been 

postulated to affect the bacterial cells that are in contact with sulphide minerals or in 

solution (i.e., unattached). This leads possibly to the disruption of bacterial cells, the 

inhibition of the attachment of bacteria to sulphide minerals, or the detachment of the 

cells from the mineral surface (Rossi, 2001). Nemati et al. (2000) did not observed any 

thermophiles activity, namely Sulfolobus metallicus in the presence of fine pyrite 

particles at 25 µm and 3% w/v solids density despite a general trend of increase in 

oxidation rate with decreasing particle size. The researcher concluded that the fine 

particles caused damage to the bacterial cells resulting in loss of oxidizing activity. 

 

 Compared to tank leaching, the heap bioleaching required a coarser mineral size 

to achieve optimal condition. Reaction on a coarser ore bodies is very slow, which 

explains why not much effort has been focused on the kinetics of heap bioleaching. 

Heap leaching is usually simulated in columns charged with ore where leaching solution 

percolates from the top. At steady state conditions, metal leaching has been described as 

being pore-diffusion controlled by a reacted porous zone surrounding a region of 

unreacted ore, similar to shrinking core kinetics. However, the shrinking core equation 

does not apply at the initial stages of bioleaching (Lizama, 2004). Peralta (1997) gave a 

good explanation why particle size is an important physical factor that affects the bio-
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heap process. Coarse-grained mining wastes allow greater oxygen advection and hence 

active acid and ferric generation bacteria can occur to a greater depth in a body heap 

than fine-grained ore. In coarse metal mine rock dumps, air convection is promoted by 

wind action, barometric pressure changes, and internal heap heating from the exothermic 

oxidation reactions. Under these conditions, active bacteria may occur throughout the 

dump rather than being limited to the surface zone, as in fine-grained ore.  

 

 With this assessment, it may be more advantageous not to have very fine grain 

particles in the heap during leaching. Problems related to fine particle in the heap are 

decrepitation, flooding, channeling, slumping and compaction. However, in order to 

determine the behavior of the fine ore concentrate, the concentrate was agglomerated 

onto gold ore using the iron or ferric producing bacteria as agglomerating agent. 

Agglomeration will be able to increase particle size in the ore, particle permeability and 

promote a better leachate and air distribution inside heap (Geobiotic Inc, 2002).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Behavior and size distribution of mineral during agglomeration. (Bouffard, 

2003) 

Non agglomerate 

Gold Gold

AgglomeratCulture 

Agglomerated 

Pellet
Truffles

0

20

40

60

80

100

0 50 100 150 200 250

0

20

40

60

80

100

0 1000 2000 3000 4000 5000



 56

 It was reported that the agglomerates prepared by mixing crushed ore particles 

with any liquid may belong to either one of two types: truffles or pellets as shown in 

figure 2.9 (Bouffard, 2003).  Truffles are simply dusty, crushed ore particles with very 

little porosity. The chemical and diffusion controlled modeling approaches may fall 

short with the present pyritic ore sample. Indeed, even among particles of the same size, 

pyrite occurred as disseminated micron-size grains, as disks or plates sandwiched 

between gangue minerals, as veins, and filling open spaces. The latter three types of 

mineralization were noted for the most part in the coarsest fractions and be classified 

into three groups i.e. no visible grains, visible grains, and disks. 

 The usual assumption of homogeneous distribution of monosize grains is invalid 

in this context. Furthermore, modeling the leaching of any of the observed types of 

liberated pyrite occurrences using, for instance, shrinking-plate or -cylinder models, 

entails proper characterization of grain geometries using more sophisticated techniques 

than the naked eye. 

 

 Observed variations in pyrite grade, shape, and size distributions between ore 

particle of different sizes calls for a simpler strategy to model any diffusion and reaction 

phenomena taking place simultaneously within ore particles. A more generalized 

topological function is written as: 

 

                                                    φ)1()1( XXg −=−                                        Eq. 2.7 

 

where Ф may vary over the course of the leach, taking values greater than or equal to 

2/3. The parameter Ф should, in principle, be evaluated for each particle size. A 

collection of particles will instead be modeled as a single-size class. The parameter Ф is 

not strictly speaking the weighted average of the individually-measured Ф parameters of 

fine, medium, and coarse particles in a particular assemblage, but rather fits the overall 

oxidation profile as obtained from leaching different size particles altogether in the same 

vessel. 

 



 57

 Pellets are relatively spherical, more porous aggregates comprised of several ore 

particles held together in close proximity by the agglomerating fluid. The complete 

saturation of the pellet pores excludes air. All agglomerates smaller than 6 mm consisted 

exclusively of truffles. In contrast to truffles that see the same reagent concentrations on 

their external surfaces, the ore particles in pellets bathe in a stagnant solution saturating 

the pellet pores. Reagents must therefore first diffuse through the pellet pores before 

accessing reactive mineral grains on the external surfaces of the ore particles, and/or 

further diffusing into the minuscule pores of the same ore particles to reach embedded 

grains. The truffle model must therefore be altered to reflect these successive 

phenomena. A comprehensive pellet leaching model would consider both the oxidation 

kinetics of ore particles forming pellets and the physical arrangement of ore particles of 

different sizes within pellets of identical or variable sizes. 

 

 However, considering the contentious reliability and reproducibility of the 

method employed to evaluate the proportion of truffles and pellets, it is extremely 

doubtful, if not impossible, to obtain statistically representative figures to represent any 

variations of particle size distribution between pellets of identical and different sizes. For 

this reason, pellets of any size will be assumed to contain the same distribution of ore 

particles throughout their entire volume, i.e.: fine, medium, and coarse particles are 

homogeneously distributed within the pellet volume. Furthermore, due to the size of 

supported mineral (gold ore) is entirely below 5mm (fig 2.10) the agglomerated particle 

can be considered as pellet.   

 

 

 

2.3.4 Acid consumption test 

 

 Result of the acid consumption test is shown in Table A-1 and A-2 . The acid 

consumption value of the ore was much lower than that for the concentrate i.e 1.42mL 

and 0.412 mL of H2SO4 respectively.. The value is quite high compared to that reported 

by Menon and Dave, 1993, where the acid consumption is 0.08mL concentrated H2SO4 
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per gram ore.  It must be noted that low pH is an important factor for the proliferation of 

acidophilic bacteria, thus high acid consumption would retard or arrest the reaction by 

withdrawing sulphuric acid present (Brierley and Luinstra, 1993).  In order to maintain 

low pH, some external acid sources may be required, which will eventually increase the 

cost.  However, for the concentrate used in this experiment, washing with distilled water 

was carried out order eliminate to the alkaline content from the previous cyanidation 

process. 

 

 

 

2.3.5 Biological acid producing potential (B.A.P.P) 

 

 Biological acid producing potential test was conducted to determine the ability of 

bacterial consortium used in the bioleaching study to generate H2S04 from the sulphide 

minerals in order to maintain low pH, which is the optimum condition for bioleaching 

process using acidophilic bacteria. Most literature cited gave evidence of ferrous ion 

bacterial oxidation occurring around pH 3.5 (Mervane and Vargas, 2000). Thus, an 

increase in pH will cause a decrease in iron oxidation by bacteria  thus affecting 

bioleaching rate. Figures A-3 and A-4 shows the pH profile for Biological acid 

producing potential test on gold concentrate and gold ore respectively using T. 

ferrooxidans,Sb. Thermosulfodooxidans  and A. Brierleyi. 

 

 From figure A-3 it can be concluded that the pH increased to pH 3.9 for T. 

ferrooxidans, 4.12 for Sb. Thermosulfodooxidans and 3.44 for A. Brierleyi on day 3 

upon addition of gold concentrate and bacteria. The pH then slightly decreased below 

2.5 on day 6(A. Brierleyi), day 8(T. ferrooxidans) and day 10t(Sb. 

Thermosulfodooxidans).  When the pH reached 2.5 and remained constant, there will be 

no more drop in the pH value.  Then half of the initial ore’s weight (15g) was added to 

increase the concentration of mineral. During the ramp-up increased in mineral 

concentration, the pH was drastically increased to pH 3.23-4.13. A different profile was 

observed in the BAPP test on gold ore using T. ferrooxidans, Sb. Thermosulfodooxidans 
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and A. Brierleyi (fig A-4). The overall pH was low which might be related to the low 

acid consumption by the ore.   

 

 

 

2.3.6.  Preg-robbing test 

 

 Gold losses during processing is a major problem throughout the gold mining 

industry and can lead to significant amounts of gold found in the tailings. One of the 

ways by which these gold losses take place is known as preg-robbing, whereby 

constituents of the ore adsorb the aurodicyanide complex (Au(CN)2
- )from solution. 

During the processing of preg-robbing carbonaceous ores, a significant fraction of the 

gold present in the ore is not adsorbed by the commercial activated carbon. It has been 

presumed that gold was adsorbed onto the naturally occurring fine-grained organic 

carbon present in the ore, and is subsequently discarded with the ore tailings, since this 

fine grained carbon is not retained by screening (Schmitz, 2001). From the preg-robbing 

test, the tendency of gold concentrate and ore to adsorb gold from the gold-cyanide 

solution will be determined. In the preg-robbing test, a percent preg-robbing value is 

obtained by measuring the change in solution of gold concentration after contacting a 

gold–cyanide solution with a known mass of ore in batch. However, the ability of the 

preg-robbing test to predict the preg-robbing behavior of the ore during CIL processing 

is limited, since no commercial activated carbon is added during the test.  Table 2.5 

shows the adsorption behavior of gold in solution of the gold concentrate and ore. 

 

Table 2.5:  Adsorption behavior of gold in solution to the gold concentrate and ore. 
 

Mineral [Au] initial, ppm [Au] final, ppm [Au] adsorb, ppm % Au adsorb 
Gold concentrate 5.023 4.928 0.095 1.89 

Gold ore 5.034 3.299 1.735 34.47 
 

From the preg-robbing test, 34.47% of gold in the form of gold-cyanide complex was 

adsorbed by the original gold ore compared to the 1.89% for concentrated mineral. The 
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value is considered high compared to the value reported by Goodwall, 2005. The preg 

robbing value for the ore from Barrick Goldstrike Mines, one of the most famous gold 

mines known for its ore preg robbing behaviour was 27.97%.  The most common and 

well documented cause of preg-robbing is carbonaceous matter present in the ore. High 

carbon content in the Penjom gold ore 4.77% is the main contributor of high preg 

robbing value compared to the its concentrate at 0.042%. The carbonaceous components 

can be in the form of wood chips, organic carbon and elemental carbon (Tan et al, 2005). 

It can also in the form of heavy hydrocarbons, organic acids or natural carbon. Of this 

material, native carbon is the most important species for preg-robbing.  

 

 This carbonaceous ore has kerogen as the principal preg-robbing component. 

Stated that carbonaceous matter locks up a proportion of gold in the ore and also adsorbs 

gold from the pregnant solution. As example, for ore from the Carlin trend, Nevada that 

the preg-robbing characteristics were inversely correlated to the Lc (002) crystallite 

dimension of pyrite and directly related to the d-spacing of the carbonaceous material. 

(Rees, 2000). This type of carbonaceous preg-robbing may be inhibited by the addition 

of diesel or kerosene to leaching circuit of a plant. However this procedure is generally 

not recommended due to the inhibition of gold cyanide adsorption onto activated carbon 

in the presence of organic impurities. (Tan et al, 2005). 

 

 The other causes of preg-robbing are the minerals themselves, predominantly 

either sulphides or silicates. Goodwall, 2005 suggested that preg-robbing mechanisms 

can be divided into two types. Reversible (Type I) preg-robbing occurs by simple ion 

exchange of the large aurodicyanide anion. This type of preg-robbing is common to 

some extent in most ores, but in most cases is reversible in the presence of activated 

carbon or by washing. Irreversible (Type II) preg-robbing is considered so because of 

the long time or unusually severe conditions required to redissolve the gold. 

 

 Type I preg-robbing provides few problems in modern CIP/CIL circuits if the 

activity of the ore constituents is less than that of activated carbon, however, constituents 

with a greater activity will compete strongly for adsorption of the aurodicyanide 
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complex. It has been shown for a number of ores, most notably those from Carlin, 

Nevada that native carbon will compete with activated carbon in this way (Schmitz et 

al., 2001) The adsorption of gold onto native carbon is thought to follow much the same 

mechanism as the adsorption to activated carbon in a CIP/CIL circuit and although the 

number of active sites is smaller, it has been demonstrated that the adsorption kinetics 

are up to 4 times faster for native carbon. For sulphide ores (Rees and Van Deventer, 

2000) suggested that preg-robbing was cyanide concentration dependent. In the presence 

presence of free cyanide it was shown that preg-robbing was unlikely to occur and any 

that did occur was easily reversed by the addition of activated carbon. 

 

 Irreversible (Type II) preg-robbing involves precipitation of the gold complex 

and can occur by a number of separate mechanisms. The first mechanism (Type IIa) 

involves a lack of available cyanide causing the aurodicyanide complex to be stripped of 

one radical and the resulting auromonocyanide radical to form long chains, which are 

only vulnerable to attack from the tips making redissolution possible but very slow. A 

similar mechanism was presented by Rees and van Deventer (2000) who showed that 

aurocyanide was reduced to the surface of chalcopyrite in a cyanide deficient 

environment. The second mechanism for irreversible preg-robbing (Type IIb) is a co-

precipitation of gold with metal cyanides. 

 

 Rees and van Deventer (2000) demonstrated clear cyanide concentration 

dependence for preg-robbing on pyrite and chalcopyrite with very strong adsorption of 

gold in cyanide deficient solutions. Chalcopyrite and pyrite were shown to be very 

strongly preg-robbing. A mechanism was proposed where the gold was reduced at the 

chalcopyrite surface, along with the oxidation of chalcopyrite to form copper- cyanide 

complexes in solution. The effect of contaminant carbonaceous coatings on preg-robbing 

behaviour of minerals has been neglected in the literature. Ibrado and Fuerstenau,1995 

reported that the carbonaceous coating could be selective on mineral surfaces. Both 

carbon and sulphide surfaces are hydrophobic to some extent. It is expected that carbon 

could preferentially coat on sulphide surfaces over other hydrophilic gangue mineral 
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surfaces. Sulphides have been demonstrated to be preg-robbing via chemical and 

physical adsorption, or gold reduction at the sulphide surfaces. (Vergouw, et al 1998) 

 

 Pyrrhotite and alumina were also found to adsorb gold. A mechanism was 

proposed where dicyanoaurate (I) was reduced at the pyrrhotite surface, with the 

sulphide ion of the pyrrhotite being oxidised to elemental sulphur. Afterwards, Adams et 

al. (1996) undertook a study on the preg-robbing behaviour of minerals. It was indicated 

by Mossbauer spectroscopy that gold cyanide was reduced at the surfaces of 

chalcopyrite and arsenopyrite, with metallic gold accumulating at defect sites on the 

mineral surfaces.  

 

 Silicate minerals, especially clays have also been proposed as potential preg-

robbers. It has been suggested that the positively charged edge surfaces of clay particles 

could attract negatively charged colloidal gold (Cook et al 1989.). The negative colloidal 

gold particles attached to positive kaolinite edges, although this was in acid solution and 

adsorption would be greatly reduced in an alkaline environment. However the effect of 

silicate preg-robbing is usually neglected. 

 

 For the ore containing double refractory behavior, i.e contains both sulfides and 

carbonaceous matter; Amankwah et al 2005 have suggested a two-stage bacterial 

pretreatment process. The first stage, deals with sulfide oxidizing bacteria i.e: 

Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans in 

order to decompose the sulfide matrix to release gold particles. Unfortunately, 

carbonaceous materials are not oxidized by this pretreatment step and continue to serve 

as preg-robbers in the subsequent gold leaching process. Biooxidizing the carbonaceous 

material with an actinomycete,i.e; Streptomyces setonii, to degrade the carbon material 

is carried out in the second stage in order to enhance gold recovery. 
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2.3.7 Column leaching studies 

 

 In this the leach behaviour of agglomerated ore and ore concentrate system and 

gold leaching using various organism i.e: mesophilic (30 °C), moderately thermophilic 

(45 °C) and extremely thermophilic (70 °C) was carried out. The investigation was 

subsequently taken further to elucidate the interplay between the microbes and the 

various mineral phases present in the concentrate and ore. 

 

 The present work evolved from a series of tests conducted using the 

agglomerated ore (Geocoat technique), whereby a concentrate is coated onto inert or 

low-grade support rock and subsequently subjected to heap bioleaching (Harvey et al, 

2002). The commercial advantage of this approach over tank bioleaching is based on 

lower capital and operating costs associated with heap leaching. As a scientific tool it 

offers the ability to study heap leaching with highly exposed mineral surfaces and the 

ability to customize mineral compositions in the heap. A previous study by the Harvey et 

al, 2002 has allowed the determination of heat generation associated with bioleaching of 

a pyrite concentrate and thus established that the process is feasible in principle, i.e. the 

energy necessary to operate a thermophilic heap bioleach can be provided entirely by the 

heat of reaction. 

 

 

 

2.3.7.1 pH and EH profile 

 
 
 The results of the single temperature experiments in terms of pH and  solution 

potential (in mV vs. Ag/AgCl) in the column effluent are summarized in Fig, B-5 (Test) 

and Fig, B-6 (Control) at ambient temperature, Fig, B-3 (Test) and Fig, B-4 (Control) at 

45 °C, and Fig, B-1 (Test) and Fig, B-2 at 70 °C (available in attachment B). In a real 

heap situation, thermophilic conditions would have to be attained by gradually heating 

from ambient. To achieve this, the heap would have to be condition with mesophiles, 

which gradually give way to moderate thermophiles, which eventually give way to the 
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extreme thermophiles. Heat generation would be entirely due to sulfide mineral 

oxidation. 

 

 In laboratory columns the self-heating effect cannot be harnessed, as heat is 

rapidly lost through the column walls, even if well insulated. Therefore, an experiment 

was conducted to study leaching under conditions of gradually increasing temperatures 

through external heating. In this study, the temperature in columns 7 and 8 was raised 

from 30 °C to 45 °C level over a 40-day period and 45 °C to the 70 °C level over a 20-

day period. This profile has been established from an analysis of the heat generation 

potential of the mineral in the fixed temperature experiments and subsequent modeling 

of heat profiles in a typical heap. This method has been presented by the Dixon and 

Peterson, 2002 in a similar study on a different material. The experiment consisted of 

two columns (7 and 8) run under identical conditions. The mesophilic, moderately 

thermophilic, and extremely thermophilic consortia were introduced in the test column 

(column7) columns during the ramp-up phase at days 40 and 60. The pH and solution 

potential (in mV vs. Ag/AgCl) indicated in Fig. B-7 and B-8 (attachment B). 

 

 

 

2.3.7.2 pH profile for sulfur oxidizing related culture  

 

 The sulfur oxidizing related culture was pump into the column for the first 15 

days of biooxidation. The culture namely T.Thiooxidans (mesophile), T.Caldus 

(moderate thermophile) and A.brieleyi (extreme thermophile) was used in this test. 

Studies on pyrite degradation were mostly indicated that metal sulfides are only 

degradable by an oxidizing attack, i.e: by Fe3+. However, pyrite was also degrade via 

acidification of leach biotopes and a formation of acid rock drainage.  ( Schippers and 

W. Sand, 1999 and  Dutrizac and MacDonald, 1974). 

 

 According to pyrite molecular orbital considerations, Fe (III). hexahydrate ions 

cleave the chemical bonding between the iron and the disulfide in the pyrite lattice, after 
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the disulfide group has been oxidized to a thiosulfate group. As a consequence, 

thiosulfate and Fe (II). Hexahydrate ions occur as dissolution products. The thiosulfate is 

then oxidized via tetrathionate, disulfane-monosulfonic acid, and trithionate to mainly 

sulfate in a cyclic mechanism by T. thiooxidans, A. Caldus and A.Brierleyi. Besides that, 

minor amounts of elemental sulfur and pentathionate occur as by-products (Schippers et 

al, 1996).  Thiosulfate and polysulfide mechanism become a key compound in the 

oxidation of the sulfur moiety of pyrite and the mechanisms were shown in figure 2.10 

and 2.11. 
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Figure 2.10: Thiosulfate mechanism in pyrite oxidation 
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In thiosulfate mechanism, all reactions occur on a purely chemical basis. However, 

sulfur compound oxidizing enzymes, like the tetrathionate hydrolase of culture may be 

involved.  

 

 The thiosulfate mechanism is mainly occurs for chemical pyrite oxidation at 

higher pH (near to neutral pH), i.e: in carbonate ore and pyrite containing mine waste. 

At higher pH, the chemical pyrite oxidation rate is about 10 times higher than the one 

under very acidic conditions (Hackl and Jones, 1997 and Schippers, et al 1995).  

Thiosulfate, trithionate, and tetrathionate are the main products of pyrite oxidation in 

carbonate buffered solutions. These substances are suitable substrates for moderately 

acidophilic, sulfur compound oxidizing bacteria. These bacteria live from the “energy 

gap” between the incomplete chemical oxidation of the sulfur moiety of pyrite at nearly 

neutral pH values and its complete oxidation to sulfuric acid. In addition, by acid 

production the pH is lowered, allowing acidophilic iron oxidizing leaching bacteria, like 

T. ferrooxidans, to grow and to oxidize pyrite (Fowler, Holmes and Crundwell, 1999). 

 

 It still needs to be elucidated, to what extent these enzymes catalyze the reactions 

in competition with chemistry. This would allow to manipulate the flux of intermediary 

sulfur compounds, the accumulation of elemental sulfur in bioleaching and coal 

desulphurization processes could be prevented or sulfate formation in bioleaching plants 

could be enhanced  Six metal sulfides differing in crystal and electronic structure in a 

pyrite were develop a unique structure. Based on molecular orbital and valence bond 

theories, the pyrite are be degraded by an oxidizing and proton attack. This process will 

produce a several sulfur compound. The formation of sulfur compounds in the course of 

ferric ion mediated chemical oxidation (10mM FeCl3, pH 1.9 and 28oC) of metal 

sulfides i.e: Pyrite, Sphalerite, Chalcopyrite, Galena and Hauerite was reported in table 

4.6  (Schippers and Sand,1999) 

.       
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Table 2.6:  Formation of sulfur compound resulting from metal sulfide oxidation. 
 

 S8 (%) SO4
2- (%) S4O6

2-(%) S3O6
2-(%) 

Pyrite (FeS2) 16.1 81.7 1.3 0.9 

Hauerite(MnS2) 93.6 3.7 1.2 1.5 

Sphalerite (ZnS) 94.9 4.8 0.1 0.2 

Chalcopyrite (CuFeS2) 92.2 7.3 0.3 0.2 

Galena (PbS) 99.9 0.1 0.0 0.0 

 

 

 The oxidation products of pyrite consisted of up to 82% of sulfate, 16% of 

elemental sulfur and to 2% of polythionates. This result is caused by a polysulfides 

mechanism as key intermediate. Due to their principal solubility in acid, the first 

reaction is assumed to be: 

 

SHMHMS 2
22 +→+ ++                                        Eq. 2.8 

 

 In contrast to pyrite oxidation, in other sulfides the MS bonding is cleaved, 

before the sulfidic sulfur is oxidized. The kinetics of this reaction is dependent on the 

solubility product of the respective metal sulfide.  

 

 In the oxidation mechanism of aqueous sulfide, the H2S is subjected to a one 

electron oxidation by a Fe3+: 

 
+++ +→+ 2*

2
3

2 FeSHFeSH                                    Eq.2.9 

 

Instead of that, the cation radical H2S*+ may also directly be formed by an attack of Fe3+ 

on a metal sulfide: 

 
+++++ ++→++ 2*

2
23 2 FeSHMHFeMS                               Eq.2.10    

 

By dissociation of the strong acid H2S*+ the radical HS* occurs: 



 68

 
*

32
*

2 HSOHOHSH +→+ ++                                   Eq.2.11 

 

Two of these radicals may react to a disulfide ion: 

 
+−+ +→ HHSHS 22                                            Eq. 2.12 

 

The disulfide ion can further be oxidized by HS* radical: 

 
−− +→+ HSHSHSHS *

2
*

2                                  Eq.2.13 

 

 Tetrasulfide can occur by dimerization of two HS* or trisulfide by reaction of 

HS* with HS* radicals. Chain elongation of the polysulfides may proceed by analogous 

reactions. In acidic solutions, polysulfides decompose, liberating rings of elemental 

sulfur, mainly S8 (99%) 

89 SHSHS +→ −−                                       Eq. 2.14 

 

 This mechanism does not necessarily function only in the presence of Fe3+ ions. 

An electron transfer from a semiconductor metal sulfide to an O2 molecule is also 

possible. The O2 molecule is reduced via a superoxide radical and a peroxide molecule 

to water. However, Fe3+ ions are generally much more efficient in extracting electrons 

from a metal sulfide lattice than O2. 

 

 The reactions in equation 2.14 inherently explain the formation of elemental 

sulfur as the main sulfur compound. Minor amounts of sulfate and polythionates are 

products of thiosulfate reactions. Thiosulfate may arise by a side reaction: 

 

8322 ]8/)2[(
2
3 SnOHSOHS n −+→+ −−                  Eq. 2.15 
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or be formed in the following one: 

 

−− →+ 32388
1 OHSHSOS                                Eq. 2.16 

 

However, under anaerobic conditions only minor amounts of sulfate and polythionates 

were formed. Formation of polythionates was elucidate in equation 2.17 where the Fe3+ 

become an oxidizing agent: 
+

+−+− ++
−

+→++ HFeSnOHSOHFeHSn 66]
8

)2([36 2
8322

3       Eq.2.17 

 

 Thiosulfate and polythionates play a key role in the sulfur pathways in sulfide 

degradation. However, these compounds play only a side role in the polysulfide 

mechanism. The complex mechanism is simplified in the figures 2.10.  In any case, the 

main end-product is elemental sulfur. The latter is biologically oxidized to sulfuric acid. 

This explains the ability of sulfur oxidizing bacteria i.e; T. thiooxidans, T. Caldus and A. 

Brierleyi to leach some metal sulfides. Two indirect oxidation mechanisms for metal 

sulfides via sulfur compound pathways exist, which are summarized in table 2.7. 

 
Table 2.7: Indirect sulfur compound oxidation mechanisms for metal sulfides  
 

++−+ ++→++ HFeOSOHFeFeS 676 22
322

3
2

 Thiosulfate mechanism 

(FeS , MoS , and WS). +
+−+− ++→++ HFeSOOHFeOS 108258 22

42
32

32
 

)2(5.0 2
2

23 ≥++→++ ++++ nFeSHMHFeMS n  

+++ ++→+ HFeSFeSH n
2

8
3

2 125.05.0  
Polysulfide mechanism 

(ZnS, CuFeS , PbS) 
+− +→++ HSOOHOS 25.1125.0 2

4228  

 

 In the column with sulfur oxidizing related bacteria (first 40 days of 

biooxidation). The initial discharged solution pH were akin (around pH 1.9) between the 

test column and control column for the column at a 45oC and 70oC.  However, the ph 

was slightly higher for the column at ambient temperature i.e pH 2.73 for column with 
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[ ] pHkrHE HH 2201.0 +−=

T.Thiooxidans and pH 4.26 for control at 30oC. From the results obtained, the column 

with sulfur oxidizing culture (T.Thiooxidan, T.Caldus and A.Brierleyi ) were remain low 

due to the bacterial was oxidize sulfur in the solution  and pyrite via the reaction 4.xx to 

produce sulfuric acid.(Sand et al,1995)  

     Eq 2.18 

 

 However, for the control column at elevated temperature, the pH was low due to 

the spontaneous oxidation of metal sulfide at high temperature as mention by Hu Long, 

2000.  

 

                                      Eq 2.19 

 

 As example, for column with thermophile, the pH profile for control and test is 

identical; the pH was started at around 1.9 and then constantly decreased at the rate of 

0.01 pH/hr. For the test column, the presence of A. Brierleyi was persuading the mineral 

oxidation of inorganic sulfur compound to achieve its optimum condition at pH 1.5 

(Konishi et al, 1997) via equation 2.18. However, the pH trend for control column was 

powered by equation 2.19. Due to the both reaction did not associate with Fe3+-Fe2+  

system, the pH and EH affiliation in the column was shown in equation 4.20 ( 

Rossi,1990 )where,.   

 

 

                                                                                                  Eq 2.20 
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 Referring to the figure B-3 and B-4, the pH verses EH for column solution at 

70oC, the rate constant kH2 for column contained A. Brierleyi was 76.96 pH/mV and 

69.21 pH/mV for the control.  The finding was contradict with the reported by Bunyok 

(2003) and Sjahrir (2000), where the  kH2 value was negative ( EH value were decreased 

with increased in pH value).   

 

 In experiment column 3 (biotic, fig B-5) and 4 (abiotic, fig B-6) using moderate 

thermophiles at moderate temperature (45 °C), the pH value for the test column (3) 

proceeded at rates similar to those observed in column 4 (control) for the first 25 days. 

The pH for column containing T.Caldus were increased at the rate of 0.0217 pH value 

/day before constantly dropped at 0.0316 pH value /day at the day 25th to day 40th .  

However, for the control column (column 4) the pH value was steadily increased at the 

rate of 0.0098 pH value /day from day 0 to 40th.  The correlation between pH and EH in 

the column at 45oC were shown in table B-7 and B-8. The kH2 value for column 3 (biotic, 

T. caldus) and column 4 (abiotic, control) was at -67.83 pH/mV and -38.09 pH/mV 

respectively. 

 

 In the mesophile experiment (Fig B-9: Column 5 and Fig. B-10: Column 6). The 

initial discharged solution pH were slightly increased at the rate of 0.0395 pH value/day 

(Day 0- 15) for the column containing T. Thiooxidans and 0.0453 pH value/day (day 0-

12) for control column. The pH solution then subsequently decreased from pH 3.25 to 

2.16 for test and ph 4.75 to 3.65 for control.  The initial solution potential was identical 

between biotic and abiotic column. The initial solution potential value level at 622 mV 

(vs. Ag/ AgCl) and decreased to 550 mV after 40 days biooxidation. The correlation 

between pH and EH of column solution was shown in fig FigG-11: Column 5 and Fig.G-

12: Column 6. The kH2 value for column 5 (biotic, T. Thiooxidans) and column 4 

(abiotic, control) was at 76.96 pH/mV and 69.21 pH/mV respectively. 
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2.3.7.2 Iron solubilization behaviour in the column 

 

 The results of the single temperature experiments in terms of iron solubilization 

in the column effluent are summarized in figure 2.14 at ambient temperature, figure 2.13 

at 45 °C and figure 2.12 at 70°C. Furthermore, figure 2.15 show the iron solubilization 

profile. 

  

 In the column leaching study under conditions of gradually increasing 

temperatures through external heating at the ramp-up phase at days 40 (45oC) and 60 

(70oC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 : Iron Solubilization profile of 
collected solution in the column at 70oC.  
I: Fe free lixiviant (A. Brierleyi Medium) 
II: Fe containing lixiviant ( Sb. Thermosulfodooxidans medium) 
--■—Test 
------ Control 
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Figure 2.13 : Iron Solubilization profile of 
collected solution in the column at 45oC.  
I: Fe free lixiviant (A. Caldus Medium) 
II: Fe containing lixiviant ( Sb. Thermosulfodooxidans medium) 
--■—Test 
------ Control 
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 From the results obtained, it was observed that the entire test column showed a 

higher iron solubilization compared to their control at respective temperature. For the 

single temperature column test, with the presence of  T. Caldus (Fig 2.13-I), the overall 

amount of iron solubilization was 3.5 times fold higher then control. Its followed by Sb. 

Thermosulfodooxidans (Fig 2.13-II) , T.Thiooxidans (Fig 2.16-I) , A.Brierleyi (Fig 2.12-

I) , isolate SL5B (Fig 2.12)  and mixture of T.Ferrooxidans and L.Ferroxidans at (Fig 

2.14-II)  at the 71.4%,68.7%,58.5%,40.7% and 38.1% higher in iron solubilized 

concentration compared to its control respectively.  

 

 The highest iron soluble was observed in a column at 70oC (Fig 2.14) with a 

4.23% kg[Fe]/L, which is 25% and 10%  higher then column at 45oC and 25oC. From the 

iron solubilization profiles, the trend line of the iron solubilization versus time is shown 

as follows;  
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Figure 2.14 : Iron Solubilization profile of 
collected solution in the column at 30oC.  
I: Fe free lixiviant (T. Thiooxidans Medium) 
II: Fe containing lixiviant ( 9K medium) 
--■—Test 
------ Control 
 
 

Figure 2.15 : Iron Solubilization profile of 
collected solution in the column at different 
temperature  
I: Column at 300C,  9K medium 
II: Column at 450C, Sb. Thermosulfodooxidans medium 
III: Column at 700C, Sb. Thermosulfodooxidans medium 
--■—Test 
------ Control
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Column at temperature 70oC. Iron free lixiviant: 

 

T = 0.0492 [Fe]1.1527       R2= 0.82   In the presence of A. Brierleyi 

T = 0.209 [Fe]                R2= 0.96      Control        

 

Column at temperature 45oC. Iron free lixiviant: 

 

T = 0.1958 [Fe]                              R2= 0.75        In the presence of T. Caldus 

T = 12.051 ln [Fe] -24.651              R2= 0.91        Control        

 

Column at temperature 25oC. Iron free lixiviant: 

 

T = 0.1268 [Fe]                               R2= 0.95        In the presence of T. Thiooxidans 

T = 0.2013 [Fe]                               R2= 0.95        Control 

 

Column at temperature 70oC. Iron containing lixiviant: 

 

T = 0.7359 [Fe]0.4736                           R2= 0.93      In the presence of Strain SL5B 

T = 0.0032 [Fe],                                  R2= 0.74      Control        

 

Column at temperature 45oC. Iron containing lixiviant: 

 

T = 0.0175 [Fe]0.844                 R2= 0.83      In the presence of  Sb. Thermosulfodooxidans 

T = 45.99 ln [Fe] – 348.63      R2= 0.78      Control        

 

Column at temperature 25oC. Iron containing lixiviant: 

 

T = 0.0027 [Fe]           R2= 0.88    In the presence of L. ferooxidans and T. Ferooxidans. 

T = 0.0039 [Fe]           R2= 0.84    Control        
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 From the trend line equation, it was observed that the temperature have a 

significant effect on the iron solubilization behaviour in the column, as an example, The 

iron solubilised in the  25oC column (test and control) is increased linearly to the time. 

(T ∝ƒ [Fe]). And for the biotic column at 70oC, the iron solubilization were increased 

exponential with time (T∝ƒ [Fe]x).   

 

 In the column leaching study under conditions of gradually increasing 

temperatures through external heating, the final iron solubilization in the biotic column 

was 11.8% higher compared to abiotic column. At the first stage of leaching at 250C, the 

iron solubilised were increased exponential with time at the rate of T = 1.0774 e 1.6919[Fe] 

for test and T = 1.2657 e 2.1193[Fe] for control (Fig 2.15-I). However, under condition of 

45oC (Fig 2.15-II), the iron solubilizad were relatively similar in the biotic and abiotic 

column.  An interesting point to note is that iron solubilised rate was drastically 

increased when a biotic column temperature was ramp up to 700C. The iron 

solubilization rate was at 677 ppm Fe/ day for the column containing SL5B compared to 

244 ppm Fe/ day for control column (Fig 2.15-III). 

 

 The iron content in the column (gold ore and gold concentrate) has been 

determined gradually at the day 40th, 60th and 120th. The iron mass balance in the column 

was shown in the table 2.8. 
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 Table 2.8: Iron mass balance in the column during 4 months biooxidation 
 

Column COL 1 COL 2 COL 3 COL 4 COL 5 COL 6 COL 7 COL 8 

 Test 
700C 

Control 
700C 

Test 
450C 

Control 
450C 

Test 
300C 

Control 
300C 

Test 
 Ramp 

up temp 

Control 
Ramp 

up temp 
[Fe]mg/L, T=0 167570 164741 168731 164677 168346 165027 167533 165080 

[Fe]mg/L, T=40 153758 162577 151233 164495 152608 165095 160073 163007 

[Fe]mg/L, T=60 - - - - - - 146820 161371 

[Fe]mg/L T=120 130888 159814 135479 159788 136619 161608 121809 157503 

         

% Loss,[Fe] T=40 8.243 1.314 10.370 0.110 9.348 0.000 4.453 1.256 

% Loss,[Fe] T=60 - - - - - - 12.364 2.247 

% Loss,[Fe] T=120 21.891 2.990 19.707 2.968 18.846 2.072 27.293 4.590 
* [Fe]mg/L, T=40for column 1,2,3,4,5 and6:  Iron concentration during bioxidation test using iron free medium 
   [Fe]mg/L T=120 for column 1,2,3,4,5 and 6:  Iron concentration during bioxidation test using iron containing medium 
   [Fe]mg/L, T=40for column 7 and 8:  Iron concentration during bioxidation test at 300C 
   [Fe]mg/L, T=60for column 7 and 8:  Iron concentration during bioxidation test at 450C 
   [Fe]mg/L, T=120for column 7 and 8:  Iron concentration during bioxidation test at 700C 

 

 From the results obtained, it was observed that the highest percentages of iron 

solubilized was observed in the column 7 (column with 3 stages temperature condition) 

at 27.3% of iron was solubilized after 120 days biooxidation. The value is 24.7%, 38.5% 

and 44.8% higher compared to the iron solubilization in the column at fix temperature of 

70oC, 45oC and 25oC respectively. This result indicates that, the mixed of mesophilic 

and thermophilic (moderate and extreme) culture is capable of the effective biooxidation 

of gold ore and concentrate. 

 

 From the results also, it was interesting to note that the percentage of iron 

solubilization is very low for the each control column, especially for the experiments 

with iron free lixiviant i.e: 0.11% for column at 45oC, 1.3% for column at 70oC and no 

iron lost detected in column at 25oC . However for the control column with iron based 

lixiviant, the percentages of iron solubilized were slightly increased to the 2.07%, 2.97% 

and 2.99% for the abiotic column at 70oC, 45oC and 25oC respectively.  
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 However, with the addition of biooxidation related culture, the iron solubilization 

of pyrite in the gold ore and gold concentrate were increased radically, ranging from 2.5 

to 90 times fold compared to control, as an example, the iron lost in the column packed 

was 93.2 times higher with the presence of T. Caldus, 8.0 times higher for T. 

Ferrooxidans and L. ferrooxidans, 6.32 times for SL5B, 5.6 times for Sb. 

Thermosulfodooxidans and 5.27 times higher for A. Brierleyi. For the column with a 

ramp up temperature condition, the presence of mixture mesophilic culture (L. 

Ferrooxidans, T. Ferrooxidans and L. ferrooxidans was capable to increase the iron 

solubilization 2.5 times higher then its control, 4.5 times higher for the moderate 

thermophilic culture (T. Caldus and Sb. Thermosulfodooxidans) and 4.9 higher for the 

extreme thermophilic culture (A. Brierleyi and isolate SL5B).   

 

 

 

2.7.3.3 Gold extraction using cyanide in the column 

 

 Cyanidation process has been conducted on the biooxidized ore and concentrate 

in the column. The columns were rinsed with tap water and the pH was increased to pH 

10 before the cyanide solution (200ppm NaCN) sprayed in the column to extract the 

gold from the ore.     

 

 Figure 2.16-a, b, c and d shows the gold concentration in a pregnant solution 

during the cyanidation process. . From the results obtained, it was observed that the iron 

solubilization behaviour, pH and EH during biooxidation pre-treatment process have a 

significant effect on the rate of gold recovery in column. 
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 Cyanidation has been the main process used for the production of gold since 

1890, during its 110-year history, cyanidation of gold ore has evolved into a safe, 

efficient and predictable technology (Gasparrini, 1993). In cyanidation, the gold in ore is 

dissolved by treating it with a very dilute cyanide solution in the presence of lime and 

oxygen from the air (Kettle, 1982). The stoichiometry by which this reaction occurs is 

known as the Elsner (1846) equation: 
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Figure 2.16-a: Gold extraction using cyanidation 
after 4months column bioleaching at 700C. 
♦ test column  
■  control column 

Figure 2.16-b: Gold extraction using cyanidation 
after 4months column bioleaching at 450C. 
♦ test column  
■  control column

Figure 2.16-c: Gold extraction using cyanidation 
after 4months column bioleaching at 300C. 
♦ test column  
■  control column 

 

Figure 2.16-d: Gold extraction using cyanidation 
after 4months column sequential bioleaching at 
300C , 450C  and 700C. 
♦ test column  
■  control column 



 79

 

4Au + O2 + 8NaCN + 2H2O → 4[NaAu(CN)2] + 4NaOH   Eq. 2.21 

 

 In this process, the pH of the slurry is adjusted around 10 to 11.5 with hydrated 

lime, and cyanide is added to solubilize the gold. Oxygen is dispersed trough the column 

by air pump. In cyanidation reaction, an electrochemical process takes place, in which 

the anodic reaction is gold oxidation while the cathodic reaction is oxygen reduction 

(Jeffrey and Breuer, 2000; Wadsworth, 2000; Fleming, 1992; Kondos, et al. 1995b). The 

overall stoichiometry for the dissolution of gold is shown in Eq. 2.21, while the 

important steps during anodic reactions are as follows: 

 

Au + CN- → AuCN- (s)       Eq. 2.22 

AuCN- (s) → AuCN (s) + e-       Eq. 2.23 

AuCN (s) + CN- → Au (CN) 2-      Eq. 2.24 

 

where in the above equations refers to surface adsorbed species and AuCN is the neutral 

species adsorbed on the surface. The cathodic reaction is shown as follows: 

 

O2 + 2H2O + 4e- → 4OH-       Eq. 2.25 

 

In cyanidation, air provides the oxygen that is necessary to oxidize gold from the 

metallic state, in which it occurs in nature, to the gold (I) state. (Fleming, 1992).   

 

 From the results obtained, it was observed that higher percentages of gold 

recovery were achieved at biooxidized column compared to the control experiments. As 

an example, the rate of gold extraction for ramp-up temperature biooxidation column 

was at 219.9mgAu/days compared to the 110.4 mgAu/days for the abiatic column (fig 

2.16-d). The value shows the gold extraction rate was increased about 99.16% for multi 

stages biooxidation column. The similar observation is also obtained in another set of 

column i.e; 129.7% rate of gold extraction was increased using mesophilic culture (fig 

2.16-c), 118.8% for extremely thermophile (fig 2.16-a) and 65.7% using moderate 
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thermophile (fig 2.16-c).  This result indicates that the selection of suitable operating 

condition is very important to improve the biooxidation efficiencies, which subsequently 

contribute to increase the gold recovery. 

 

 It is like to note that the final concentration of gold in a cyanide solution was 

comparable between the column treated with thermophilic culture and column with 

ramp-up temperature at the 646.7 mgAu/L and 647.0 mgAu/L. However, the final 

concentration of gold in a cyanide solution using those culture were found higher 

compared to experiment using moderate thermophile and mesophile i.e. 34.5% and 

126.2%, respectively.  

 

 This result was expected as higher amount of Fe solubilised observed earlier in 

the biooxidation experiments. From this results also, it revealed that there appeared to be 

definite relationship between the amounts of gold recovered with percentage of iron 

solubilization. Higher recovery of gold in both tests probably due to maximum iron 

solubilization observed earlier in biooxidation experiments using isolate SL5B and A. 

Brierleyi for column A and mixture of mesophilic and thermophilc culture for column 

G.  Solubilization of pyrite in the ore and concentrate leads to the increased of porosity 

in the particle in the column and exposed the transports considers the cyanidation 

reaction in a bed of uniformly sized spherical porous mineral particles, through which 

the leaching solution trickles. The leaching agents diffuse into the porous particles to 

react with the grains of metallic gold. The effective wetting of the particles is correlated 

with an apparent effective diffusivity for the different type of mineral within the partially 

wetted particles.  Sanchez-Chacon and Lapidus (1997) reported that the controlling 

phenomenon in the gold extraction rate in a column is the diffusion of the gold cyanide 

complex out of the mineral particles. For this reason, parameters such as mineral 

porosity, particle radius, leaching solution flow rate, gold grain size, the concentration of 

reagents and the heap height will effect the gold extraction rate. 

 

 The effect of mineral porosity acquires special importance in the gold extraction 

rate. Decreasing this parameter increases the resistance to internal mass transport. The 
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reduction in the diffusion rate of reactants and products within the particle increases 

leaching time considerably. Bartlett [1992] reports a porosity range effects of 0.02 and 

0.08 for typical minerals processed by heap leaching in figure 2.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As a consequence of this last finding, it is not surprising to find that heap 

leaching is normally enhanced by bacterial oxidation. These treatments have the virtue 

of opening up the pores, by dissolving acid leachable material, thereby increasing the 

porosity of the mineral as shown in figure 2.18. It is like to note, that the particle surface 

in the column is become more porous after biooxidation process, especially the ore 

oxidized with thermophile and the ore from a column with ramp-up temperature 

condition. 

 
 

Fig 2.17: Effect of the mineral porosity on the gold extraction curve in a column. Bartlett 
[1992] 



 82

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.18a: SEM image of gold ore before 
biooxidation. (1000X magnification) 

Fig 2.18b: SEM image of gold concentrate 
before biooxidation. (1000X 
magnification) 

Fig 2.18c: SEM image of gold ore after 
biooxidized using mesophilic culture. 
(10000 X magnification) 

Fig 2.18d: SEM image of gold ore after 
biooxidized using moderate thermophilic 
culture. (15000 X magnification) 

Fig 2.18e: SEM image of gold ore after 
biooxidized using thermophilic culture. 
(10000 X magnification) 

Fig 2.18f: SEM image of gold ore after 
biooxidized using mixture of mesophilic 
and thermophilic culture. (10000 X 
magnification) 
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 The gold content analysis on the column residual after cyanidation process shows 

the amount of gold loss in the mineral is significant with the gold extraction in the 

cyanide solution. The gold mass balance in the column after 30 days of cyanidation is 

shown in table 2.9. 

 
Table 2.9: The gold mass balance in the column after 30 days of cyanidation. 
 

 Column test 

 
COL 1 
700C 

COL 3 
450C 

COL 5 
300C 

COL 7 
Sequential leaching 

 Initial Final Initial Final Initial Final Initial Final 

[Au]mg/L, solid 129.635 43.408 129.523 65.416 129.614 91.494 129.569 43.475 

[Au]mg/L, liquid 0.0 646.7 0.0 480.8 0.0 285.9 0.0 645.7 

% gold extraction 66.515 49.495 29.410 66.446 

 Column control 

 
COL 2 
700C 

COL 4 
450C 

COL 6 
300C 

COL 8 
Sequential leaching 

 Initial Final Initial Final Initial Final Initial Final 

[Au]mg/L, solid 129.643 90.837 129.638 99.651 129.640 109.166 129.635 87.189 

[Au]mg/L, liquid 0.0 291.1 0.0 224.9 0.0 153.6 0.0 318.4 

% gold extraction 29.933 23.131 15.792 32.743 
 
 
 From the results obtained, it was observed that the highest percentages of gold 

extracted was observed in the column 1 (column with thermophile biooxidation) and 

column 7 (column with 3 stages temperature condition) at 66.5% and 66.4% of gold was 

extracted after 30 days cyanidation. The value is 1.22 and 1.03 times fold compared to 

its control experiments. This result indicates that, the amount of iron solubilization will 

effect the amount of gold cyanidation ore and concentrate. As an example, the increased 

in iron solubilization at 18.9% (Table 2.8; column 1 and 2) using extreme thermophilic 

culture resulting an increased in gold solubilization at 36.58% (Table 2.9; column 1 and 

2).  
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2.3.7.4 Correlation between solution potential (EH), Temperature (T) , Acidity (pH) 
 and iron solubilized [Fe] in the column solution 
 

 Modeling of heap bioleaching is complex as it has to incorporate a large number 

of phenomena, such as solution, gas and heat transport, multi-mineral kinetics, bacterial 

kinetics and diffusion effects Previous studies have shown that there is clear evidence 

that heap bioleaching can be rate-limited by the microbial oxidation step in solutions 

with a composition of heap. Modeling of these effects remains strictly empirical, 

however, as none of the existing rate equations have been confirmed to be valid under 

such extreme conditions. [Ojuma et al, 2006]. 

 

 Rate equations have been applied to tank bioleach systems, which usually 

operate under controlled conditions near the optimum. Heap bioleach systems, on the 

other hand, often operate far from optimum conditions with respect to temperature, pH, 

solution potential, flow condition and oxygen supply, at the same time. The kinetics of 

such sub-optimal systems is still poorly understood. This study will be directed towards 

the development of a comprehensive rate equation useful for describing the kinetics of 

heap bioleaching over a wide range of conditions. 

 

 The reaction between ore and ferric iron in acid solution was investigated by 

monitoring the redox potential of a leachate solution during leaching test. The redox 

potential measures the tendency for a solution to either gain or lose electrons when it is 

subject to change by introduction of a new species. A solution with a higher redox 

potential will have a tendency to gain electrons from new species (i.e. oxidize them) and 

a solution with a lower redox potential will have a tendency to lose electrons to new 

species (i.e. reduce them). 

 

 If it assumed that the ferric/ferrous exchange current density at the surface of a 

leaching particle is large enough to make the effect of the corrosion current, the surface 

potential of the particle can be considered equal to the redox potential of the solution at 

the surface [Eaton et al 2005]. A measurement of the solution redox potential can be 
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related to the ratio of free ferric to free ferrous iron in an iron solution via the Nernst 

equation (Eq. 2.22).    

            

][
][ln 2

3
0

+

+

+=
Fe
Fe

zF
RTEEH  

Eq. 2.27 

 

Although measurement of the redox potential in aqueous samples is relatively 

straightforward, many factors limit its interpretation; such as irreversible reactions, slow 

electrode kinetics, non-equilibrium, presence of multiple redox couples, electrode 

poisoning, small exchange currents and inert redox couples [ABB instrument, 1999]. In 

this study platinum electrodes filled with 3M KCl combined with an Ag/AgCl electrode 

solutions were used as a reference. 

 
 Although the stoichiometry of the overall reaction will vary according to the 

particular metal sulphide being bioleached, a typical reaction for a metal sulphide (MS) 

as follows: 

 

SFeMFeMS 24242 223 ++→+ +++    

         Eq. 2.28 

 

The ferrous-iron is then re-oxidized to the ferric form by microbial action: 

 

OHFeOHFe 2
3

2
2 2444 +→++ +++  

Eq.2.29 

  

 It is the kinetics of this reaction and the subsequent biomass synthesis and 

maintenance including initial rate studies investigations in batch and continuous culture 

and investigations using iso-potential devices. The data has been fitted with modified 

Monod or Michaelis equations or to models derived from chemiosmotic theory or 

electrochemical analogies. There is little information on the effects of dissolved oxygen, 
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carbon dioxide, metal cations and anions. The effects of temperature and pH have 

largely been limited to conditions near the optimum or to those used in tank bioleaching 

operations. The rate equations for microbial oxidation, ferrous-ferric ion (EH) behaviour 

will be review in table 2.10 (Boon, 1999). Some of the models have been developed 

from the simple equation for specific growth rate based on substrate utilization via a 

Michaelis–Menten mechanism, which corresponds to a basic Monod type model 

 

Table 2.10: The rate equations for microbial oxidation and ferrous-ferric ion behaviour 
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 Changes in pH have not been found to have a significant effect on either the 

growth or the iron oxidation kinetics of iron oxidizing microbes a narrow range around 

their optimum pH. Breed and Hansford (1999) have modelled the effect of pH by letting 

constant K increase linearly with increasing pH within the range studied (1.1–1.7) with 

no significant effect on the maximum specific ferrous iron and oxygen utilization rates 

in this range. The relation between Michaelis Menten based models and pH were shown 

as followed: 

 

 The Michaelis Menten based models equations are formulated in terms of ferrous 

utilisation. This approach acknowledges the correlation between ferrous oxidation rate, 

microbial growth and maintenance via the Pirt equation (Boon, 1999) 
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Eq. 2.30 

 

 From that model, Breed and Hansford (1999) was suggested a simple model to 

predict a variation in the specific ferrous-iron utilization rate (Eq. 2.31) and bacterial 

specific oxygen utilization rate (Eq. 2.32) with changes in the ferric/ferrous-iron ratio 

(Eh) and different pH values. 
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And  
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Eq. 2.32 

Where the  KFe
2+

, K O2 = f (pH) 

 

 Although the resistance of iron oxidizing microbes to low pH as been attributed 

to the composition of the cell wall, at very low pH the cell might require more energy to 

maintain the proton gradient, since the cell cytoplasm must be maintained at or near 

neutral values. Thus cell maintenance will be at the expense of cell growth. Inhibition at 

high pH, on the other hand, could be explained by the fact that protons are required as a 

substrate in reaction, and also by the fact that the proton gradient is the driving force for 

the synthesis of ATP. 

 

 Microorganisms are classified in terms of the temperature range in which they 

survive, with optimum temperatures in the 30–40 °C range for mesophiles, around 50 °C 



 89

for moderately thermophiles and above 65 °C for extreme thermophiles. At temperatures 

below the optimum the microbes become inactive, and they become rapidly destroyed at 

temperatures above it. The models proposed by Hinshelwood and Ratkowskyare most 

commonly used to show the dependency of bacterial growth on temperature.  (Ojumu et 

al, 2006). 

 

Hinshelwood model:  

RT
E

RT
E

eKeK
00

21max −=µ  

Eq. 2.33 

Ratkowsky model 

 

}1){( )(
minmax

maxTTceTTb −−−=µ  

Eq. 2.34 

 

where K1, K2, b and c are constants; Tmin and Tmax are the minimum and maximum 

growth temperatures. In both cases a dependence of the maximum specific growth rate 

on temperatures is proposed. Optimum and maximum growth temperatures are usually 

close, as was shown by Nemati and Webb, and Breed and Hansford, (1999) also showed 

the dependence of maximum specific substrate utilization rate on temperature, and 

included an Arrhenius term in their respective kinetic models. The optimum temperature 

has also been reported to be pH dependent, decreasing with decreasing pH.  
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ATTACHMENT A 
 

Data for Ore and concentrate characterization (Chapter 2.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-1: Size distribution for gold concentrate 

0

20

40

60

80

100

0 50 100 150 200 250

Pa
rti

cl
e 

di
st

rib
ut

io
n 

%
 

Concentrate size (µm)

Figure A-2: Size distribution for gold ore 
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Table A-1: Acid consumption test for gold concentrate 

Time (min) H2SO4,5M(ml) pH 

15 min 3.24 4.42 

45 min 0.06 3.56 

1 hrs 15 min 0.08 3.53 

1 hrs 45 min 0.12 3.58 

2 hrs 15 min 0.22 3.58 

2 hrs 45 min 0.21 3.62 

3 hrs 15 min 0.10 3.71 

3 hrs 45 min 0.04 3.53 

4 hrs 15 min 0.02 3.52 

4 hrs 45 min 0.03 3.52 

Total 4.12 ml  

Acid consumption for gold concentrate 0.412 ml (5M,H2SO4)/gore 
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Table A-2: Acid consumption test for gold ore 

Time (min) H2SO4,5M(ml) pH 

15 min 0.33 3.52 

45 min 0.12 3.51 

1 hrs 15 min 0.14 3.54 

1 hrs 45 min 0.1 3.52 

2 hrs 15 min 0.13 3.53 

2 hrs 45 min - 3.50 

3 hrs 15 min 0.05 3.51 

3 hrs 45 min 0.08 3.53 

4 hrs 15 min 0.08 3.51 

4 hrs 45 min 0.32 3.62 

5 hrs 15 min 0.03 3.51 

5 hrs 45 min 0.04 3.52 

Total 1.42  

Acid consumption for gold concentrate 0.142 ml (5M,H2SO4)/gore 
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Figure A-3 : pH profile for Biological acid producing potential test on gold concentrate 
using ■ T. ferrooxidans, ■ Sb. Thermosulfodooxidans  and ■ A. Brierleyi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-4 : pH profile for Biological acid producing potential test on gold ore using ■ 
T. ferrooxidans, ■ Sb. Thermosulfodooxidans  and ■ A. Brierleyi 
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ATTACHMENT B 

 

pH and EH profile for column (Chapter 2.3.7.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-1 : EH (----) and pH (--■-) profile of lixiviant solution in the column (test) at 70oC. 

I: Fe free lixiviant (A. Brierleyi Medium) 
II: Fe containing lixiviant ( Sb. Thermosulfodooxidans medium) 
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y = 76.959x + 460.3
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Figure B-2 : EH (----) and pH (--■-) profile of lixiviant solution in the column (control) at 70oC.  

I: Fe free lixiviant (A. Brierleyi Medium) 
II: Fe containing lixiviant ( Sb. Thermosulfodooxidans medium) 
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Figure B-3 : EH vs pH  for the column at 70oC. using A. Brierleyi  
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y = 69.21x + 471.81
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Figure B-5 : EH (----) and pH (--■-) profile of lixiviant solution in the column (test) at 45oC.  

I: Fe free lixiviant (T. Caldus Medium) 
II: Fe containing lixiviant ( Sb. Thermosulfodooxidans medium) 
 

Figure B-4 : EH vs pH  for the control column at 70oC. using A. Brierleyi medium 
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y = -67.825x + 679.64
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Figure B-6 : EH (----) and pH (--■-) profile of lixiviant solution in the column (control) at 45oC. 

I: Fe free lixiviant (T. Caldus Medium) 
II: Fe containing lixiviant ( Sb. Thermosulfodooxidans medium) 
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Figure B-7: EH vs pH for the column at 45oC. using T. Caldus  
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Figure B-9: EH (----) and pH (--■-) profile of lixiviant solution in the column (test) at 30oC.  

I: Fe free lixiviant ( T. Thiooxidans Medium) 
II: Fe containing lixiviant ( 9K medium) 
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Figure B-8: EH vs pH for the control column at 45oC. using T.Caldus medium 
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Figure B-10 : EH (----) and pH (--■-) profile of lixiviant solution in the column (control) at 
30oC.  

I: Fe free lixiviant (T. Thiooxidans Medium) 
II: Fe containing lixiviant (9K medium) 
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Figure B-11 : EH vs pH  for the column at 30oC. using T. Thiooxidanss  
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 Figure B-7 : EH (----) and pH (--■-) profile of lixiviant solution in the sequential leaching 

column (test), 30oC, 45oC and 70oC 
I: Leaching at 300C,  ( 9K medium) 
II: Leaching at 450C,  (Sb. Thermosulfodooxidans medium) 
III: Leaching at 450C,  (Sb. Thermosulfodooxidans medium) 
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Figure B-12 : EH vs pH  for the control column at 40oC. using T. Thiooxidans medium 
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Figure B-8-b : EH (----) and pH (--■-) profile of lixiviant solution in the sequential leaching 
column (control), 30oC, 45oC and 70oC 
I: Leaching at 300C,  ( 9K medium) 
II: Leaching at 450C,  (Sb. Thermosulfodooxidans medium) 
III: Leaching at 450C,  (Sb. Thermosulfodooxidans medium) 
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PART 2 
 
 
 
 

APPLICATION OF THERMOPHILIC BACTERIA: 

RECYCLING OF BATTERIES USING BIOTECHNOLOGY TECHNOLOGY 
 
 
 
 
2.0 Introduction 

 

 Demand for batteries will increase as the usage of portable electronic devices 

i.e. laptop computers, telecommunications equipment and cordless tools are more 

rapid nowadays as it is one of the main parts for these electronic gadgets.      

 

Based on the total number of batteries manufactured, non rechargeable 

batteries have the largest amount amongst the other type of batteries, which is 

78.72%.  Briefly, battery consists of several components such as metallic and plastic 

contents.  Non rechargeable batteries have low prices and short lifetime of usage if 

compared to rechargeable batteries.  Non rechargeable batteries are commonly 

disposed by the public without caring the consequences of their action.  

The fate of batteries is an important and timely issue, primarily because of the toxic 

and hazardous materials that are used. 

 

 

 

2.1 Objectives of the project 

• Protection of the environment according to the precautionary principle. 

• Optimum use of resources 

• Solving disposal problems 

• Economically acceptable waste management 



 22

• Socially acceptable waste management 

 

 

 

2.2 Disposal of house hold batteries 

 

 House hold batteries or spent batteries usually are disposed off in landfill, 

which lead to hazardous leachate and not environmental friendly.  Certain landfill 

had to be closed and is now a contaminated site which requires continuous 

monitoring and remediation. 

  

The flow of spent batteries is shown in the figure below:  

 
 

 
 

 

2.2.1 Batteries collection 

 

From 158 kg of batteries received from DBKL, the batteries were mixed well 

and divided into 4 portions. The batteries were then sorted by their physical 

condition i.e: size, origin and type. (Fig. 2.1) 

 
 
  
 
 
 

Landfill 

Heavy metal 

Spent batteries 

River, sea, underground 
reservoir  
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OTHER
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AAA
1%

AA
43%

 
 
 
 
 
 
 
 
 
 

 
 
 
  

The largest portion of collected batteries were those of AA size (27.76 kg), 

followed by D (11.96kg) and C (13.76kg). Most portable devices require AA, C or D 

batteries, which accounts for the largest percentage of batteries used for general 

household purposes. i.e: AA (Clock, toys and walkman), D (Radio and torchlight) 

and C (torchlight). Button cell, mobile phone batteries and 6V type batteries 

(16.14%) constitute those grouped under miscellaneous   

 
It is interesting to note that 37.29% of the total batteries collected was imported 

(mostly from China), compared to 49.56% which was produced locally. Large 

portion of imported batteries found inside our waste stream is due to its cheap prices, 

short life time and is usually sold together with equipment, especially toys. The 

cheap imported type batteries have a high tendency to leak and might have a high Hg 

and Pb content. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Portion of 
batteries segregation by size 

Figure 2.2: Portion of batteries 
segregation by origin of producer 
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From the batteries collected, 79% was the non rechargeable type, 13% 

rechargeable and 8% of unknown type. More non rechargeable batteries have been 

collected compared to the rechargeable batteries. Low prices and short lifetime 

contribute to the large consumption of non rechargeable batteries. 

 

 

 

2.3 Metal content  

 

The metal composition differs considerably depending on the battery type, 

thus some batteries are potentially more hazardous than others. Changing the trend of 

batteries consumption will affect the efficiency of metal recovery. As an example, 

for the Ni–Cd batteries, cadmium, mercury and lead are very toxic metals commonly 

found in these batteries. 

Figure 2.3: Portion of 
batteries, segregation by 
recharge ability 

Figure 2.4: Portion of 
rechargeable batteries  

Figure 2.5: Portion of non-
rechargeable batteries  
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A) Metal content of non rechargeable dry cell (Zn-C and Alkaline batteries). 

 
Table 2.1: Metal content of non rechargeable dry cell (Zn-C and Alkaline batteries). 
 

Element 

Zn-C 
(entire 
batteries)  

Zn-C  
(Dry powder) 

Alkaline 
(entire 
batteries) 

Alkaline  
(dry powder) 

Mn (%) 27.065 33.023 29.025 38.596 
Zn (%) 5.023 7.0568 12.4862 19.85634 
Fe (%) 2.184 0.021245 1.9658 0.001453 
As (ppm) 3.425 - 2.159 - 
Cd (ppm) 12.47 - 4.253 - 
Co (ppm) 26.14 - 84.25 - 
Cr (ppm) 23.45 - 29.48 - 
Cu (ppm) 5.124 - 2.814 - 
Hg (ppm) - 0. 002356 - 0.04598 
Ni (ppm) 52.34 69.85 85.23 102.35 
Pb (ppm) 23.92 1.5625 49.87 65.68 

 
 

The metal composition of zinc–carbon and alkaline batteries is quite similar. 

These batteries contain basically manganese, zinc and iron as main metallic species. 

The outer layer of batteries comprises mainly of iron (Fe). Steel casing can be 

separated easily using a magnetic separator. Other heavy metals Cu, Ni, Cr, As, Cd, 

Co, Hg and Pb are found in trace amounts. Low levels of mercury have been detected 

at 0.002 ppm and 0.04ppm from the Zn-C and alkaline batteries respectively, even 

though have been labeled as no mercury added.  

 

 

 

 

 

 

   
Alkaline      Zinc carbon batteries 

Figure 2.6: Cross section of alkaline and zinc carbon batteries  
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The chemical reaction involved in zinc-carbon and alkaline-manganese batteries is as 

follows: 

Zinc-carbon 

Anode             Zn(s)  Zn2+
(aq) + 2e-  

Cathode          2NH4
+

(aq) + 2MnO2(s) + 2e-  Mn2O3(s) + H2O(l) + 2NH3(aq) 

            Electrolytes    NH4Cl and ZnCl2 

                                   2NH4
+

(aq) + 2e- -> 2NH3(g) + H2(g) 

Alkaline-manganese 

Anode               Zn(s) + 2OH-(aq) -> Zn(OH)2(s) + 2e- 

Cathode             2MnO2(s) + H2O(l) + 2e- -> Mn2O3(s) + 2OH-(aq)   

Electrolytes       KOH 

B) Metal content of Rechargeable batteries  

 
Table 2.2: Metal content of Rechargeable batteries  
 
Element Ni Cd Ni MH Li ion 
As (ppm) 1.025 1.5234 3.1402 
Cd (%) 17.953 - - 
Co (%) 0.617 3.569 15.756 
Cr (ppm) 22.018 21.052 37.156 
Cu (ppm) 64.248 59.482 6897.42 
Hg (ppm) 0. 2631 0. 01186 0.00952 
Mn (%) 0.086 1.482 12.729 
Ni  (%) 19.127 35.876 9.256 
Pb (ppm) 263.5 1.048 0.9235 
Fe (%) 29.354 22.485 6.152 
Zn (%) 0.04356 0.5725 - 
Al (%) 0.053 0.6235 5.689 
Li (%) - - 4.315 
La - 2.458 - 
V - - 13.248 

 
 

Compared to disposable batteries, the metal content of rechargeable batteries 

is more varied. Metal content of Ni Cd, NiMH and Li ion batteries is slightly higher 

at 67.3%, 67.1% and 74.0% respectively, compared to 43.5 % for alkaline batteries. 
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Nickel metal hydride (NiMH) batteries represent one of the fastest growing sectors in 

the battery market.  Amongst the many uses include cordless power tools, personal 

stereos, portable telephones, lap-top computers, shavers, motorised toys with a life of 

4-5 years. NiMH batteries are a more environmental friendly alternative to NiCd and 

tend to have a longer life. Energy storage capacity of Lithium ion (Li-Ion) batteries 

are reported to be greater than NiCd and NiMH batteries. 

 
C) Metal content in collected batteries by DBKL 
 
Table 2.3: Metal content in collected batteries by DBKL 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

The batteries were found to contain 22.84% Mn, 6.04% Zn and 5.3% Fe 5.15 % Ni 

and 0.38% Al. The quantity of these metals are worthy for recycling.  

 

 

 

2.4 Laboratory Test Work 

 

For this project, laboratory based experiments were carried out first before the 

implementation of large scale recycling process.  The laboratory based experiments 

consist of column leaching test, shake flask test, stirred tank reactor (STR) test and 

Element Content 
As (ppm) 5.0236 
Cd (%) 0.3835 
Co (%) 2.1356 
Cr (ppm) 26.139 
Cu (ppm) 242.47 
Hg (ppm) 7.0235 
Mn (%) 22.842 
Ni  (%) 5.1454 
Pb (ppm) 31.534 
Fe (%) 

5.2996 
Zn (%) 6.0357 
Al (%) 0.2777 
Li 0.1517 
La 0.3020 
V 0.4658 
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metal purification test.  Every parts of the experiment are simplified as described 

below: 

 

 

 

2.4.1 Column leaching test work  

 

• 2 identical column unit, simulation heap leaching 

• Duration 1 year, multi stages and total: 330 kg each batteries leaching, 

locally produced. 

• Low leaching rate. 

• Batteries were not broken 

• Difficult for lixiviant solution to access into batteries core 

 

Important findings 

• Amount of metal extracted from each column is shown in table 4. 

 

Table 2.4: Amount of metals extracted from column 1 and 2. 

METAL Column 1 Column 2 

Zn 43% 51% 

Mn 38% 36% 

Fe 73% 65% 

 
 

 

 

2.4.2 Shake flask test work  

 

Set 1: Shaken, not broken,  

Set 2: Unshaken, broken  

Set 3: Shaken, broken  

Batteries AA used: Zn-C batteries, alkaline batteries, Ni-Cd rechargeable 

batteries, Li-rechargeable batteries  

Set 4: Shaken, broken and inner part dismantling 
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Set 5: Shaken, broken, inner part dismantling and roasted  

Set 6: Combination of chemical leaching and bioleaching test 

 

Batteries AA used: Zn-C batteries 

 

Culture used: 

• Thiobacillus ferrooxidans  

• Leptospirillum ferrooxidans   

• Thiobacillus thiooxidans  

• SulfobacillusThermosulfodioxidans  

• Acidianus Brierleyi 

• SL5B 

 

Chemicals used: 

• Hydrochloric acid  

• Sulfuric acid  

• Ferric chloride  

• Ferric sulphate 

• Sodium thiosulphate  

• Sodium hypochlorite  

 

 

 

2.4.3 Stirred tank reactor (STR) test work  

 

Set of various experiments have been set up in testing the leaching process in 

stirred tank reactor.  Details for every set of test are described in table 2.5. 

 
Table 2.5: Details for every set in stirred tank reactor (STR) leaching process. 
  
SET TYPE OF LEACHING CONDITION 
 
1 

 
H2SO4 leaching 

 
1: Variable: H2SO4 
concentration 
2: Variable: Temperatures 
3: Variable: Pulp densities 
4: Variable: Duration 
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2 

 
HCl leaching 

 
1: Variable: HCl concentration 
2: Variable: Temperatures 
3: Variable: Pulp densities 
4: Variable: Duration 
 

 
3 

 
Ammonium carbonate leaching 

 
1: Variable: Ammonium 
carbonate concentration 
2: Variable: Temperatures 
3: Variable: Pulp densities 
4: Variable: Duration  
 

 
4 

 
Thiobacillus thiooxidans  leaching 

 
1: Variable: Pulp densities 
2: Variable: Duration  
 

 
5 

 
Acidianus Brierleyi leaching 

 
1: Variable : Pulp densities 
2: Variable : Duration 
 

 
6 

 
Fe3(SO4)2 leaching 

 
1: Variable : Fe3(SO4)2 
concentration 
2: Variable : Temperatures 
3: Variable : Pulp densities 
4: Variable : Duration  
 
 

 
7 

 
Fe3Cl leaching 

 
1: Variable : Fe3Cl 
concentration 
2: Variable : Temperatures 
3: Variable : Pulp densities 
4: Variable : Duration  
 

 
8 

 
Mix culture of Thiobacillus ferroxidans (TF) and 
Leptospirilium ferroxidans (LF) at ratio: 1:1 
leaching 
 

 
1: Variable : Pulp densities 
2: Variable : Duration  
 

9 SL5B leaching 1: Variable : Pulp densities 
2: Variable : Duration 
 

 
10 

 
Roasted, H2SO4 leaching 

 
1: Variable : H2SO4 
concentration 
2: Variable : Temperatures 
3: Variable : Pulp densities 
4: Variable : Duration 
 

 
11 

 
Roasted, HCl leaching 

 
1: Variable : HCl concentration 
2: Variable : Temperatures 
3: Variable : Pulp densities 
4: Variable : Duration 
 

 
12 

 
Roasted, Fe3(SO4)2 leaching 

 
1: Variable : Fe3(SO4)2 
concentration 
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2: Variable : Temperatures 
3: Variable : Pulp densities 
4: Variable : Duration 
 

 
13 

 
Roasted, FeCl3  leaching 

 
1: Variable : FeCl3 
concentration 
2: Variable : Temperatures 
3: Variable : Pulp densities 
4: Variable : Duration 

 
14 

 
Roasted, Thiobacillus thiooxidans  leaching 

 
1: Variable : Pulp densities 
2: Variable : Duration  
 

 
15 

 
Roasted, Acidianus Brierleyi leaching 

 
1: Variable : Pulp densities 
2: Variable : Duration 
 

 
16 

 
Roasted, Mix culture of Thiobacillus ferroxidans 
(TF) and Leptospirilium ferroxidans (LF) at ratio: 
1:1 leaching  
 

 
1: Variable : Pulp densities 
2: Variable : Duration  
 

 
17 

 
Roasted, SL5B leaching 

 
1: Variable : Pulp densities 
2: Variable : Duration 

 

Important findings 

• Leaching capacity on original batteries is very limited 

• Breaking and shaking will increase the leaching capacity  

• Roasting at lower temperature 200 – 350oC increased yields to nearly 

100%, i.e: 98% using FeCl3 and 96% using SL5B culture.  However, Li-

ion batteries must be removed before roasting or it will explode. 

• Leaching on roasted batteries using Thiobacillus thiooxidans - selective 

process. 95% Zn and 12% Mn 

• Leaching on unroasted batteries using (NH4)2CO3 is highly selective 

process.  95% Zn and >1% Mn. 

• Formation of jarosites is very aggressive, especially for  alkaline and 

rechargeable batteries- can retard the process and disturb the heap 

leaching process 

• Leachate solution is very corrosive, even for stainless steel. 

• For column leaching, rate of metal leaching at the bottom of column is 

much higher then top of column. 

• The overall optimum pulp densities for STR at 20%. 
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2.4.4 Metal purification test work  

 

Purification of metal recovered is done after the leaching process.  Details for 

the purification method are described in table 2.6. 

 
Table 2.6: Purification methods for recovered metal.  
 
SET TYPE OF PURIFICATION CONDITION 
 
1 

 
Precipitation, pH adjustment 

 
1.Solution from column test 
H2SO4  
2. Solution from column test 
Fe2(SO4)3  
3. Solution from column test 
HCl  
4. Solution from column test 
FeCl3  

 
2 

 
Precipitation, Different temperature 

 
1. Solution from column test 
Fe2(SO4)3  
2. Solution from column test 
FeCl3  
 

 
 
3 

 
 
Solvent extraction:  
Mixture of 5-dodecylsalicylaldoxime and tridecanol 
in a high flash-point hydro-carbon diluent  
 

 
 
Stripping using: 1M Sulfuric 
acid 
 

1. Solution from batteries 
digestion 

2. Solution from column 
test HCl  

3. Solution from column 
test FeCl3  

4. Solution from column 
test H2SO4  

5. Solution from column 
test Fe2(SO4)3  

 
 
4 

 
Solvent extraction:  
Mixture of 5-dodecylsalicylaldoxime and 2-
hydroxy-5-nonyl-acetophenone oxime in a high flash 
point kerosene  
 

 
Stripping using: 1M Sulfuric 
acid 
 

1. Solution from batteries 
digestion 

2. Solution from column 
test HCl  

3. Solution from column 
test FeCl3  

4. Solution from column 
test H2SO4  

5. Solution from column 
test Fe2(SO4)3  
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5 

 
Solvent extraction:  
Mixture of 5-dodecylsalicylaldoxime and tridecanol 
in a high flash-point hydro-carbon diluent  
 

 
Variable: Solution/Solvent ratio 
 

1. Solution from batteries 
digestion 

2. Solution from column 
test FeCl3  

Solution from column test 
Fe2(SO4)3  
 

 
6 

 
Solvent extraction:  
Mixture of 5-dodecylsalicylaldoxime and 2-
hydroxy-5-nonyl-acetophenone oxime in a high flash 
point kerosene  
 

 
Variable: Solution/Solvent ratio 
 

1. Solution from batteries 
digestion 

2. Solution from column 
test FeCl3  

3. Solution from column 
test Fe2(SO4)3  

 
 
 
Important findings 

• Zn can be recovered via precipitation at different pH. 

Examples - H2SO4: pH 6-7 and HCl: pH 9. 

Difficult on iron based leachate solution.  

• Purification via precipitation at different temperature is difficult. 

• Zn can be purified using mixture of 5-dodecylsalicylaldoxime and 

tridecanol in a high flash-point hydro-carbon diluents in Chloride based 

leachate  at ratios 2:1 

• Mn can be extracted using mixture of 5-dodecylsalicylaldoxime and 2-

hydroxy-5-nonyl-acetophenone oxime in a high flash point kerosene  
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2.5 Proposal pilot scale process for batteries recycling 

 

2.5.1 Local technology to treat dry batteries      

 
 
1. Cementation and secured landfill 

 
 

 
 
 
 

Batteries 
manufacturer 

Out spec. batteries 
(Type C,D onward) 

Cementation 
Kualiti Alam 

Waste, 100 kg  
Fly Ash, 20 kg 
Cement, 35 kg 
Lime, 7 kg 
Sand, 100 kg 
Water, 30 kg 

Out spec. batteries 
(Type AA, AAA downward) Landfill 
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Cementation is prescribed for the treatment of dry cell batteries and other 

miscellaneous wastes which could not be properly and safely treated by existing 

treatment facilities. Cement and sand are the main materials used to encapsulate and 

cement hazardous and toxic contaminants in the wastes and prevent them from 

leaching into the environment. The cost for cementation and disposal at a secured 

landfill is RM 900 per tonne of dry cell batteries. 

A number of companies have been sending their wastes for these two 

treatment methods since 1997. Dry cell type C onwards and button cell haze been 

classified as scheduled waste for batteries manufacturers, while AA and AAA 

batteries is permitted to landfill.  

 In the cementation plant, metal containing wastes, which do not fulfill the 

criteria for disposal directly into the Secure Landfill, are treated. Such wastes are 

typically metal hydroxide sludge containing heavy metals such as lead, arsenic, 

nickel, zinc and chromium. During the cementation process the heavy metals become 

insoluble and the wastes therefore can safely be disposed off in the Secure Landfill. 

Fly ash from the Incinerator Plant and sludge from the PCT Plant are also treated at 

the cementation plant. 

 At the cementation plant, waste is loaded into waste bunkers, where it will be 

mixed with other similar waste. It is then loaded into the waste hopper before being 

transferred to the mixer by screw conveyors. In the mixer, waste is carefully mixed 

with consumables such as cement, lime and water. The system is able to handle 

waste that contains foreign materials such as stones, wood and scrap iron 

After treatment, the waste will appear as a concrete mixture. The mixture is 

disposed off to the secure landfill for the final curing over a few days. The objective 

of the whole process is to fix all the heavy metals in the inorganic solid waste into a 

concrete/silica matrix for long-term disposal in the secure landfill. As a result, 

hazardous heavy metals will not leach out to the environment. 

 The Secure Landfill is the final destination for the cemented batteries. The 

landfill site is some 80 acres in area to accommodate the construction of 8 secure 

landfill cells with a total volume of 2.5 million cubic meters. As it is a permanent 



 36

waste disposal facility, all waste materials have to meet the strict Landfill 

Acceptance Criteria as provided for under the Department of Environment Secure 

Landfill Licensing Conditions. Only inorganic solid waste that meets all parameters 

of the Landfill Acceptance Criteria is eligible for direct landfill disposal. Otherwise, 

the waste will have to be treated at either the solidification or incineration plant. 

 The secure landfill is designed to prevent seepage of leachate into ground 

water with a double membrane comprising a one-meter thick compacted clay liner 

and a 2 mm thick High Density Poly-Ethylene geo-membrane. Above the HDPE 

membrane is a drainage system made up of a 0.4-meter thick layer of crushed rocks. 

Rainwater, which percolates from the top of the landfill, is called leachate and it is 

channeled to the leachate collection sump found within each landfill cell 

Waste can be disposed off in the landfill in drums, polypropylene bags, in 

bulk or in cemented form. Radioactive, infectious and explosive wastes are not 

treated or disposed off at this Waste Management Centre. The records, including the 

consignment note numbers, amount and location are kept at the landfill office. 

Internal waste, such as slag from the incineration plant and solidified materials from 

the solidification plant are sent to the landfill for final disposal. Other internal waste 

such as incineration ash and physical/chemical treatment plant slurry, are treated at 

the solidification plant prior to disposal.           

 The Leachate Treatment Plant (LTP) is capable of treating leachate from 

secure and rubber sludge landfills, internal wastewater generated from plant 

operations as well as the first ten-minute flush of rainwater run-off.  The Leachate 

Treatment Plant is a requirement under Kualiti Alam’s Environmental Management 

Programme. 

• Cementation is a simple method to treat batteries, preventing it from natural 

leaching. 

• Low cost, low explosion and leakage risk during process. 

• No metals can be recovered   
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2.5.2 Existing technologies in other countries 

 

Switzerland: Recytec process (1994)  

                     Batrec (3000 tons/yr)  

Germany: Batenus process (7500 tons/yr)  

USA:               2300tons/yr   nickel–cadmium, nickel–iron and   

                        nickel–metal hydride batteries 

 

Example of one the battery treatment system applied in other countries: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Current technology - commercial 

Batrec Process  
 

Pyrolysis- 1500oC 
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2.5.3 Proposed Batteries Recycling 1 

 

2.5.3.1 Heap of Alkaline and Zn-carbon cell  

 

 The components of the process are magnetic separation, washing using water, 

heat pre-treatment, bioleaching process, metal recovery, regeneration of leaching 

solution and cementation. 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Spent dry cell 

Washing 

Shredding 

Magnetic separation 

LEACHING PROCESS

Washing 

Iron recycles 

Solution and  
Fine particle 

Solution  

Leaching 
solution 

Leaching 
solution 

Metal recovery 

Plastic, paper 

Carbon, Ash Cementation

Land fill 

Heat treatment : 300 – 4000C 
And Agglomeration 
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Part 1: Mechanical separation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mixture of batteries 

Manual separation 

Zn-Mn & Ni based batt.  

Impact hammer 

Button cell, 
Li ion, 
cellular batt. 
paper, plastic 

Button 
-Hg recovery 

Shredder 

Sieving (2~5 mm) 

Magnetic 
separator 

Steel 
casing 

Ni, Cd, LiOH, 
and other metal 

hydrate 

Batteries powder 
Zn, Mn, ash, electrolyte 

Wash 

ZnCl, NaOH, 
KOH, NaCl 

and KCl 
-pH~8,12 

Heat treatment plant  

Paper, plastic 
-Open landfill 

Washing

Paper, plastic, 
carbon rod Ni, 
Cd, LiOH, and 

other metal 
hydrate 

Cellular batt 
-Cellular batt  recycler 

Stainless 
Steel 

Paper, plastic, 
carbon rod  

Steel 
recycler 

Gravity 
separation  

Cementation 
-Landfill  

Batteries powder 
Zn, Mn, ash 
 

Metal recovery plant Leaching plant  
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The first mechanical operation is sieving out the button cells, paper and 

plastic. Those cells are sent to a mercury recovery company. The batteries are 

shredded. At the shredder exit, a magnet removes scrap iron. After washing, this 

scrap is sold to a scrap dealer. Paper, plastics and nonferrous metals are separated 

from the battery contents with the aid of sieves. A further separation yields a 

paper/plastics portion and a nonferrous scrap portion using gravity separator. The 

battery powder is then subjected to the heat treatment plant and hydrometallurgical 

unit. 

 

Part 2: Heat Treatment Plant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Burner 
• Closed brick chamber  
• using kerosene   
• 300-4000C, 6hr 
• Batch – 500kg/batch 

Cyclone 
• Remove fly ash 

Exhaust air chiller 
• Bubbled in water media  
• remove Hg and As 
• Exhaust air - < 1000C 

Agglomerate  
• Using 15% of Culture 
• Acidianus Brierleyi 

and Thiobacillus 
Thiooxidans 

Leaching plant  
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Part 3: Heap Leaching  
 
Material and equipment Description  

Heap content 
 

- 100 tonnes of roasted-non rechargeable batteries powder 
- Agglomerate with 15% culture 
- Fully covered with roof 
- Safety leakage protection system   
 

Pad and liner  
 

- Area: 10m x 5m at 2m height 
-  Pad slope: 0.50-1.00 
- Liner type: 0.2mm HDPE pad / layering with sand 
- Pond: Pregnant pond  
                Overflow pond 
                Settlement pond 
                Biooxidation tank 
                Chemical storage tank 
 

Spraying irrigation  - Sprayer: Rain bird garden spray with radius of spraying 
1m 

- Rate of irrigation – 36.3 m3/hour 
- Drainage: total leakage system with a improved drainage 

system  
 

Leaching media - Biological leaching 
      Mixed culture of mesophilic and thermophilic  
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2.5.3.2 Pilot Plant Test Over View 
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2.5.4 Proposed Batteries Recycling 2 

 

2.5.4.1 Agitation of Alkaline and Zn-carbon cell  

 
 
 
 

 
 
 
Advantages 
 
 
1. Higher extraction rate- compared to latest technologies. 
 
2. Low chemical consumption 
 
3. Environmentally friendly than high smelting- SO2 emission.  
 
4. Less landscape damage as the bacteria grow naturally and can be recycled.  
 
5. Smelting produced great amounts of sludge, which is concentrated with 
 heavy metals. 
 
6. Simpler and cheaper operating plant. 
 

Spent dry cell 

Washing 

Shredding 

Magnetic 
separation 

Sieving 

Iron recycles 

Solution and 
Fine particle 

Solution  

Leaching 
solution 

Leaching 
solutionn 

Metal recovery

Leaching Solution 
Recycle 

Plastic, paper, carbon 
electrode and button 

Heating at 300-4000C, 2 
hrs 

Washing 

Continues reactor
Pulp densities max: 
15%
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2.6 Cost estimation  
 

• Setting up of the pilot scale based on the test of metal recovery from 100 t 

spent dry cell.   

• The cost is not inclusive of manpower, chemical analysis, transportation 

and travelling 

 
Operation Estimated Costs (RM) 

Battery Breaking and Separating     33 500 

Pre-leaching: Tank leaching & Zn recovery     67 200 

Roaster 23 000 

Leaching: Heap leaching & Mn recovery 71 600 

Total 195 000 

 



 
 
 

 
 

PART 3 
 
 
 
 

Leaching Study of Pyrite Using Stirred Tank Reactor (STR) and   
The Modelling of leaching process 

 
 
 
 

3.0 Foreword 
 
 
 This chapter will discuss on the biooxidation of pure mineral i.e.: pyrite and 

chalcopyrite.  Biooxidation test will be carried out using stirred tank reactor (STR).  In 

this chapter, operating condition, which affect the biooxidation behaviour including 

bacterial type, particle size, pH, temperature, residence time and agitation will be 

optimised.  Parameters including DO, pH, Eh, iron and copper profiles will be assessed 

to determine the biooxidation process.  The study on the kinetic aspect of the leaching 

process and the modelling of the leaching process are also included in this part. 

 

 

 

3.1 Introduction 

 

 Basically there are two types of bioreactor, which are the batch reactor and the 

continuous reactor.  Batch process reactors are simplest type of reactor i.e. shake flask, 

agitated tanks or vessel.  In this mode, the process reactor is filled with medium and the 

reaction is allowed to process.  When the reaction has finished, the contents are emptied 

for another process.  The reactor will be shut down, cleaned, refilled, reinoculated and 

then the reaction process will start again.  Batch reactors are usually used for small scale 

operation, for testing new processes and for processes that are difficult to convert to 
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continuous operation (Fogler, 1992 and Mior, 2001).  While for the continuous process 

reactors, fresh media is continuously added and reactor fluid is continuously removed.  

As a result, the material being process continuously receives fresh medium and products 

and waste products and materials are continuously removed for processing.  The reactor 

can thus operated for a long periods of time without having to be shut down.  

Continuous process reactors can be many times more productive than batch reactors.  

This is partly due to the fact that the reactor does not have to be shut down as regularly 

and also due to the fact that the growth rate of the bacteria in the reactor can easily be 

controlled and optimized.  In addition, cells can also be immobilized in continuous 

reactors, to prevent their removal and thus further increase the productivity of these 

reactors. 

 

 In general term, bioreactor can be defined as any systems that have boundaries 

and where biochemical reaction took place.  It also can be described as the system or 

process can be controlled.  In term of biohydrometallurgy, bioreactor ca be classified by 

the method of agitation and the mode of continuous phase was carried out i.e. liquid or 

gas phase.  Bioreactor operation can be done by mechanically agitation or by air 

sparging using external pump.  The typical bioreactors used in biohydrometallurgy are 

mechanically agitated bioreactor or stirred tank bioreactor and air lift bioreactor.  Other 

types of reactors that have been studied for their application in biomining are the 

percolation column, the Paschua tank, the air-lift column and some special designs such 

as rotary reactors (Atkins and Pooley, 1983; Atkins et. al. 1986; Nikolov et. al. 1986; 

Acevedo et. al. 1988; Barrette and Couillard 1993; Loi et. al. 1995; Herrera et. al. 1997; 

Acevedo et. al. 1999 Canaleset et. al. 1999; Nedeltchev et. al. 1999; Rossi 1999)  
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3.2 Biooxidation using STR 
 
3.2.1 Material and Methods 
 
3.2.1.1 Mineral used 

 

 The mineral used in this experiment was pyrite (FeS2) obtained from Peru. The 

pyrite was ground using ball mill in acetone or ordinary blender and sieved. The mineral 

was then soaked with H2SO4 (1M) at 700C for 1 minute to get rid of any metal oxides. 

Slurry obtained was then filtered, washed 3 times with distilled-deionized water at a 

ratio 1:10 (pyrite: DI water) and dried using acetone. The treated mineral was stored in 

the freezer to avoid natural oxidation. 

 

 

 

3.2.1.2 Acid digestion of mineral 

 

Acid digestion test was carried out to determine the composition of base metals 

in the sample. The dried and ground mineral (pyrite and chalcopyrite), 1.0g were roasted 

in the furnace at 600oC for 1.5 hrs and the sample was mixed with 100mL aqua regia 

(HCI: HN03) 3:1 ratio. The mixture was then heated at 80-90°C for 2 hrs. During this 

time, it was assumed that all the base metal remained soluble. Upon cooling, the slurry 

was then transferred into a 250mL volumetric flask. The volume was then made up to 

the mark using distilled deionised water (DDW). The sample was then analysed using 

ICP-MS and AAS to determine the base metal concentration in the sample.  

 

 

 

3.2.1.3 Carbon and sulphur determination 

 

This test was carried out at Antara Steel Sdn. Bhd., Pasir Gudang, Johor Bahru 

using a carbon and sulphur dcterminator (Leco HF-400). 

 



 105

3.2.1.4 Culture used 

 

The bacteria used in this study are standard strains of Sulfobacillus 

thermosulfodoxidans (Sb.T) obtained from the German culture Collection (DSMZ), 

grown in Sulfobacillus medium at 450C. Mesophilic culture, T. ferrooxidans 

(T.F)previously isolated from a local gold mine were grown aerobically in the 9K 

medium and 300C (Shafinaz Shahir,1998) while, locally isolated thermophilic culture, 

SL5B was grown in Sulfobacillus medium at 700C. Initial cultures were incubated 

aerobically at respective temperature using 2.0L shake flasks. Each flask contained 200L 

of culture.  The strain was then transferred to the 2.0L fermentor and grown at 350rpm 

with continuous air sparging at 25L/min for 24 hours.   

 

 

 

3.2.1.5   Bioreactor 

 

A 2.5L of fermentor Biostat® A, B. Braun with 2L operating volume as shown in 

figure 3.4was used in this study. The tank reactor used to perform the continuous 

biooxidation tests was a round-bottomed glass jar, 30 cm in height and 25 cm in 

diameter. The reactor was equipped with two six-blade turbine impellers each 5 cm 

diameter (liquid stirrer), an air sparger, a pH controller, DO probe and a reflux 

condenser. Thermoregulator has been design using water bath to increase the maximum 

operating temperature to 700C. Figures 3.1 show a fermentor operation diagram.        
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Figures 3.1: Diagram of 2L Biostat® micro-DCU bioreactor  

 

 

The biooxidation study of pure mineral was run in a batch mode. Pure mineral 

(pyrite), 10g was added into 2.0L culture that grown in 3.2.3. Sample (10mL) were taken 

periodically from the start of the experiment till day 15. Sterilized distilled water at pH 2 

(adjusted using H2SO4) was added into the reactor before sampling to replenish the 

condensate, maintaining the volume of slurry at 2.0L. Air and sample point were 

sprayed with ethanol (96%) to minimize contamination. Stirring speed was increased to 

600rpm during sampling to ensure sample homogeneity.  

 

Solution portion of sample was taken for KMnO4 titration, in order to determine 

ferrous and ferric content. The pH and EH of slurry was then taken before the slurry was 

filtered. Iron content in the filtrated was determined using AAS. The residue was then 

washed with 50mL distilled water and left to dry. HNO3 (1M) 25mL was added to the 

dry residue for a minute to get rid of oxides and jarosite. The mixture was filtered and 

iron content in the filtrate was determined using AAS.  

 

The acid washed residue was soaked with distilled water and dried. It was 

digested using 10mL aqua regia, (HCl : HNO3 at the ratio 3:1). The slurry was heated 

A
B

C

DE

F

A: 2L vessel  
B: Water bath for 700C 
C: Heater 
D: Motor impeller 
E: Thermocouple 
F: Temperature controller 
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gently using water bath for 1.5hrs at 70oC.  Upon cooling, the slurry was transferred into 

a 25mL volumetric flask. The sample was analysed using AAS 

 

The parameter used for bioleaching of pyrite using stirred tank rector is shown table 3.1: 

 

 Table 3.1: Parameter used for bioleaching of pyrite using STR   
 

 Temp Culture Medium Mineral size Pulp densities 
SET 1: TEMPERATURE      

Condition 1 700C SL 5 B ST medium 75 µm 1% 

Condition 2 700C Aseptic  ST medium 75 µm 1% 
Condition 3 450C ST ST medium 75 µm 1% 
Condition 4 450C Aseptic ST medium 75 µm 1% 
Condition 5 300C TF 9K 75 µm 1% 
Condition 6 300C Aseptic 9K 75 µm 1% 

SET 1: SIZE      
Condition 1 700C SL 5 B ST medium 75 µm 1% 

Condition 2  (pyrite only) 700C SL 5 B ST medium 125 µm 1% 

Condition 3 700C SL 5 B ST medium 180 µm 1% 

Condition 4  (pyrite only) 700C SL 5 B ST medium 250 µm 1% 

Condition 5 700C SL 5 B ST medium 500 µm 1% 

SET 1: PULP DENSITIES      

Condition 1 700C SL 5 B ST medium 75 µm 1% 

Condition 2 700C SL 5 B ST medium 75 µm 3% 

Condition 3 700C SL 5 B ST medium 75 µm 5% 
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3.2.1.6 Ferrous and ferric determination 
 
 

Concentration of ferrous iron was determined by titrating with 0.001M potassium 

permanganate (KMnO4) in the presence of ferroin indicator. To assess the concentration 

of total iron, ferric iron was reduced to ferrous iron using stannous chloride as reducing 

agent, followed by titration with 0.001M potassium permanganate (KMnO4). The ferric 

iron concentration was then determined by subtracting the ferrous iron concentration 

from the total iron concentration. The end point was indicated by a change of color from 

orange to pale blue (Sjahrir, 2000).  

 

 

 

3.2.1.7 Dissolved oxygen consumption rate. 

 

 The sample from stirred tank reactor was taken aseptically and filtrated using 

aseptic filter paper. The pyrite and its precipitated were considered separate from 

medium, but not the bacteria. The solution (2ml) then transferred into oxygen-saturated 

fresh medium (20ml) in 250 shake flasks. Sterile silicone oil (2ml) was added into 

inoculums to prevent any oxygen transfer between air and the solution. The culture was 

incubated at respective temperature and shaken at 150rpm. Sample from inoculums was 

taken at hrs 0, 24 and 48 using sterile syringe and the dissolved oxygen reading was 

recorded. The dissolved oxygen consumption rate was then determined to represent the 

presence of bacteria in the stirred tank reactor.       

 

 

 

3.2.2 Result and discussions 
 

3.2.2.1 Elemental analysis 

 

Elemental analysis of the pyrite is shown in table 3.2. From the analysis, it was 

noted that the pyrite contained the significant heavy metals as the pyrite used by 
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previous researchers (Boon, 1996 and May et al 1997). It was also observed that the 

pyrite contains high concentrations of metals i.e: 44.36% iron, 0.08% silver, 0.06% 

aluminum and 0.04% Manganese.  Copper, zinc, nickel and cobalt is found as trace 

elements. Pyrite also contains 46.28% sulfur and 0.06% carbon. It was also observed 

that the sample does not contain arsenic, which is generally associated with natural 

pyrite (Nemati and Harrison, 2000 and Jacqueset et. al., 2005). 

 

Ratio of iron content over sulfur (Fe:S) is  0.9585, which is significant with  a 

stoichiometry of FeS2 at a 0.875 (ratio of Fe: 2S). A higher iron proportion might be due 

to the iron interference from the steel ball used for grinding the pyrite.   

 

 
Table 3.2: Elemental analysis of pyrite using ICP-MS and Carbon-Sulfur Detector 
                                               
Pyrite Elemental content 
Iron (Fe)  44.36 % 
Sulfur (S) 46.28 % 
Copper (Cu) 72.75 mg/L 
Zinc (Zn) 62.75 mg/L 
Nikel (Ni)  27.25 mg/L 
Cobalt (Co)  90.50 mg/L 
Silver(Ag)  0.0792 % 
Aluminum (Al)  0.0594 % 
Manganese (Mn) 0.0420 % 
Carbon (C) 0.0593 % 

 
 
 

Figures 3.2 (A and B) shows the SEM images of fresh pyrite surface. Pyrite was 

ground and sieve for 250µm and 75µm.  

 

From the SEM micrograph of the 75 µm pyrite (fig.3.2-A), very fine particles 

was seen on the pyrite surface. The presence of very fine particle on a pyrite surface will 

retard the bacterial activity during bioleaching. Nemati, Lowenadler and Harrison (2000) 

have reported that decreasing the particle size to a diameter of 6.4 micron did not 

improve the rate of bioleaching. The presence of the fine particles apparently damaged 

the structure of the cells and, after a short period of operation, a dramatic decrease in 
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concentration of the cells was observed. This implies that the reduction of particle size 

below a critical level could increase the extent of the particle-particle collision and 

impose severe attrition on the cells. However, intensive agitation, aeration and attrition, 

which are usually associated with a tank bioleaching system, can adversely influence the 

activity of the cells.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to SEM images in figure 3.2-A, sample of pyrite has a highly crystalline 

surface structure. Sample can be classified as framboidal pyrite. The surface structure is 

comparable with SEM images from Boon et al. 1999 (figure 3.3A and B) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2-B:  SEM images of ground, 
fresh pyrite surface. Pyrite was sieve at 
250µm (Magnification 5000 X) 

Figure 3.2-A:  SEM images of ground, 
fresh pyrite surface. Pyrite was sieve at 
75µm (Magnification 3000 X) 

Figure 3.3-A:  SEM photographs of a 
framboidal pyrite from Germany (Boon 
et al, 1999) (Magnification 2000 X) 

Figure 3.3-B:  SEM photographs of an 
euhedral pyrite from Prieska, South 
Africa (Boon et al, 1999) (Magnification 
2000 X)
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The German, framboidal pyrite has a granular and irregular surface structure, 

which is probably more chemically reactive than the highly crystalline surface structure 

of euhedral, Prieska pyrite. Some bioleaching-related culture i.e: T. ferrooxidans was not 

able to oxidise euhedral pyrite. It was reported that the maximum chemical oxidation 

rate of the framboidal pyrite, vFeS2,max(framboidal) = 0.017 h-1 , which is 2.5 times larger than 

vFeS2,max(euhedral)  and the value of Bframboidal = 200, which is a factor of 10 smaller than B 

euhedral. (Boon et al. 1999)  
 

Where; 

B: Kinetic constant in chemical pyrite oxidation 

 vFeS2,max ; maximum chemical oxidation rate of the framboidal pyrite 

 

That makes the sample used (Pyrite from Peru, euhedral pyrite) is more 

refractory then pyrite used by other workers. 

 

 Iron content analysis of the pyrite using AAS at a different fraction of size was 

determined individually and shown in table 3.3: 

 

Table 3.3: Iron concentration of pyrite at a different diameter  
 

Size 
 

75µm 106 µm 180 µm 250 µm 500 µm 

Fe (%) 
 

42.36 40.78 39.67 41.97 36.86 

 
 
 
 Iron content analysis show that the Fe concentration of pyrite is ranges from 

42.36% to 36.86% for pyrite size from 75 µm to 500 µm. This descending trend in the 

iron concentration with regards to increasing size is due to the larger particles of pyrite 

containing a high amount of silica. (Nemati et al, 2000). Grindibility index for silica 

sand at 35 HGI (Hardgrove grindability index) is higher then pyrite, at 13HGI  
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3.2.2.2 STR biooxidation of pyrite using different types of culture 
 
 

Manipulation of thermophilic acidophiles in bioleaching processes has also been 

reported to enhance the dissolution of finely ground mineral sulphide in stirred tank 

reactors (Sampson and Philips, 2001; Sandstrom and Petersson, 1997; Norris et al, 2000) 

and in bioheap processes (Brierley, 1999). A comparison of mesophilic, moderately 

thermophilic and themophilic acidophiles bacteria on pyrite oxidation was used in this 

test. Bacterial leaching of pyrite using different types of culture was conducted using 2L 

Biostat® bioreactor. Stirred tank reactor contains isolate SL5B, Sb. 

thermosulfodooxidans and T.  ferrooxidans in the respective media  and. 1% Peru, 

euhedral pyrite (D= 75µm). Control set of experiments were conducted at 70oC, 45oC 

and 30oC 

 
Figure 3.4A shows a  percentage pyrite oxidation using different types of culture namely  
T.  ferrooxidans (mesophilic), Sb. thermosulfodooxidans (moderate thermophilic) and 
isolate SL5B(thermophilic). Figures 3.4B shows natural oxidation of pyrite at sterile 
condition. The experiment was using respective medium at 70oC, 45oC and 30oC.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4A: Percentages of pyrite solubilize 
during 24 hours oxidation using different type of 
culture, TF (300C), ST (450C) and SL5B(700C).  

Fiure 3.4B: Percentages of pyrite solubilize 
during 24 hours, natural oxidation occurs at 
different temperature, 300C, 450C and 700C. 
Systems were run without a present of culture   
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The pyrite oxidation capacity was determined using the following equation: 
 

Pyrite oxidation  %  = [Fe py residue, initial] -  [Fe py residue, test] 
[Fe py residue, initial] 

 
 
 
 
 
 

 Solid-liquid contact between Fe3+ and pyrite surface was maximized at the initial 

stages of biooxidation (first 24hrs after addition of pyrite), before iron and sulfur 

precipitation and porous product layer become a rate limiting step.  Percentages of the 

iron dissolution increased drastically during first 2 hours of biooxidation using entire 

culture (Figure 3.2A). After 5 hours oxidation, 26.9%, 18.8% and 14.9% pyrite were 

oxidized by SL5B, Sb.Thermosulfodooxidans and T. Ferrooxidans respectively. 
 
 
 The pyrite oxidation trend during 5hour to 24hours of bioleaching indicated that 

the bioleaching capacity of thermophilic bacteria (SL5B) is quite similar compared with 

control at 700C. However, the solubilization rate of Sb.Thermosulfodooxidans and T. 

Ferrooxidans are obviously high compared with its control at 300C and 450C. These 

results were consistent with the reports (Kandemir, 1985 and Sand et al., 2001). 

  

 Regarding to Kandemir, 1985 and Sand et al., 2001, the efficiency of leaching 

was directly related to the Fe3+ and H+ concentrations in solution. All of sulphides have 

valence bands formed by atomic orbitals from both metallic and sulphur atoms. The 

result is that these sulphides can be attacked not only by Fe3+ but also by protons 

(Ruitenberg et al., 1999 and May et al., 1997). The control experiment at 300C has a low 

Fe3+ concentration; however, sulphuric acid will provide protons to the medium for the 

mineral hydrolysis. (Battaglia-Brunet et al., 1998 and Bosecker, 1997)  

 

 Experiment at 700C indicated a higher percentage of Fe3+ ions as shown in figure 

3.13 (for abiatic and biotic leaching).  Higher temperature would promote the formation 

of ferric iron even at low solution pH value. (Holliday and Richmond, 1990). Figure 3.5 

[Fe py residue, initial] : iron content in non- biooxidized pyrite after treat with 1M H2SO4  
 
[Fe py residue, test] : : iron content in biooxidized pyrite after treat with 1M H2SO4  

      Eq. 3.1
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shows that the initial pyrite dissolution via ferric oxidation (control 700C) is 10.02 times 

higher compared to acid leaching (control at 300C).  

 

 The findings also indicated the high leaching capacity of Fe3+ is limited until the 

5th hour (figure 3.13-biooxidation with SL5B and control at 70oC). The rate of pyrite 

oxidation is presumably zero during 5 to 24 hours for control at 700C and SL5B. 

Compared with the system dominated by acid leaching i.e: Control at  450C and 300C 

(due to the low Fe3+/Fe2+ reading at figure 3.13), the pyrite oxidation rate were steadily 

occur at the rate 0.1667 and 0.0984 (ppm Fe /hour) respectively until the 24 hours. Its 

might be due to the high tendency of jarosite formation in the high temperature and high 

concentration of Fe3+ , where the biooxidation process was retard by diffusion of product 

layer as a limiting step. 

 

 Due to the formation of jarosite was minimal for the initial stages of biooxidation 

(first 24 hours). The rate of solubilization of pyrite for the can be expressed into 

shrinking core and particle model with the film diffusion and chemical reaction 

considered as a limiting step. 

 

 

 

3.2.2.3 Shrinking particle model for diffusion through liquid film as a  
 limitation step 
 

 From the figure D2-D7 (attachment D), where 1-(1-XB)2/3 vs leaching time 

(Shrinking particle model for diffusion through liquid film as a limitation step), the 

time required for complete pyrite oxidation for each set of biooxidation experiment 

can be predicted and it shown in table 3.4.   
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Table 3.4: Time required (t total) for complete pyrite oxidation if the shrinking particle 
model for diffusion through liquid film as a limitation step  
 
Culture  1-(1-XB)2/3  vs t  Ttotal Regression 

coefficient (R2) 
SL5B t = 0.0298x + 0.1014 30.15 0.5161 

Control (70oC) t = 0.0386x + 0.0127 25.58 0.9681 
Sb.Thermosulfodooxidans  t = 0.0048x + 0.0857 190.48 0.3781 

Control (45oC) t = 0.0016x + 0.0228 610.75 0.6394 
T. Ferrooxidans  t = 0.0033x + 0.0689 282.15 0.3136 
Control (30oC) t = 0.0004x + 0.0113 2471.75 0.2113 

 
 

 

 

3.2.2.4 Shrinking core model for diffusion through liquid film as a limitation 
 step 

 From the figure D2-D7 (attachment D), where XB
 vs leaching time (Shrinking 

core model for diffusion through liquid film as a limitation step), the time required for 

complete pyrite oxidation for each set of biooxidation experiment can be predicted and it 

shown in table 3.5.   

Table 3.5: Time required (t total) for complete pyrite oxidation if the shrinking core 
model for diffusion through liquid film as a limitation step  
 
Culture  XB

 vs t  Ttotal Regression 
coefficient (R2) 

SL5B t = 0.0416x + 0.1467 20.51 0.5018 
Control (70oC) t = 0.0549x + 0.0203 17.85 0.9638 

Sb.Thermosulfodooxidans  t = 0.0048x + 0.0857 190.48 0.3746 
Control (45oC) t = 0.0024x + 0.034 402.50 0.6342 

T. Ferrooxidans  t = 0.0048x + 0.1009 187.31 0.3093 
Control (30oC) t = 0.0006x + 0.0168 1638.67 0.2111 
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3.2.2.5 Shrinking core and particle model for chemical reaction on pyrite  
 surface as a limitation step 
 

 The time required for complete pyrite oxidation for each set of biooxidation 

experiment can be predicted and it shown in table 3.6 (figure D2-D7: attachment D).   

 

Table 3.6: Time required (t total) for complete pyrite oxidation if the shrinking core 
model for diffusion through liquid film as a limitation step  
 
Culture  1-(1-XB)1/3  vs t  Ttotal Regression 

coefficient (R2) 
SL5B t = 0.016x + 0.0526 59.21 0.5305 

Control (70oC) t = 0.0204x + 0.0059 48.73 0.9720 
Sb.Thermosulfodooxidans  t = 0.0026x + 0.0441 367.66 0.3781 

Control (45oC) t = 0.0008x + 0.0115 1235.63 0.6446 
T. Ferrooxidans  t = 0.0017x + 0.0353 567.47 0.3179 
Control (30oC)  t = 0.0002x + 0.0056 4972.00 0.2115 

 

 

 From tables 3.4, 3.5 and 3.6, it is clearly shows that the addition of T. 

ferrooxidans and Sb.thermosulfodooxidans will accelerate the biooxidation process to 

around 8.7 times fold and 3.0 times fold respectively. However, for the biooxidation 

process at 700C, the system without culture showed the higher initial biooxidataion rate 

compared to with the present of SL5B. 

 

 Compared to table 3.2, figure 3.5 shows the pyrite solubilization profiles carried 

out for 15 days. Figure 3.5-A shows the pyrite oxidation profiles in the presence of  

SL5B, Sb.thermosulfodooxidans and T. ferrooxidans, while, figure 3.5-B shows the 

pyrite oxidation profiles minus the presence of  culture at 300C, 450C and 700C.  
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 It was interesting to note that pyrite bioleaching in the presence of SL5B resulted 

in 96.05% iron oxidation. Also, the biooxidation rate using SL5B was 1.36 and 1.81 

times higher compared to the biooxidation rate in the presence of 

Sb.thermosulfodooxidan and T. ferrooxidans respectively 

 

 It was also observed from fig 3.5-A that biooxidation of pyrite was enhanced in 

the presence of the thermophilic bacteria SL5B as compared to the mesophilic, T. 

ferrooxidans. This could be due to greater dissolution of sulphide mineral at elevated 

temperature. This was consistent with the reports for the improved dissolution kinetics 

of sulphides by extremely thermophilic bacteria (Dew et al., 1999; Konishi et al., 1998; 

Witne and Phillips, 2001). Also, the ability of the thermophilic culture SL5B to maintain 

low pH and high Eh values (figures 3.6-I (test) and figures 3.6-II (control)) could become 

important for the biooxidation process so that the formation of potentially deleterious 

precipitates could be minimized (figures 3.7-I (test) and figures 3.7-II (control)). These 

results were consistent with that reported by Arslan and Arslan, 2003; Dutrizac, 1983; 

Konishi et al., 1998a and Welham et al., 2000)  

 

Fiure 3.5-A: Percentages of 15 days pyrite 
solubilization. Oxidation using different type of 
culture, T. Ferrooxidans (300C), 
Sb.Thermosulfodooxidans (450C) and 
SL5B(700C).  

Fiure 3.5-B: Percentages of 15 days pyrite 
solubilization. Natural oxidation occurs at 
different temperature, 300C, 450C and 700C. 
Systems were run without a present of culture   
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In general, bioleaching process can be divided into three stages. An initial stage 

with extensive Fe3+ attack to the pyritic surface, which liberates Fe2+. The presence of  

high concentration of Fe2+ in solution, causes an increase in the concentration of free 

cells, which uses Fe2+ as an energy source. A small amount of bacteria is found attached 

to the pyritic phase. This stage is of major importance in order to obtain high dissolution 

rates. In second stage a balance between free and attached cells is reached, giving rise to 

a cooperative mechanism. In this case, the attached cells attack the pyrite phase of the 

mineral generating Fe2+. This in turn is oxidized by the free cells in solution, 

regenerating the oxidizing agent (Fe3+) for the indirect bioleaching of the mineral. The 

third stage involved extensive bacterial attachment to the pyritic phase. Pyrite surface is 

then saturated by the attached cells. Free cell slightly diminishes due to the saturation of 

the Fe3+ in solution (Gonz´alez et. al.1999 and Norris et al, 2000). 

 

 Referring to the pyrite solubilization trends (fig 3.6A), Trends of jarosite 

formation and ferric-ferrous trend (figures D-8 to D-13, Attachment D) and dissolved 

oxygen trends (figures D-14 to D-16, Attachment D). The leaching stages of SL5B, 

Sb.thermosulfodoxidan and T. ferrooxidans can be summarized in table 3.7: 

 

Table 3.7: Biooxidation stages of SL5B, Sb.thermosulfodoxidan and T. ferrooxidans 
 
Culture  SL5B Sb.T T. F 

Times  (hrs) 0-2  0-10 0-10 1st stage 

Solubilization rate: (%Fe sol/ hr)  

( 0-2nd hrs) 

17.787 10.281 9.5787 

Times (hrs) 2-168 24-168 24-120 2nd stage 

Solubilization rate: (%Fe sol/ hr)  

(24th-120th hrs) 

0.2604 0.3336 0.087 

Times  (hrs) 216-360 216-360 168-360 3rd stage 

Solubilization rate: (%Fe sol/ hr) 

(216th – 360 hrs) 

0.1731 0.0587 0.065 
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From table 3.7 it was observed that the highest solubilization rate of pyrite has 

been obtain at a initial stages of biooxidation (Fe3+ attack). Solubilization rate for the 

first 2 hrs oxidation are as follows; 17.79 (%Fe sol/ hr), 10.28 (%Fe sol/ hr) and 9.58 (%Fe sol/ hr) for 

SL5B, Sb.thermosulfodoxidan and T. Ferrooxidans respectively. The lowest iron 

solubilization rate was observed when the bacterial attachment to a pyrite surface was 

maximum (3rd stage). Iron solubilization rate during the 216th  to 316th hours was at 

0.1731 (%Fe sol/ hr), 0.059 (%Fe sol/ hr) and 0.065 (%Fe sol/ hr) for SL5B, Sb.thermosulfodoxidan and 

T. ferrooxidans. This rate was 10 fold lower then that observed during the first stage, 

which assumes that pyrite solubilization rate was controlled by diffusion of reactant 

(Fe3+) through permeable layer of pyrite oxidation product around the particle.  

 

 

 

3.2.2.6 Shrinking core model with diffusion of porous inert layer as a limitation 
 step 

 

 The iron oxidation behaviour for the 360 hrs can be simplify and elaborate into 

shrinking core model with the film diffusion with product layer considered as 

controlling step as shown in equation C-51 (attachment C). From figures D-17 to D-19, 

the reaction model and required reaction time (Ttotal) can be predicted in table 3.8. 

 

Table 3.8: The required bioleaching time for pyrite biooxidation using for SL5B, 
Sb.thermosulfodoxidan and T. ferrooxidans and its control, when product layer diffusion 
becomes a rate limiting step in leaching reaction: 
 

Initial pyrite size (r) 1-3(1-XB)2/3+2(1-XB) vs t   Ttotal Regression 
coefficient (R2) 

SL5B   t=0.0018XB-0.0034 557.4 hrs 0.95 
70oC  t=0.0002XB+0.0159  4920.5 hrs 0.78 

Sb.thermosulfodoxidan t=0.0008XB+0.0104 1237.0 hrs 0.93 
45oC t=0.00006XB-0.0002 16670.0 hrs 0.81 

T. ferrooxidans t=0.0004+0.0016  2496.0 hrs 0.88 
30oC t=0.00002+0.0001 49995.0 hrs 0.90 
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 From table 3.8, it was clear that the regression coefficient for shrinking core 

model with the product layer diffusion as controlling step is definitely high compared to 

the shrinking core and particle model with the film diffusion and chemical reaction as 

controlling step. i.e :  (R2) were at 0.95, 0.93 and 0.88 (shrinking core model with the 

product layer diffusion) compared to 0.5,0.4 and 0.3 (shrinking core and particle model 

with the film diffusion and chemical reaction as controlling step, Table 3.5 and 3.6) for 

biooxidation using  SL5B, Sb.thermosulfodoxidan and T. ferrooxidans respectively. Its 

show that the product layer diffusion is become dominant to the pyrite oxidation process 

in STR. However, it is like to note that the time required for complete oxidation of pyrite 

is highly increased if the product layer diffusion become a rate limiting step, as an 

example, the ttotal were increased 9.4, 3.4 and 4.4 times fold higher compared to the 

chemical reaction as limiting step (Table 3.6) for the STR biooxidation using  SL5B, 

Sb.thermosulfodoxidan and T. ferrooxidans respectively. 

 

 

 

3.2.2.7 Redox potential (EH) and pH profile for STR biooxidation of pyrite using 
 different types of culture 
 

 Figures 3.6 (I-VI) shows the pH and EH profile during bioleaching. TetraCon® 

combined electrode with WTW multi lab P4 meter was used to monitor solution pH. The 

electrode was standardized using 1 point calibration using pH-2 (di- Sodium hydrogen 

phosphate/potassium dihydrogen phosphate/orto-phosphoric acid) buffer solution. 

Solution redox potential was determined using WTW-SenTix ORP electrode. The 

electrode was filled with 3M KC1 solution. The thermodynamic relation of the potential 

EH to the composition of the solution is generally known as the Nernst equation (Stumm 

and Morgan, 1996) (Eq 3.2): 
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 The redox potential measures the tendency for a solution to either gain or lose 

electrons when it is subject to change by introduction of a new species. A solution with a 

higher redox potential will have a tendency to gain electrons from new species (i.e. 

oxidize them) and a solution with a lower redox potential will have a tendency to lose 

electrons to new species (i.e. reduce them). 

 

 If it is assumed that the ferric/ferrous exchange current density at the surface of a 

leaching particle is large enough to make the effect of the corrosion current, the surface 

potential of the particle can be considered equal to the redox potential of the solution at 

the surface. (Eaton, 1995) .A measurement of the solution redox potential can be related 

to the ratio of free ferric to free ferrous iron in an iron solution via the Nernst equation 

(Eq. 3.2). 

 

 
                                          E=E°+ RT   ln [Fe 3+]  
                                                       zF        [Fe 2+] 
  

Although measurement of the redox potential in aqueous samples is relatively 

straightforward, many factors limit its interpretation, such as irreversible reactions, slow 

electrode kinetics, non-equilibrium, presence of multiple redox couples, electrode 

poisoning, small exchange currents and inert redox couples. (ABB Instrumentation, 

1999) 

 

 

 

 

 

 

 

 

 

 

Eq. 3.2
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Figure 3.6-I: pH ■and Eh ♦profile during biooxidation 
study in STR using SL5B at 70oC. 
A: Profile for first 24 hours of biooxidation 

B: Profiles for day 1 to day 15 of biooxidation 
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Figure 3.6-III: pH ■and Eh ♦profile during 
biooxidation study in STR using 
S.Thermosulfodoxidans at 45oC. 
A: Profile for first 24 hours of biooxidation 

B: Profiles for day 1  to day 15 of biooxidation 

Figure 3.6-V: pH ■and Eh ♦profile during 
biooxidation study in STR using T. Ferrooxidans at 
30oC. 
A: Profile for first 24 hours of biooxidation 

B: Profiles for day 1  to day 15 of biooxidation 

Figure 3.6-II: pH ■and Eh ♦profile during natural      
oxidation in STR using  Sb.Thermosulfodooxidans 
medium at 70oC. Sterile condition 
A: Profile for first 24 hours of oxidation 

B: Profiles for day 1 to day 15 of  oxidation 

Figure 3.6-IV: pH ■and Eh ♦profile during natural     
oxidation in STR using  Sb.Thermosulfodooxidans 
medium at 45oC. Sterile condition 
A: Profile for first 24 hours of oxidation 

B: Profiles for day 1  to day 15 of  oxidation 

Figure 3.6-VI: pH ■and Eh ♦profile during natural     
oxidation in STR using  9K  medium at 30oC. 
Sterile condition 
A: Profile for first 24 hours of oxidation 

B: Profiles for day 1  to day 15 of  oxidation 
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 From figures 3.4 it was shown that SL5B, Sb.thermosulfodoxidan and T. 

ferrooxidans was able to maintain the low pH and high EH of solution compared to its 

control. It can be clearly seen that the pH profiles for the test experiment (containing 

culture) remained below pH 2.0 (except for the first 24 hrs for  S.thermosulfodoxidans). 

However, overall ph of SL5B i.e; 1.64 -1.86 was lower as compared to the overall pH of 

T.ferrooxidans which was between 1.91 to 2.04. 

 

 It is interesting to note that the initial EH value decreased drastically at a 

magnitude of 129.46 mV/hrs  (0-1st  hrs of culture SL5B ), 124.49 mV/hrs (0-1.5th   hrs 

of Sb.thermosulfodoxidan), 45.4 mV/hrs (0-0.5th  hrs of T. ferrooxidans ), 377.05 

mV/hrs (0- 1st  hrs of control at 700C), 301.59 mV/hrs (0-0.5th  hrs of control at 450C ) 

and 3.0 mV/hrs (0-0.5th  hrs of control at 300C ). At this zone, there was extensive attack 

of Fe3+ ion on the pyrite surface, producing Fe2+, leading to the decrease in Fe3+ / Fe2+ 

ratios.   

 

 During the biooxidation process, Fe2 is oxidized + to Fe3+ (Equation 3.3) and S0 

to SO4
2- (Equation 3.4) in acidic sulphate medium (Harrison 1982). 

 

 
                   2 Fe2+ + 0.5 O2 + 2H+  2 Fe3+ + H2O ( acid consuming) 

                   2S0 + 3O2 + 2H2O  2H2SO4               (acid generating)  

 

 

 By regenerating ferric iron, the bacteria is able to maintain a high redox potential 

in bioleaching systems. The existence of an indirect mechanism implies that the bacterial 

and chemical sub-processes can be characterised separately, allowing for the 

independent optimisation of bacterial growth and metabolism and mineral oxidation 

kinetics. 

 

 The pH trend for the control set (without culture) were remains increased from 

pH 1.89 to pH 2.93 (control at 700C), pH 1.87 to pH 2.51 ( control at 450C) and pH 2.02 

to pH 3.24 ( control at 300C). For the elevated temperature condition (control at 700C 

Eq 3.3

Eq 3.4
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and 450C) the increasing of pH is relative to the formation of jarosite and iron oxide 

(Table D-2 and D-4, attachment D).  

 

 The similar finding was also reported by Arslan and Arslan, 2003; Dutrizac, 

1983; Konishi et al., 1998; Welham et al., 2000. A high temperature would promote the 

precipitation of ferric iron even at low solution pH values. The formation of jarosite is a 

crystallization and acid consuming reaction, shown by the following stiochiometry 

(Equation 3.5, Elgesma et al, 1990).  : 

                                 

           

NH4
+ + 3Fe3+ + 2SO4

2- + 6H2O  NH4Fe3(SO4)2(OH)6 + 6H+ 

  

 

 However, for the control at 300C, the Fe3+ concentration in the solution is very 

low and the tendency of jarosite formation is very low. High pH trend for control at 

300C might be due to the formation of sulfur during the leaching. Elemental sulfur 

formation is favoured in a high acidity and low temperature solution, its become stable 

end product. Therefore, the oxidation of pyrite at 30oC is not reaching final sulfur 

oxidation state like sulfate(Bo Hu 2002). It will resulting a fluctuations in the pH value 

as shown in figure 3.7-IV. 

  

 The pyrite solubilization of control at 300C (figure 3.7-IV) takes place in the 

absence of ferric iron. The the pyrite solubilization probably proceeds via the acid 

attack. Kandemir, 1985 and Sand et al., 2001, have reported that oxidation of mineral 

sulphate by the acid attack, results in the formation of polythionates. Kandemir (1985) 

also reported that, in the absence of ferric iron, the overall oxidation of mineral sulphate 

is controlled by the removal of sulphur deposited on the mineral surface via sulfur 

oxidation pathways . And the oxidation of pyrite via sulfur oxidation pathways is a slow 

reaction.  Sulfur oxidation pathways during pyrite dissolution are shown in figure 3.7A 

(Bo Hu 2002). Figure 3.7B shows the formation of sulfur on the pyrite surface after 

natural leaching (without culture) using 9K medium at 300C for 15 days. 

Eq 3.5
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Figure 3.7A: Sulfur oxidation pathways during natural pyrite oxidation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7B:  SEM photographs of a pyrite surface after 15 days leaching at 30oC, in the 
absent of culture (Magnification 1000 X) 
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3.2.2.8 Iron solubilization and jarosite formation in the STR biooxidation of pyrite 
 using different types of culture 
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Figure 3.8-I: Concentration of iron present in 
medium ■ and jarosite ■ after 15 days 
biooxidation using SL5B at 700C.  

Figure 3.8-III: Concentration of iron present in 
medium ■ and jarosite ■ after 15 days biooxidation 
using S.termosulfudoxidans at 450C.  

Figure 3.8-V: Concentration of iron present in 
medium ■ and jarosite ■ after 15 days biooxidation 
using T.ferrooxidans at 450C.  

Figure 3.8-II: Concentration of iron present in 
medium ■ and jarosite ■ after 15 days leaching 
using S.termosulfudooxidans medium at 700C. 
Acted as control test (sterile condition) 

Figure 3.8-IV: Concentration of iron present in 
medium ■ and jarosite ■ after 15 days leaching using 
S.termosulfudoxidans medium at 450C, Acted as 
control test (sterile condition)

Figure 3.8-VI: Concentration of iron present in 
medium ■ and jarosite ■ after 15 days leaching 
using 9K at 300C, Acted as control test (sterile 
condition)
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 Figures 3.8 I-VI shows the iron speciation in a medium solution and in the form 

of jarosite and iron oxides. Based on experiments in figures 3.8 I to VI, formation of  

iron hydroxide precipitation is related to the temperature of  process. Highest rate of 

precipitation was observed a 700C (Figure 3.8 I and II). The overall rate of precipitation 

is at 21.38 ppmFe / hrs for control (Table D-2, attachment D) at 700C and 16.15 ppmFe / 

hrs for SL5B (Table D-1, attachment D). Iron precipitation during 15 days pyrite 

biooxidation using SL5B is 1.83 and 3.4 times fold higher then using 

Sb.termosulfudoxidans and T.ferrooxidans respectively (Table D-3 and D-5, attachment 

D).  

 

 Jarosite formation in control experiment at 700C is found take 2.97 and 7.19 

times fold higher then control experiment at 450C and 300C respectively. The overall 

iron precipitation rate can be expressed in table 3.9: 

 

Table 3.9: The rate of pyrite formation 
 
 d[Fe precipitation, ppm] /dthr  Regration 

coofficient 
SL5B d[Fe] /dt= 13.001t + 745.41 0.96 

Control at 70oC d[Fe] /dt =17.49 t + 921.09 0.93 

S.Thermosulfodooxidans d[Fe] /dt = 7.2032 t + 358.19 0.82 

Control at 45oC d[Fe] /dt = 6.2737 t + 218.34 0.93 

T. Ferrooxidans d[Fe] /dt = 3.9155 t + 290.63 0.64 

Control at 30oC d[Fe] /dt = 2.2809 t + 164.45 0.80 
 
 

 Another factor which influences the formation of jarosite is pH, Fe3+/Fe2+ ratios, 

pulp densities, Fe concentration and the presence of alkaline cation i.e: K+, Na+, NH4
+ or 

H3O+. The extensive precipitation of jarosite presumably effects the overall pyrite 

leaching. The formation of jarosites accurs via free ferric ion precipitates, which leads to 

the decrease in the concentration of ferric ion in solution (fig 3.8-II), reduce Eh value 

and increased pH value (fig 3.6-II and IV). Precipitation of jarosite leads to 
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agglomeration and crystallization, which will form a protective layer on the mineral 

surface, thus retarding the continued dissolution of pyrite. (Elgersma et al,1993). 

 

 Instead of a maintaining low pH value by SL5B, it has the potential to prevent 

massive formation of jarosite and iron oxides at elevated temperature (fig 3.8-I compare 

to 3.8-II) which is another key factor for the successful near-complete oxidation of 

euhydral pyrite (96.05%).  In this state, high concentrations of Fe3+ ion is in the free 

from in solution which leads to the increase in EH value, which the best possible leaching 

condition. 

 

However, the bioleaching behaviour of S. thermosulfidooxidans is slightly 

different with SL5B. Even at high pH value (pH~2.5) and elevated temperature (fig 3.6-

III A ), the amount jarosite precipitation is minimized (fig. 3.8-III and 3.8- IV). Jarosite 

was precipitated after the 48th hour. In the following periods, the pH value decreased 

from pH 2.11 to pH 1.39, probably as a result of excessive consumption of alkaline 

cation (K+, Na+, NH4
+ and H3O+) due to the precipitation. The stiochiometry of  jarosite 

formation is show in equation 3.6 (Nemati et al, 1998) 

 

3Fe3+ + M+ +  2H2SO4 + 6H2O  MFe3(SO4)2(OH)6 + 8H  

                          (M = K+, Na+, NH4
+ or H3O+)                    

                                                                                     Eq 3.6 

 

Instead of jarosite precipitation, the hydrolysis of ferric iron is a acid producing reaction, 

thus reducing the pH, and tends to stabilise the low pH. The ferric iron hydrolysed in 

aqueous solution is shown as follows (Nemati et al., 1998): 

 

 Fe3+ + H2O  FeOH2+ + H+      

 Fe3+ + 2H2O  Fe(OH)2
+ + 2H+     

 Fe3+ + 3H2O  Fe(OH)3 + 3H+          

 Eq 3.7 
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 However, the precipitation behaviour for the control at 70oC was very different 

when pH increased (fig 3.6-II and 3.6- IV) with increased jarosite formation. (fig 3.8-II 

and 3.8-IV). Jarosite formation reactions would also contribute to the acid consumption 

as shown in equation 3.6. 

 

 Another factor which affects the jarosite formation behaviour is presence of K+, 

NH4+, and Na+ in solution. The behaviour of K+ and Na+ during the precipitation of iron 

was in accordance with the relative stability of K-jarosite over Na-jarosite, as suggested 

by Dutrizac (1983), who reported that participation of alkali ions in the jarosite structure 

would be in the order of K+ >NH4 + >Na+. 

 

 Dutrizac (1983) reported the minimum concentrations of Fe3 +, K+, and Na+ in 

solution to be 0.001 M, 0.02 M, and 0.05 M respectively, for the precipitation of 

jarosites presumably at high temperatures. Despite the relatively low operating 

temperature the precipitation of K-jarosite was observed to occur from solutions 

containing 4.2 mM K+ and 12 mM Na+.  

 

 Fig 3.9 shows the formation of jarosite on a pyrite surface after abiotic leaching 

at 700C (control) compared with sulfur attachment on pyrite surface (Figure 3.10), 

abiotic leaching at 300C.  Jarosite is in the crystallized and agglomerated form, and have 

a high tendency to attach on a mineral surface. 
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3.2.2.9 Iron speciation in the STR biooxidation of pyrite using different types of 
 culture 
 

 From figures D-20 until D-25 (the speciation of free iron in a form of (ferrous 

ion)Fe2+ and (ferric ion) Fe3+, determined using KMnO4 titration (Sjahrir, 2001), the 

ratio of Fe3+ to Fe2+ in a medium during 15 days leaching, (within and without the 

present of culture) is present in table 3.7 (I: Bioleaching, II: control) 

 

 

 

 

 

 

 

 
 

Figure 3.9:  SEM photographs of a jarosite 
attach on a pyrite surface. Precipatation of 
jarosite during  15 days abiotic leaching at 
70oC, control, in the absence of culture 
(Magnification 20 000 X) 

Figure 3.10:  SEM photographs of a sulfur 
on a pyrite surface Precipatation of sulfur 
during  15 days abiotic leaching at 30oC, 
control, in the absence of culture 
(Magnification 5000 X) 
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 Results from figures D-20 to D-25 show that the Fe3+ concentration in solution  

is higher in the present of culture (figures D-20, D-22, D-24) compared to the control  

(figures D-21, D-23 and D-25). The highest amount of Fe3+ in a solution was obtained in 

the present of SL5B compared to Sb. Termosulfodoxidans and T.ferrooxidans. Iron 

dissolution rate and final extraction (fig. 3.5A) show a direct relationship with the Fe3+ 

concentration in solution (figures D-20 to D-25). It was more rapid with the 

thermophilic microorganisms than with the mesophilic microorganisms. Thermophiles 

also yielded a final Fe3 + concentration and dissolution extraction (96%: fig 3.7) higher 

than mesophiles due in part to the catalytic effect of the higher temperature used in the 

process (Boogerd et al., 1991). These results confirm that indirect bioleaching has a 

larger contribution to the dissolution mechanism of this mineral. This is in agreement 

with previous studies (Basaran and Tuovinen, 1987; Zeng et al., 1986; McKibben and 

Barnes, 1986; Kawakami et al., 1988; Boogerd et al., 1991; Mandl et al., 1999). 

 

Figure 3.11-I: Ratios of [Fe3+] / [Fe2+] in the  liquid 
medium during biooxidation study in STR using  ■ 
SL5B,  ■ S.Themorsulfodooxidans and  ■ T. 
ferrooxidans 

Figure 3.11-II: Ratios of [Fe2+] / [Fe3+] 
concentration in the  liquid medium during 
biooxidation study in STR at  ■ 70oC,  ■ 45oC and  
■ 30oC 
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 According to Huber et al., 1989, an extremely thermoacidophilic culture grows 

optimally at 70°C and at pH 2.0. This organism grow chemolithotrophically by 

oxidizing reduced iron and sulfur species (fig 3.7) through a membrane-bound transport 

system which coordinates electron and proton fluxes to produce ATP (Cobley and Cox, 

1983; Lu¨bben and Scha¨fer, 1989; Scha¨fer et al., 1990)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Studies of thermal stress in extreme thermoacidophiles have shown that either a 

small set of proteins or a single protein induced by heat shock has been associated with 

their prolonged survival at supraoptimal temperatures (Guagliardi et al., 1994; Han et 

al., 1997; Kagawa et al., 1995; Knapp et al., 1994; Peeples and Kelly, 1995; Trent et al., 

Figure 3.12: Generalized chemiosmotic network for extreme thermoacidophiles 
under normal growth conditions. This model (modified from Cobley and Cox, 
1983) couples the generation of proton-motive force to the phosphorylation of 
ADP and Fe2+ oxidation. Outside protons are translocated to inside the cell via an 
ATPase channel and pumped out through the electron transport chain (ETC). The 
electrons released from Fe2+ oxidation are consumed by oxygen which acts as a 
terminal electron acceptor. 
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1990; Waldmann et al., 1995).  A significant transmembrane pH gradient must be 

maintained across the cell membrane which, in fact, is required for chemiosmosis and 

subsequent electron translocation via iron turnover (Cobley and Cox, 1983). If this 

energy network were to be disrupted partially or entirely by chemical or thermal stress, 

one possible result is excess accumulation of protons intracellularly and a drop in 

internal pH (Peeples and Kelly, 1995). To survive, thermoacidophiles would need to 

reestablish the proton gradient, possibly through higher iron or sulfur oxidation rates, to 

generate ATP to compensate for the additional bioenergetic burden. The adaptation or 

metabolic response of extreme thermoacidophiles to certain bioenergetic challenges i.e., 

heat shock or respiratory uncouplers could be exploited to increase biooxidation rates 

(Chae J. Han, Robert M. Kelly,1997).  

 

 Referring to figures D-21, D-23 and D-25, the concentration of Fe2+ ion in a 

solution is highly dependent on temperature. Almost the entire Fe ion is in the form of 

Fe2+ in the control at 300C compared to control at 450C and 700C. The tendency of ferric 

ion formation will be increased at temperature and abiotic condition 

  

 The ratio of [Fe3+] to [Fe2+] is related to EH value i.e: high [Fe3+] / [Fe2+] ratio 

leads to the high EH value. However, the correlation is does not follow the theoretical 

[Fe3+] / [Fe2+] - EH correlation in a Nernst equation (Eq: 3.2, section 3.3.2.7) due to 

reasons discussed earlier. 
 
 Results from figures 3.11 shows that the initial ratio (T=0) of  [Fe3+]/ [Fe2+] is 

much dependant on temperature of reactor (Except for T.ferrooxidans ). The initial ratio 

(T=0) of Fe3+/ Fe2+ wes around 4.0 [Fe3+]/ [Fe2+] at 700C (SL5B and control), 1.5 [Fe3+]/ 

[Fe2+]   at 450C (Sb. Termosulfodoxidans and control) and 0.05 [Fe3+]/ [Fe2+]   at 300C. 

The initial [Fe3+]/ [Fe2+] ratio for T.ferrooxidans is 2.64[Fe3+]/ [Fe2+]. The results also 

shows that the initial [Fe3+]/ [Fe2+] ratio in liquid medium at elevated temperature (70 

and 450C) is similar either, in the presence and absence of culture. However, in the 

presence of SL5B and Sb.Termosulfodoxidans , the[Fe3+]/ [Fe2+] ratio  was 14% and 9% 

higher compared to its control. The initial [Fe3+]/ [Fe2+] ratio for T.ferrooxidans is 53.5 
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fold times higher compared to its control (at 300C).  This indicates that the 

T.ferrooxidans has a great capability to oxidize ferrous ion in its medium (figure D-24). 

 

 During the initial stages of leaching, all the systems show a drastic reduction in 

[Fe3+]/ [Fe2+] ratios. The highest [Fe3+]/ [Fe2+] reduction was obtained in  SL5B 

bioleaching, at 7.78  [Fe3+] / [Fe
2+

]
 hr-1 , followed by  6.51 [Fe3+] / [Fe

2+
]
 hr-1 for control at 700C, 

4.63 [Fe3+] / [Fe
2+

]
 hr-1 for  T.ferrooxidans , 2.02 [Fe3+] / [Fe

2+
]
 hr-1 for control at 450C and 1.82 

[Fe3+] / [Fe
2+

]
 hr-1 for Sb.Termosulfodoxidans. No [Fe3+]/ [Fe2+] reduction was observed in a 

control at 300C. During this phase, pyrite surface oxidized via Fe3+ attack as shown in 

equation 3.8: (Shrihari et al, 1995) 

                                                    

 14Fe3++ FeS2 (solid) +8H2O  15Fe2+ + 2SO4
2-+16H+ 

 
 It is possible to suggest that the Fe3+ reaction with pyrite (indirect leaching) is so 

fast that most of it is reduced to Fe2+, even in the presence of iron oxidizing 

microorganism (Nordstrom and Alpers 1998). It was observed that chemical pyrite 

oxidation rate per unit of surface area approaches a maximum at the start of the 

experiment i.e: minimum value of formation of sulfur and jarosite, polymers block by 

attaching cells and Fe3+ consumed at the surface. (Boon and Heijnen, 1998; Boon et al., 

1999 and Katrina et al 1998).  It can be suggested that the mass transfer rate of ferric 

iron from the bulk-phase to the pyrite surface does not become rate-limiting at the initial 

stage of bioleaching (M. Boon and J.J. Heijnen, 2001). 

 

 Oxidation of pyrite via ferric ion oxidation is an electrochemical process.  This 

process is further complicated by the fact that the oxidation of pyrite must require up to 

seven elementary steps, depending on how elementary steps are defined. Furthermore, 

the minerals are semiconductors and the reactions are electrochemical in nature. (Brown 

and Jurinak, 1989). This reaction is a cathodic reaction, which is associated with many 

oxidants that can accept electrons from iron sulfide minerals, including NO3+, Cl2, and 

H2O2, but the most important ones in nature are O2 and Fe3+ These react with pyrite 

based on the reactions 3.9 and 3.10: 

 

Eq 3.8
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 FeS2 + 3.5 O2 + H2O  Fe2+ +2H+ +2SO4
2- 

 

 FeS2+ 14 Fe3+ + 8H2O  15 Fe2+ + 16H+ + 2 SO4
2- 

 

 

 Cathodic reaction becomes the rate-determining step for the overall sulfide 

mineral oxidation. Brown and Jurinak (1989) and Williamson and Rimstidt (1994) 

showed that the pyrite oxidation rate depends on the concentration of Fe3+ or O2.  Studies 

of the interaction of the pyrite surface with O2 and H2O conducted under ultrahigh 

vacuum conditions using scanning tunneling microscopy, along with ultraviolet 

photoelectron spectroscopy by Rosso et al., (1999), indicated that the surfaces exposed 

to O2 show oxidative consumption of low-binding-energy electrons occupying dangling 

bond surface states localized on surface Fe atoms. When O2 is combined with H2O, there 

is a more aggressive oxidation of the surface, with discrete oxidation patches, where 

reacted surface Fe sites have lost surface state density to the sorbed species. Thus, for 

pyrite, the activated complex might involve the transfer of an electron to a hydrated Fe3+ 

adsorbed from solution from Fe2+ in the mineral surface. 

 

Py-Fe2+ ---Fe3+(H2O)6  py-Fe3+ --- Fe2+(H20)6 

 

 The Fe2+ is then released back to the solution, and an electron moves from an 

anodic site to reduce the Fe 3+ back to Fe2+ ( Lowson, (1982). Fenton-type mechanism 

has been employed for the reduction of O2 at the surface of oxidizing pyrite. Firstly, O2 

adsorbs at the Fe2+ site, and this is followed by the transfer of an electron from this site 

to the O2: 

  

Py-Fe2+ --- O2  py-Fe3+ --- O2H- 

 

 Then, a hydrogen ion reacts with the oxygen to produce HO2, and concurrently, 

an electron moves from an anodic site to reduce the Fe3+ back to Fe2+. This allows 

another electron to be transferred to the oxygen. 

Eq 3.10

Eq 3.9

Eq 3.11

Eq 3.12
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Py-Fe2+ --- O2H  py-Fe3+ --- O2H- 

 

 An additional hydrogen reacts with this peroxide group to produce H2O2, and 

concurrently, an electron moves from an anodic site to reduce the Fe3+ back to Fe2+. The 

transfer of a third electron from the Fe2+ to the peroxide converts one of the oxygen 

atoms to a hydroxide ion that is released to the solution and the other to a _OH radical: 

 

Py-Fe2+ --- O2  py-Fe3+ ---  -OH + O2H- 

 

 The Fe 3+ is again recycled to Fe 2+ by the transfer of another electron from the 

anodic site, and this electron moves to the -OH radical to convert it to OH-, which is 

released to the solution: 

  

Py-Fe2+ --- -OH  py-Fe3+ --- -OH- 

 

 

 Then, a final electron moves from an anodic site to reduce the Fe3+ back to Fe2+, 

leaving the site the same as it was in the beginning of the process, even though four 

electrons were transferred through.(Braga and Connick ,1982, Craig., Vokes and Solberg 

.1998, Doyle  and Mirza  1996, Holmes  and Crundwell. 2000 and Williamson and 

Rimstidt, 1993) 

 

 According to figure 3.11-I and II, extremely low [Fe3+]/ [Fe2+] ratios value were 

observed in these experiments (0.25th hrs for SL5B, 0.5th hrs for Sb. 

Thermofulfodoxidans, control at 70 and 450C and 1.5th hr for T. ferroxidans).  At these 

points, Fe2+ accumulated on the mineral surface, produces a diffusion barrier to attack of 

the mineral by Fe3+ (Cabral and Ignatiadis, 1999) and stops the dissolution process 

(Figure 3.6A).This phenomenon has also been observed by other researchers who 

attributed the pyrite oxidation rate by Fe3 + to the competitive chemisorption of ferrous 

Eq 3.13

Eq 3.14

Eq 3.15
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and ferric ions at the mineral surface (Zeng et al., 1986; Kawakami et al., 1988; Boogerd 

et al., 1991).  

 

 It is also interesting to note, that after the stated points, the [Fe3+]/ [Fe2+] ratios 

increased constantly in the presence of culture. The increasing rate of [Fe3+]/ [Fe2+] 

ratios during these phase were at 0.0184[Fe3+] / [Fe
2+

]
 hr-1 for SL5B, 0.0082[Fe3+] / [Fe

2+
]
 hr-1  

for Sb. Thermosulfodoxidans and 0.0054[Fe3+] / [Fe
2+

]
 hr-1  for T. ferrooxidans. However, 

the [Fe3+]/ [Fe2+] ratios remained low for the control set (Figure 3.12-II). The formation 

rate of [Fe3+]/ [Fe2+] ratios is nearly zero. The trend of [Fe3+]/ [Fe2+] ratios for control is 

slightly different. The low value of [Fe3+]/ [Fe2+] for control at 300C due to ferrous ion 

maintaining its form at this temperature. At 700C however, the precipitation of ferric ion 

is become dominating factor. 

 

 

 

3.2.2.10 Dissolved oxygen behaviour in the biooxidation of pyrite using different 
   types of culture 
 

 Figures 3.13- I ,II and III shows the percentages of oxygen partial pressure of 

solution in a STR abiotik and biotic condition at 700C, 450C and 300C and dissolved 

oxygen consumption rate during 48 incubation of pyrite free-cell suspension in the 

presence of SL5B (fig 3.13-I) Sb.termosulfudoxidans (fig 3.13-II) and 

T.ferrooxidans(3.13-III). Dissolved oxygen consumption rate for  pyrite free-cell 

suspension is determine to verify amount of cells in the liquid medium, where the solids 

in the leaching sample were sediment (removing all solid particles but not the cells) and 

the liquid part obtained was used as the inoculum in freshly prepared  medium.  

 

 The mineral dissolution process is also related to the cell growth since it 

establishes a higher or a lower Fe3 + regeneration capacity by microorganisms. (Jones 

and Kelly, 1983; Lizama and Suzuki, 1989; Curutchet et al., 1992; Nyakor et al., 1996) 

However, the studies of cell densities in correlation with bioleaching process is intricate. 

Ordinary methods using direct colony-forming unit (CFU) and turbidity determination 
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looks impracticable due to the formation of color during leaching, disturbance from 

pyrite, jarosite and sulfur particle and inability of iron oxidizer related bacteria to grow 

on solid medium. 

 

 The oxidation of iron–sulphide minerals results in the consumption of both 

oxygen and carbon dioxide (Harahuc et al., 2000), approximately equal amounts of total 

Fe being released per organism, at  4.3x1027 mmol Fe/ cell·day. (May et al, 1997). It is 

because of the ease of measurement of dissolved oxygen and the importance of this 

essential compound to determining the behavior of cell growth, a vast database of 

scientific literature has been produced regarding its effect on microbial kinetics (Peeples 

and Kelly, 1993 and Breed et al., 1999) Several investigations have successfully made 

use of respirometry methods to evaluate the activity of iron- and sulphide-oxidizing 

microbial activities (Sampson and Blake, 1999 and Harahuc et al., 2000). Boon (1996) 

introduced the combination of dynamic biological oxygen monitor (BOM) test and on-

line vent-gas analysis as an indication of culture growth behavior.  
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Figure 3.13-I: pO2 profile in STR using █ SL5B and █control at 70oC. 
Dissolved oxygen consumption rate █ for 48 hrs inoculation from STR solution 
containing SL5B.  
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 The solubility of oxygen (DO)is affected by temperature and by the partial 

pressure (pO2) of oxygen over the water. Oxygen in water is obeys Henry's law. The 

solubility is roughly proportional to the partial pressure of oxygen in the air (Standard 

Methods for the Examination of Water and Wastewater, 1965): 

pO2 = KO2 xO2  

where     pO2: partial pressure of oxygen  (Torr) 
              xO2: mole fraction of oxygen in oxygen-saturated water 
              KO2: is the Henry's law constant for oxygen in water (3.30 × 107 K/Torr 298 K) 
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Figure 3.13-II: pO2 profile in STR using █ S.Themorsulfodooxidans and 
█control at 70oC. Dissolved oxygen consumption rate █ for 48 hrs inoculation 
from STR solution containing S.Themorsulfodooxidans.  
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Figure 3.13-III: pO2 profile in STR using █ T.ferroxidans and █control at 70oC. 
Dissolved oxygen consumption rate █ for 48 hrs inoculation from STR solution 
containing T.ferroxidans.  
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 Higher air pressure means higher partial pressure of oxygen, Many empirical 

equations are available to accurately estimate oxygen solubility as a function of 

temperature, pressure, and humidity.  The following empirical equations that give the 

saturated dissolved O2 concentration (DO) in mg O2/L water (Atkins,, 1998) 

 
t < 30°C 

DO =(P-pO2) × 0.678 
             35 + t 

 
t>30°C  

DO =(P-pO2) × 0.827 
               49 + t 
 
where     pO2: partial pressure of oxygen  (torr) 
                  P: baromatic pressure (torr) 
                  T: temperature (oC)  

 

 During the experiment, the polarographic oxygen electrode has been used to 

measure the oxygen partial pressure in a medium in STR. A platinum cathode and a 

silver/silver chloride anode in a sodium chloride electrolyte solution, and a voltage of 

700 mV is applied . The following reactions occur. 

• At the cathode: O2 + 2H2O + 4e– = 4OH–. 

• In the electrolyte: NaCl + OH– = NaOH + Cl–. 

• At the anode: Ag + Cl– = AgCl + e–. 

 Electrons are taken up at the cathode and the current generated is proportional to 

oxygen tension. A membrane separates the electrode from medium, preventing 

deposition of protein but allowing the oxygen tension in the medium to equilibrate with 

the electrolyte solution. The electrode is calibrated at a constant temperature of 30°C. 

Two point calibration using air saturated distilled water and distilled water with zeroing 

gel. The solution indicated a 100% pO2 and 0% pO2 respectively. The value is equals to 

7.6 mgO2/L and 0 mgO2/L. (Mohd Zahari, 2002) Figure 3.15 shows the polagraphic 

oxygen electrode.  

Eq 3.17

Eq 3.18

Eq 3.19

Eq 3.20

Eq 3.21
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                               Figure 3.14: Polagraphic oxygen electrode.  

 Results from figures 3.13 (I, II and III) show, in general, the value of  pO2 

percentages  in a bioleaching process is particularly higher compared to its respective 

control. It is due to the higher oxygen (dissolved) consumption via bacterial respiratory 

and oxidation reaction then air bubbled-liquid oxygen transfers. Highest pO2 reduction 

was obtained in the SL5B at 0.046 %pO2/hr, followed by Sb. Thermosulfodoxidans at 

0.020 %pO2/hr and increment of pO2 in T.ferroxidans at 0.018 %pO2/hr.  

 

 The lower pO2 values indicated higher bacterial concentration in a solution.   

The cell grow autotrophically and obtain energy from the oxidation of ferrous iron and 

elemental or reduced sulfur compounds, using DO as the electron acceptor under 

oxidizing conditions (Colmer and Hinkle (1947) Keller and Murr (1982) Southam and 

Beveridge (1992) and Ledin and Pedersen (1996)). The reaction involved in biologically 

dissolved oxygen consumption is shown in equations 3.22 and 3.23: 

 

FeS2 + 3.5 O2 + H2O  Fe3+ + 2SO4
2- + 2H+     

and  

2Fe2+ + 0.5O2 + 2H+  2Fe3+ + H2O 

 

Eq 3.22

Eq 3.23
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 The direct mechanism (Eq 3.22) occurs with bacterial cells attached to the pyrite 

surface, where the cells use dissolved oxygen as the electron acceptor and biologically 

oxidize sulfur or iron by an enzyme system.  In the indirect mechanism (Eq 3.23) the 

cells oxidize soluble ferrous iron to ferric iron which chemically degrades pyrite (Brock 

and Gustafson (1976), Ehrlich (1981), Edwards et al (1999) and Yu et al. (2001)) 

  

 Another important point to note is a reduction of pO2 for the control set. 

Decreasing behavior for control set, which can be expressed in table 3.10: 

 

Table 3.10: pO2 reduction in the abiotic STR 
 
For control at 700C: 

 

d[DO (%pO2)]/dt = 13.04T(hrs)
2 - 44.33 T(hrs) + 93.403 

 

For control at 450C: 

 

d[DO (%pO2)]/dt = 2.5983 T(hrs)
2 - 18.559 T(hrs) + 94.7 

For control at 300C: 

 

d[DO (%pO2)]/dt = -63.2 T(hrs)
2 + 20.2 T(hrs) + 93.3 

 

 Large magnitudes of dissolved oxygen have been diminished from control 

solution at a elevated temperature, due to the low solubility of oxygen at high 

temperature. The oxygen slips into "pockets" that exist in the loose hydrogen-bonded 

network of water molecules without forcing them apart. The oxygen is then caged by 

water molecules, which weakly pin it in place. The dissolution is exothermic overall, so 

cooling shifts the equilibrium towards the dissolved form of oxygen.  

 Figures 3.13 (I,II and III) is also shows the rate of  dissolved oxygen 

consumption of  fresh inoculum of SL5B, Sb. Thermosulfodooxidans and T. ferroxidans 

for 48 hrs. Pyrite-free inoculum was taken from STR. The dissolved oxygen 

consumption rate from pyrite-free inoculums will provided useful information on a cell 

concentration in a STR. Stoichiometric relation between the bacterial growth rate on 
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substrate and oxygen consumption has been developed by Boon (1996) is shown in 

equation 3.24: 

 

-rO2 = rx/ Yox max + mO2 Cx 

Where   rO2 :O2 consumption rate (mol O2/L/hr) 
  Cx :Biomass concentration ( Cmol/L) 
 mO2:Maintenance coefficient of  O2 (mol O2/ C-mol/s) 

             Yox
max:Maximum yield coefficient per mol per oxygen ( C-mol/ mol O2) 

.            rx:substrate consumption rate 

 

 Dissolved oxygen consumption rate for pyrite-free suspension cell can be easily 

divided into 3 phase; exponential phase, stationary phase and death phase.  The 

exponential phase for the SL5B, Sb thermosulfodoxidans and T.ferroxidans can be 

expressed in table 3.11: 

 

Table 3.11: The dissolved oxygen consumption rate for pyrite-free suspension cell at the 
exponential phase  
 
SL5B      

 T=0 to T= 96hrs 

d[rD O mg/LO2 hr-2 ]/dt = 0.0418e0.0114T hrs            

(R2 = 0.7934)

Sb.thermosulfodoxidans  

T=0 to T= 72hrs 

d[rD O mg/LO2 hr-2 ]/dt = 0.0905e 0.004 T hrs            

(R2 = 0.608)

T.ferroxidans   

T=0 to T= 48hrs 

d[rD O mg/LO2 hr-2 ]/dt =  0.0622e0.013 T hrs            

(R2 = 0.7879)

d[rD O mg/LO2 hr-2 ]/dt : dissolved oxygen consumption rate 
                                                 

 

 During this phase, the cell was enormously generated at a leaching medium. 

Singer and Stumm (1970) reported that the presence of ferrous ion, oxygen, pyrite 

surface and acidic condition will support the bacterial growth. The presence of iron-

oxidizing bacteria accelerated the oxidation of ferrous iron by a factor larger than 106 

compared to abiotic conditions. The rate of pyrite dissolution in the enrichment non 

surface-attaching culture is reported to the approximately five times higher than the 

corresponding control. (Katarina et al ).  

Eq 3.24
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 The several kinetic studies on non microbial pyrite oxidation under oxic 

conditions successfully addressed the dependence of abiotic pyritic oxidation on DO 

concentration, ferric iron concentration and pH ( Olson,(1991)McKibben and Barnes, 

(1986); Nicholson, (1994); Williamson and Rimstidt, (1994). The rate laws of pyrite 

oxidation have been expressed as follows: 

 

        R = 10-8.19  [O2]0.50      [molm-2 s-1] 
                                   [H+]0.11 
 

And         R = 10-8.58        [Fe3+]0.30         .               [molm-2 s-1] 

                                  [Fe2+]0.47[H+]0.32 
 
 
 The dissolved oxygen consumption remains high during the stationary stage. 

Rates of dissolved oxygen consumption (-rDO2 ) was at -rDO2 =0.113 [mg O2L-1hr-1] for 

SL5B (hr 96th till hr 216th , fig 3.15-I), -rDO2 = 0.130[mg O2L-1hr-1] for  Sb. 

thermosulfodoxidans ( hr 72nd till  hr 168th , fig 3.15-II)  and -rDO2 =0.117 [mg O2L-1hr-1] 

for T.ferroxidans  (hr 48th till hr 72nd, fig 3.15-III). During this phase, the cell 

concentration in a medium was maximal. The concentration of Fe2+ and transfer 

availability of atmospheric CO2 in the medium became a limitation factor for bacterial 

growth (Katarina et al, ) 

 

 The dissolved oxygen consumptionrate (-rDO2) value for the death phase of cell in 

solution was performed at the end of test. The rate of dissolved oxygen consumption (-

rDO2 ) were found to decreased after hr 216th (SL5B), hr 168th (Sb. Thermosulfodoxidans) 

and 72nd (T.ferroxidans ) . The rate of decline was identical for SL5B, Sb. 

Thermosulfodoxidans and T.ferroxidans at 0.0002[mg O2L-1hr-2]. However, the 

T.ferroxidans achieved a death period quicker then SL5B and Sb. Thermosulfodoxidans.  

(Jones and Kelly (1983), Lizama and Suzuki (1989); Curutchet et al.(1992) and Nyakor 

et al.(1996) were reported that the  diminishing of mesophile cell is  due to the inhibition 

of the enzymatic path of  Fe2 + oxidation in the presence of high Fe3+ concentrations. 
 

Eq 3.25

Eq 3.26
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 Comparison between % of pO2 reading in STR and dissolved oxygen 

consumption rate (-rDO2) (figure 3.14-I,II,III), demonstrates the tendency of cell to adhere 

on the pyrite surface during the final phase of bioleaching test. Even at low dissolved 

oxygen consumption rate (-rDO2), the amount of pO2 in a STR (which is containing SL5B 

and Sb. Thermosulfodoxidanis) is found decreased. In the death phase for the SL5B 

(216hrs onward) and Sb. Thermosulfodoxidanis (168hrs onwards), the reducing of pO2 in 

the STR is dominated by the cell which is attach to mineral surface. In this experiments, 

the thermophiles cell attachment kinetics was greater compared to mesophiles. The 

finding is dissimilar with reported by Clark and Norris (1996) and Nemati and Harrison 

(1999) 

 

 A number of studies have reported the ability of the bioleaching microorganisms 

to adhere to mineral surfaces (Konishi et al. (1990), Dziurla et al. (1992) and Ohmura et 

al. (1993). A relationship thus exists between attachment and mineral dissolution rates. 

In the direct mechanism, bacterial attachment to the mineral surface takes place first, 

followed by enzymatic oxidation by electron transport from the reduced mineral. 

Shrihari et al. (1995), Dziurla et al. 1997 and Savic et al. (1999). 

  

 Scanning Electron Microscopy (SEM) of cell attachment to pyrite after 15 days 

biooxidation by SL5B and T. ferrooxidans is shown in figure 3.16 and 3.17 respectively. 

The distribution of SL5B on a pyrite surface is even as compared to agglomeration of 

T.ferrooxidans, on pyrite surface, mostly found in a pitting corrosion caused by bacteria. 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
  Figure 3.15: SEM photograph of attachment of SL5B cell on a pyrite surface 
(Magnification 30 000 X) 



 146

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3.16: SEM photograph of attachment of  T. ferrooxidans on a pyrite surface  
(Magnification 50 000 X) 
 

 The attachment kinetics was evaluated from the common bacterial adhesion 

model. This model assumes that bacterial adsorption follows a second-order irreversible 

kinetics with respect to the concentration of bacteria and substrate surface area in the 

system (figure 3.16). The model comprises two stages: an initial stage of reversible 

adhesion followed by an irreversible attachment. This can be represented in equation 

3.27: 
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Figure 3.17: The model of attachment kinetics of bacteria on pyrite surface.  
 
 

Eq 3.27
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 According to this model, the initial interaction between bacteria (B) and surface 

sites (S) involves the formation of a metastable complex ([BS]*), where the bacteria are 

held at a finite distance from the surface by a balance of repulsion and attraction forces. 

Once formed, the complex may dissociate reversibly, regenerating a free cell and surface 

site. Alternatively, the bacteria may expend metabolic energy for the production of 

biopolymers necessary to establish a permanent bacterium-surface site association (BS). 

However, the equation that describes the bacterial attachment phenomenon to metal 

sulfides is: 

 

Kat =      1                     ln [  Xb0 (1/a Ao –Xbs)   ] 
                       1/a A0 – X bo            [ 1/a Ao (Xbo  - Xbs)] 
 

Ka, is the attachment rate constant (ml/Cell.h);  
Ao, is the concentration of surface adsorption sites (cm2/cm3);  
a, is the projected area per bacteria (cm2/Cell);  
Xbo, is the initial concentration of free bacteria (Cell/ml); 
Xbs, is the concentration of attached bacteria on the solid surface (Cell/ml);  
t, is the time (h). 

 

 The attachment of acidophilic bacteria to mineral surfaces has been an area of 

much research. The interaction of the cell with the surface is dependent on a number of 

physical and biochemical parameters. Other studies have reported that the bacteria attach 

to the mineral surface by a variety of methods i.e: via adsorption (Takakuwa et al, 

1979), protein binding receptors (Sakamoto et al, (1989), Ohmura et al., (1996) and 

Ohmura and Blake, (1997), via chemical attachment (Schaeffer, (1963), via hydrophobic 

interactions (Loosdrecht van et al(1987), attachment by means of pili (Weiss, (1973) and 

the secretion of a slime layer (Golovacheva, 1979). 

 

 The parameters such as incubation time, agitation (Murthy and Natarajan (1992) 

particle size and pulp density (Shirhari et al., (1995), are important to the overall 

attachment and it has also been suggested that the actual attachment mechanism is based 

on specific and non-specific interactions of the system (Busscher and Weerkamp (1987). 

The interactions of the microorganism and mineral are shown to change the surface 

chemistry of the cell as well as that of the pyrite which it had interacted (Devasia et al., 

Eq 3.28
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(1993). Electrostatic, hydrophobic and specific protein interactions have all been 

investigated with respect to the attachment mechanism. The surface of a microbial cell is 

charged due to the presence of different functional groups; carboxyl (-COOH), amino (-

NH2) and hydroxyl (-OH) groups which are found in the cell wall material (Barrett et al., 

1993). Blake et al. (1994) showed that electrostatic interactions were only qualitatively 

involved in the attachment of Thiobacillus ferrooxidans to pyrite and sulfur. Devasia et 

al. (1993) found significant shifts in the isoelectric points of sulfur, pyrite and 

chalcopyrite after they had been in contact with cell. Similarly, hydrophobic interactions 

as measured through the contact angle have been shown to influence the cell attachment 

with hydrophobic cells having a greater adherence than hydrophilic cells (Loosdrecht 

van et al. (1987), while the effect of electrostatic interactions was shown to increase 

with decreasing hydrophobicity.  

 

 The hydrophobic interaction is due to the specific protein apo-rusticyanin acting 

as a receptor for the initial attachment (Ohmura and Blake 1997, Sasaki et al., 1999). 

Apo-rusticyanin can be considered as an iron atom surrounded by four amino acid 

ligands and is located on the cell surface. The attachment of the strain was shown to be 

very dependent on the growth conditions (Loosdrecht van et al, (1987), Ohmura and 

Blake (1999), the protein form (Sasaki et al., (1999), the addition of ferrous iron which 

caused a high percentage of the bacteria to detach from the pyrite surface (Ohmura and 

Blake, (1999). 

 

 Sb.  thermosulfidoxidans, a moderately thermophilic bacteria which grows 

autotrophically at 45°C was found to attach to pyrite with the formation of a slime layer. 

The cell produced abundant quantities of the slime, particularly in the area adjacent to 

the mineral (Golovacheva, 1979). A slime layer is a polysaccharide layer secreted from 

the cell which is often a zone of diffuse, unorganised material and is often easily 

removed (Prescott et al., (1996). Golovacheva (1979) suggested that a cellular 

chemoreceptor was a participant in the adhesion process of Sb.thermosulfidoxidans. 

Weiss (1973) suggested the attachment of Sulfolobus to a mineral surface was by means 

of clusters of pili or a well-developed glycolyax. Also, Murr and Berry (1976) found the 
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tenacious attachment (to pyrite or chalcopyrite) of an extremely thermophilic bacteria, 

similar to Sulfolobus acidocaldarius using scanning electron microscopy, provided 

strong support for the direct mechanism of the bacterial oxidation of sulfide minerals. 

Larrson et al. (1993) found that the attachment of Acidianus brierleyi to pyrite was 

important to the growth of the culture and the amount of pyrite dissolution. 

 

 

 

3.2.3 STR biooxidation of pyrite using SL5B at different pyrite pulp densities. 

 
 
 The objectives of the present work is to study the effect of mineral pulp density 

on the activity of SL5B and its ability to oxidize sulfide minerals and also to verify the 

maximum mineral concentration tolerated by thermophilic strain (SL5B) in a stirred tank 

bioreactor. In the presence of solids, the kinematics viscosity of the fluid tends to 

increase with the addition and increasing the concentration of solids. As a consequence, 

the smallest eddy size tends to increase significantly tempering further the likelihood of 

the potentially detrimental interactions between the cells and turbulent eddies in the 

presence of solids. (Deveci, 2001). The damage to bacterial cells would be compounded 

by increase in pulp density. In addition, Cherry and Papoutsakis (1986) postulated that 

there are actually three potential mechanisms lead to the bacterial damage at higher pulp 

densities namely: interactions with the turbulent eddies, particle–particle collisions, 

collisions between the particles and cells and reactor walls and impeller blades in 

particular, whereby the damage to microorganisms cells may occur. However, the size of 

the extreme thermophiles is most likely to be too small compared with the smallest eddy 

size generated in bioleaching operations suggesting the minimal hydrodynamic shear 

effects on the cells. (Clark and Norris, 1996; Nemati and Harrison, 2000; Gericke et al., 

2001; d_Hugues et al., 2002). Figure 3.18 shows the percentages of pyrite oxidation 

using SL5B using stirred tank reactor for 15 days. 

 

 

 



 150

0

25

50

75

100

24 72 120 168 216 264 312 360
0

25

50

75

100

0 10 20

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The results show that the ability of the thermophile SL5B to oxidize pyrite in a  

conventional stirred tank bioreactor is dependent on the mineral pulp density. The final 

pyrite oxidation was reduced 43.1% and 49.3% when pyrite concentration was increased 

to 3% and 5% compare to 1% pyrite ratio. The finding is different from that reported by 

Nemati and Harrison (2000) and Deveci (2002), where pyrite oxidation was affected at 

pulp densities greater then 10%. However the finding is in agreement with Acevedo et al 

(2004). 

 

 During the first 24 hrs oxidation (section 1, figure 3.18), the initial part of the 

curves with a sharper slope ( 0-5 hrs for 1% pyrite, 0-1hrs for 3% pyrite and 0-1.5hrs for 

5% pyrite) represents the oxidation of pyrite due to catalytic activity of growing cells, 

whereas the second part ( 5-24 hrs for 1% pyrite, 1-24hrs for 3% pyrite and 3-24hrs for 

5% pyrite) with a smaller slope represents the activity of a non-growing population of 

the cells (Nemati and Harrison, 2000). Boon (1996) is also proposed two sub-process 

mechanisms in the initial pyrite bioleaching i.e: 1) irreversible attached bacteria on the 

mineral surface specifically interact with sulfur moiety of the mineral and 2) pyrite is 

chemically oxidized to generate ferrous iron and sulfur, in this stages all bacteria and 

ferric ion has a full access to substrate. The first model was found 10 to 20 times larger 

Figure 3.18: Percentages of pyrite oxidation using SL5B. STR biooxidation conducted at 700C with 
different liquid medium to pyrite ratios: 1% (♦), 3% (■)and 5%(▲); Section A: 0 to 24hrs of 
biooxidation, Section B: 24hrs to 360hrs of biooxidation. 
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than second model, calculated using pyrite oxidation kinetic model. Irreversible cell 

attachment required 50% to 100% of pyrite surface recovered with mono layer attached 

bacteria with specific rate at µ≈ 0.1h-1 (Boon, 1996) 

 

Table 3.12: The rate of pyrite oxidation for the irreversible attached bacteria model and 
chemical oxidation model. 
 
 Model 1. Irreversible attached bacteria  Model 2. Chemical oxidation model 
Pulp 

densities 

Time Oxidation rate Time Oxidation rate 

1% 0-5 hrs d[X(%, Fe pyrite) ]/dt = 17.79 x 5-24 hrs d[X(%, Fe pyrite) ]/dt = 0.22 x + 29.64 

3% 0-1 hrs d[X(%, Fe pyrite) ]/dt = 12.99 x 1-24 hrs d[X(%, Fe pyrite) ]/dt = 0.90 x + 9.79 

5% 0 -1.5 hrs d[X(%, Fe pyrite) ]/dt = 9.10 x 1.5-24 hrs d[X(%, Fe pyrite) ]/dt = 0.13 x + 8.49 

  

  From table 3.12, the rate of pyrite oxidation for irreversible bacteria attachment 

was decreased with increased in pulp densities i.e the rate of pyrite oxidation rate was at 

17.79 % Fe/hr for 1% pyrite, 0.0736 % Fe/hr for 3% pyrite and 0.1291 % Fe/hr for 5 % pyrite. As 

mention before, the rate of oxidation at model 2 (Table 3.16) was 81, 14 and 70 times 

lower compared to model 1 (Table 3.12) for 1%, 3% and 5% pyrite respectively.  

 

 During the initial stages of pyrite oxidation deals with all bacteria and ferric ion 

has a full access to substrate.  The rate of solubilization of pyrite for the initial stages of 

biooxidation can be expressed into shrinking core and particle model with the film 

diffusion and chemical reaction considered as a limiting step. 

 

 

 

3.2.3.1 Shrinking particle model for diffusion through liquid film as a  limitation 
 step 
 

 From the figure E1-E3 (attachment E), where 1-(1-XB)2/3 vs leaching time 

(Shrinking particle model for diffusion through liquid film as a limitation step), the 
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time required for complete pyrite oxidation for each set of biooxidation experiment can 

be predicted and it shown in table 3.13.   

 
Table 3.13: Time required (t total) for complete pyrite oxidation if the shrinking particle 
model for diffusion through liquid film as a limitation step  
 
Culture  1-(1-XB)2/3  vs t  Ttotal Regression 

coefficient (R2) 
SL5B, 1% pyrite t = 0.008x + 0.2016 99.8 hrs 0.35 
SL5B, 3% pyrite t = 0.0098 + 0.087 93.2 hrs 0.80 
SL5B, 5% pyrite t = 0.0028x + 0.0612  335.3 hrs 0.23 

 
 

 

 

3.2.3.2 Shrinking core model for diffusion through liquid film as a limitation 
 step 
 

 From the figure E1-E3 (attachment E) where XB
 vs leaching time (Shrinking 

core model for diffusion through liquid film as a limitation step), the time required for 

complete pyrite oxidation for each set of biooxidation experiment can be predicted and it 

shown in table 3.14.   

 
Table 3.14: Time required (t total) for complete pyrite oxidation if the shrinking core 
model for diffusion through liquid film as a limitation step.  
 
Culture  XB

 vs t  Ttotal Regression 
coefficient (R2) 

SL5B, 1% pyrite t = 0.0058x + 0.1405 148.2 hrs 0.39 
SL5B, 3% pyrite t = 0.0070x + 0.0587 134.5 hrs 0.82 
SL5B, 5% pyrite t = 0.0019x + 0.0414 504.5 hrs 0.23 
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3.2.3.3 Shrinking core and particle model for chemical reaction on pyrite 
 surface as a limitation step 

 The time required for complete pyrite oxidation for each set of biooxidation 

experiment can be predicted and it shown in table 3.15 (fig D2-D7: attachment D).   

Table 3.15: Time required (t total) for complete pyrite oxidation if the shrinking core 
model for diffusion through liquid film as a limitation step  
 
Culture  1-(1-XB)1/3  vs t  Ttotal Regression 

coefficient (R2) 
SL5B, 1% pyrite t = 0.0032x + 0.0735 289.5 hrs 0.38 
SL5B, 3% pyrite t = 0.0037x + 0.0297 262.2 hrs 0.84 
SL5B, 5% pyrite t = 0.0010x + 0.021 979.0 hrs 0.23 

 

 

 From tables 3.13, 3.14 and 3.15, it is clearly shows that the increasing of pyrite 

pulp densities to 3% will accelerate the initial biooxidation process (formation of inert 

products is negligible) to 6.65%, 9.26% and 9.42% when the diffusion through liquid 

film for shrinking core and shrinking particle, and chemical reaction considered as 

limitation step respectively. However, increasing of pyrite to 5% the time required for 

complete oxidation was increased around 3.4 times higher for the shrinking core and 

particle model with the liquid film diffusion and chemical reaction become a limitation 

step. 

 

 After 24 hr of bioxidation, the pyrite solubilization steadly increased at a rate of 

0.1902 % Fe/hr . 0.0736 % Fe/hr  and 0.1291 % Fe/hr for 1%, 3% and 5% pulp densities of pyrite. 

The reduction in the bioleaching rate can be due to the fact that at higher concentrations 

of solids, friction between particles increases, and may consequently cause some 

mechanical damage to the cell (Deveci, 2002 and Chong et al 2002). Extremely 

thermophilic archae such as Sulfolobus and Acidianus lack a rigid peptidoglycan cell 

wall (Michel and Neugebauer, 1980, Konig  and Stetter, 1986 and Konig,1988).Also, the 

fluidity of cellular membrane increases with temperature (Kelly and Deming, 1988). A 

combination of these factors results in a potential for archae to be sensitive to shearing 

effect.  The effect is due to the hydrodynamic interactions between moving particles, 
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which leads to shearing effects on immobilized microorganisms from the surface of 

sulfide particles (Karamanev et al, 2001). However, the effect of particle shearing on the 

leaching rate has not been measured quantitatively. The effect will be applied by the 

addition of solid particles. The addition of particles creates a significant shear stress in 

liquid media (Soljanto et al.1980). It is worth noting that the overall effect depends on 

the relative importance of each of the following mechanisms i.e: The surface of the 

added particles is used by microorganisms to form a biofilm. This accelerates 

bioreaction because the number of microorganisms in the biofilm is extremely high. The 

increase in the production of ferric ions will also increase the rate of oxidation of pyrite 

(Crundwell, 1996, Loi et al., 1993, and Karamanev and Nikolov, 1988).  The addition of 

particles creates a significant shear stress in liquid media. This probably affects 

negatively the microbial growth and, therefore, the bioreaction rate; when oxygen was 

dissolved by air sparging, the addition of fine particles decreases the rate of oxygen 

transfer from gas bubbles to liquid. In the case of the oxygen-transfer controlled process, 

this will reduce the overall rate of biooxidation. (Bailey and Hansford, 1993; Neale and 

Pinches, 1994; Van Weert et al., 1995). However, each of these mechanisms is affected 

differently by the nature of solid particles: size, density, surface characteristics, and 

chemical composition.  

 
 
 
 
3.2.3.4 Shrinking core model with diffusion of porous inert layer as a limitation 
 step 

 

 As mentioned at 3.2.2.4, the iron oxidation behaviour for the 360 hrs can be 

simplify and elaborate into shrinking core model with the film diffusion with product 

layer considered as controlling step as shown in equation C-51 (attachment C). From 

figure E-4 (attachment E), the reaction model and required reaction time (Ttotal) can be 

predicted in table 3.16: 
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Table 3.16: The required bioleaching time for pyrite biooxidation using for SL5B, 
Sb.thermosulfodoxidan and T. ferrooxidans and its control, when product layer diffusion 
becomes a rate limiting step in leaching reaction: 
 
Initial pyrite size (r) 1-3(1-XB)2/3+2(1-XB) vs t   Ttotal Regression 

coefficient (R2) 
SL5B, 1% pyrite   t=0.0019XB-0.0032 528.0 hrs 0.96 
SL5B, 3% pyrite  t=0.0004XB+0.0102 2474.5 hrs 0.93 
SL5B, 5% pyrite t=0.0003XB+0.0026 3324.7 hrs 0.94 

 

 

 From table 3.16, it was clear that the regression coefficient for shrinking core 

model with the product layer diffusion as controlling step is definitely high compared to 

the shrinking core and particle model with the film diffusion and chemical reaction as 

controlling step. i.e :  (R2) were at 0.96, 0.93 and 0.94 (shrinking core model with the 

product layer diffusion) compared to 0.35, 0.80 and 0.23 (shrinking core and particle 

model with the film diffusion and chemical reaction as controlling step, Table 3.14 and 

3.15) for biooxidation using  1%, 3% and 5% of pyrite respectively. It shows that the 

product layer diffusion is become dominant to the pyrite oxidation process in STR at 

pyrite pulp densities 1 to 5%. The required time for complete oxidation for the pyrite 

oxidation with the product layer diffusion as controlling step is related to the pulp 

densities, increasing of pyrite to 3% and 5% were increased the Ttotal to 4.69 and 6.30 

times higher respectively. 
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3.2.3.5 Iron speciation and jarosite formation in the STR biooxidation at different 
 pyrite pulp densities 
 

Fig 3.19 shows the composition of solubilized iron in a solution and iron in the form of 

precipitates in the STR biooxidation using SL5B at pyrite.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Even at low percentages of pyrite oxidation, the actual iron oxidized at 5% pyrite 

concentration is 158% and 51% higher compared to 1% and 3% pulp densities. The 

overall rate of iron oxidation is at 53.81 ppm Fe/hr,   41.41 ppm Fe/hr and 22.375 ppm Fe/hr for 
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5%, 3% and 1% pulp densities respectively. The other interesting point is a rapid 

formation rate of jarosite was observed at 96th to 360th hrs for 5% pulp densities. At this 

moments, the DO consumption rate by freely suspension culture (fig 3.20), pH (fig 

3.21), EH (fig 3.21) and Fe3+/Fe2+ ratios (fig 3.20) were found reduced drastically. The 

formation of precipitates of the jarosite-type are accelerated by the physiological stress 

imposed by the high mineral concentration at high temperature environment, which is 

caused the diminishing of free suspended culture, (Elgersma et. al, 1993 and Johnson et 

al, 1999 and Shrihari,1993).   

 

Figures 3.20  show the concentration of free iron in a form of Fe2+ and Fe3+ during 15 

days biooxidation using SL5B. 
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 The ferric ion concentration was reduced immediately after addition of pyrite. At 

a high temperature (700C), reduction of Fe3+ was found at 401.4 mol/hr (1% pyrite), 517.5 
mol/hr (3% pyrite) and 466.4 mol/hr (5% pyrite). High rate of Fe2+ generation during the 

early process was due to the direct attack of Fe3+ on reactive sites at the pyrite (Boon, 

1996). The Fe3+ production then steadily increased during biooxidation with 1% and 3% 

pyrite. The rate of  Fe3+ production for 1% pyrite was at 11.242 [Fe3+]mol /hr for 0.5  hr 

to 10 hr and decreased to 0.082 [Fe3+]mol/hr for subsequent hours; for 3% pyrite, the rate 

was slightly low, at 8.874 [Fe3+]mol/hr and 0.072 [Fe3+]mol/hr.  Compared with 5% pyrite, 

the Fe3+ production was negative after 48 hours biooxidation. For the first 10 hrs, the 

Fe3+ production increased exponentially at 26.87 hr-1 . The Fe3+ however, diminished 

exponential at a rate of 41.93 hr-1 after 48 hour of biooxidation. The production of Fe3+ 

in a solution is highly related to the amount of freely suspended culture in the systems  

(fig 3.22). Fig 3.20-D shows the impact of pyrite concentration on the ratios of (Fe3+ 

/Fe2+). Low pyrite concentration leads to the higher [Fe3+ ]:[Fe2+ ]ratios. As an example, 

the average [Fe3+ ]:[Fe2+ ]ratio were at 3.04, 0.57 and 0.45  for biooxidation with 1%, 3% 

and 5% pyrite respectively. High [Fe3+ ]:[Fe2+] ratio at the end of biooxidation with 1% 

pyrite is a important factor for superior performance in the pyrite solubilization rate.   

. 
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3.2.3.6 Redox potential (EH), pH and dissolved oxygen profile for STR biooxidation 
 of pyrite using different types of culture 

 

 The profiles of pH and EH of SL5B bioleaching at 1%, 3% and 5% pulp densities 

is shown in figures 3.21 A-C. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 The pH value for first 24th hrs bioleaching were found significantly similar for 

the concentration of pyrite at 1%, 3% and 5%. The pH then steadily decreased at a rate 

of 0.0004 pH unit/hrs, 0.0014 pH unit/hrs and 0.0015 pH unit/hrs for leaching at 1%, 3% and 5% 

pulp densities of pyrite. The immediate reduction in Eh value was observed during the 

first hour upon pyrite addition. The initial EH decreased at a rate of 129.46 mV ORP/hrs , 

201.13 mV ORP/hrs and 225.65 mV ORP/hrs for 1%, 3% and 5% pulp densities respectively. 
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Figure 3.21: pH (■)and EH (♦)profiles of 
pyrite oxidation using SL5B. STR 
biooxidation conducted at 700C with 
different ratios of medium: pyrite: 1%(A), 
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of biooxidation, Section B: Subsequent 
biooxidation at hr 24th to hr 360th. 
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The possibilities of initial EH reduction is due to the bulk formation of ferrous ion in 

solution, as shown in pyrite anodic oxidation reactions:  (Holmes and Crundell, 1999) 

 

FeS2 + 8H2O + 14Fe3+  15Fe2+ + 2SO4
2- + 16H+ 

2FeS2 + 2H2O + 7O2  2Fe2+ + 4SO4
2- + 4H+ 

 

 The Eh value showed a constant increase from 1st hr to the 96th hr. its might be 

due to the formation of ferric ion via bacterial oxidation in the system, as shown in the 

following equation: 

 

4Fe2+ + O2 + 4H+  4Fe3+ + 2H2O 

 

 The overall rate of EH increased was at a 1.6178 mV ORP/hrs , 0.582 mV ORP/hrs and 

2.4076mV ORP/hrs for 1%, 3% and 5% pulp densities respectively. The ferrous and ferric 

ions are cycled between the pyrite oxidation reaction and ferrous ion oxidation reaction. 

The overall reaction generates acid, which results in decreasing pH values as shown in 

figures 3.24. 

 

 The EH-pH trends in the experiments involving 1% and 3% pyrite were quite 

similar.Where, decreasing pH values leads to increasing EH value. Similar findings were 

reported by Bunyok, 2004 and Shahjir 2001. This is an ideal condition in bioleaching; 

where the iron and sulfur in the pyrite were completely oxidize to the ferric ion and acid 

sulfuric.     

 

 However, the trends of EH-pH bioleaching in the presence of 5% mineral 

contrasted with that achieved with pulp densities of 1% and 3%. Initially a short lag 

phase in pH decreased was observed from 0 to 96 hrs. This was followed by a sharp 

decrease in pH value. During this phase, the EH value ranged from 622mV to 441mV. 

Rapid pyrite oxidation at low EH and pH value is most likely due to the presence of 

partially oxidised ions of sulphur, such as S2O4
2-:-, SO2

-, which are the intermediate 

products released into liquid by the cells attached to solids (Asai, 1992)..These 

Eq 3.29
Eq 3.30

Eq 3.31
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intermediate ions are known to inhibit oxidation of Fe2+ and can also form the substrate 

for the cells in the liquid (Asai, 1992), thus explaining their survival. While this 

mechanism has been shown to be operative in the case of the leaching of sulphur 

(Shrihari, 1993), it could also be operating in the present case. When a lesser quantity of 

solid substrate is available, the alternate substrate may not be present in sufficient 

quantity and the bacteria in the liquid phase may have to use the Fe3+ present in the 

liquid (Asai, 1992). 

 
 Figure 3.22 show the dissolved oxygen in the STR during the SL5B biooxidation 

using 1%, 3% and 5% of pyrite. The free pyrite solution from the STR then inoculated in 

the 25L shake flasks. The dissolved oxygen consumption after 48hrs of inoculation is 

then shown in figure 3.24.  Disolved oxygen level in reactor (fig 3.22) will  indicate the 

amount of active culture in theSTR, while the 48hrs oxygen consumption rate of 

inoculum will indicate a freely suspended culture in the solution. The method is a 

modification from off-gas Clark cell methods by Boon (1996)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.22: Profile of  %pO2 of pyrite oxidation using SL5B. STR biooxidation conducted at 700C 
with different pyrite concentration: 1% (♦), 3% (■)and 5%(▲);  
Section A: First 24 hrs of biooxidation,  
Section B: Biooxidation at 24 to 360 hr. 
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 A higher dissolved oxygen concentration was observed in the reactor containing 

lower concentration of pyrite. The average oxygen partial pressure (%pO2) in a STR 

were 46.76%, 42.47% and 32.14% in the medium containing 1%, 3% and 5% of pyrite 

respectively. During biooxidation processes, the pulp density affected the oxygen and 

carbon dioxide transfer between gas and liquid phase. At high pyrite concentration, more 

force from impeller agitation and bubble flow are consumed to meet the demand of 

solids suspension.  

 

 The dissolved oxygen level was found to decrease after addition of pyrite: for the 

biooxidation containing 1% and 3% pyrite, the %pO2 level decreased at a rate of 8.41 

%pO2/hr and 5.87%pO2/hr for the first 2 hrs.  For the biooxidation with 5% pyrite, the 

%pO2 reduced constantly until the 10 hrs, at a rate of 3.16 %pO2/hr.  This might be due 

to the hydrodynamic shear forces effect in the reactor and a rapid increase in bacterial 

population. However, the dissolved oxygen consumption rate by free-pyrite cell 
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Figure 3.23: Profile of dissolved oxygen consumption by free-pyrite cell suspension of  SL5B . Cell 
from STR biooxidation conducted at 700C with pyrite concentration : 1% (♦), 3% (■) and 5%(▲); 
inoculated in a fresh medium for 48 hrs;  
Section A: First 24 hrs of biooxidation,  
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SECTION A 
SECTION B 

TIME (Hour)

O
2 

 c
on

su
m

pt
io

n(
m

gO
2/h

r)
 



 163

suspension shows no increment during the first 2hrs of bioleaching for the entire test. 

During this period, the bacteria has a high tendency to attach on the pyrite surface. 

 

 For the experiment with 1% pyrite, the dissolved oxygen consumption rate by 

freely suspended cell increased considerably until the 154th hr at a rate of 5.0x104 

mgO2/hr2, followed by a decrease in DO consumption at a rate of  2.0x104 mgO2/hr2. 

Compared to the system with 3% pyrite, the DO consumption rate remains constant at 

0.033 mgO2/hr2 until 48 hours of biooxidation. The DO consumption rate then suddenly 

increased at 72 hrs and followed by a plateau region between 72 hrs to 154th hrs, 

indicating the stationary phase of microbial growth. A decreased in dissolved oxygen 

consumption rate at  6.0x104 mgO2/hr2, representing the dead phase of culture at the end 

of  the biooxidation stages i.e; hrs 154th to hrs 360th. 

 

 

 
3.2.4 STR bioleaching of different pyrite size using SL5B.   
 
 
 The rate of biooxidation of refractory gold concentrates is influenced by several 

operational factors. It is recognized that increasing pulp densities and decreasing 

particle sizes have a positive effect in the volumetric rate of biooxidation, as both 

situations result in an increase in surface area. Nevertheless, it has also been noted that 

the interaction among these factors together with a variety of associated phenomena 

such as mechanical damage, metabolic stress and inhibitory concentrations of ferric ion, 

can limit this positive effect and even result in declining leaching rates (Bailey and 

Hansford 1993, Kandler & Konig 1998, Sleytr and Beveridge 1999 d’Hugues et al. 

2001; Sissing and Harrison 2003). 

 

 On the other hand, decreasing particle size can reduce the leaching rate, probably 

because of difficulties in cell attachment when the diameters of particles and cells 

become of similar magnitude. It is also likely that the rate of collision between particles 

increases as particle size diminishes and that the physicochemical properties of the 

suspension are altered (Howard and Crundwell 1999; Nemati et al. 2000; Harrison et al. 
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2003). The objective of this work was to determine the optimal values of particle size 

that maximize the volumetric rate of solubilization of iron from a pyrite when using the 

thermophilic culture SL5B in STR. 

 

 

 
3.2.4.1 Disolved oxygen consumption profile, pH, Redox potential (EH) and  
 Fe3+/Fe2+ profile during biooxidation 
 

 
 Figure 3.24 shows the pH, ln(Fe3+/Fe2+) and EH profiles of pyrite oxidation using 

strain SL5B. STR biooxidation conducted at 700C with different size of pyrite: 75µm 

(3.30-A), 125 µm (3.30-B) 180 µm (3.30-C), 250 µm (3.30-D) and 500 µm (3.30-E). 

These parameters develop a suitability of the environment to microbial life. It’s very 

convenient ways of characterizing the viability of certain species (Lundgren and Dean, 

1979). 
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Figure 3.24-A: pH (♦), ln(Fe3+/Fe2+) (▲)and 
EH (■)profiles of pyrite at size 75µm  
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Figure 3.24-C: pH (♦), ln(Fe3+/Fe2+) (▲)and 
EH (■)profiles of pyrite at size 180µm  
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Figure 3.24-B: pH (♦), ln(Fe3+/Fe2+) (▲)and 
EH (■)profiles of pyrite at  size125µm  
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Figure 3.24-D: pH (♦), ln(Fe3+/Fe2+) (▲) and 
EH (■)profiles of pyrite at size 250µm  
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 The pH , ratios of Fe3+/Fe2+ and EH value is very dependent to each other, and 

become a limiting parameters in the biooxidation process (Boon, 1996). It is also 

become indicator in the performance of the biooxidation process. The correlation 

between the following parameter is shown in equation 3.32, 3.33 and 3.34 (Rossi, 1990): 

 

  

 

 

 The pH and Eh value is express from electrochemistry study, where the 

relationship between hydrogen partial pressure, hydrogen ion and redox potential is 

shown in equation 3.33 and  3.34 ( Rossi,1990 ). 

 
 
 
 
 
Where 
 
 
 
 
 
 
  The pH trends for biooxidation with 75µm, 125 µm  and 180 µm remains 

constant at average pH 1.85 for the initial phase of biooxidation (for the first day of 

biooxidation). Compared to the larger particle, 250 µm and 500 µm pyrite, the pH were 

sudden increased (hour 0 to 15th mnt) after addition of pyrite. The pH rate increased was 

higher with 500 µm pyrite, at 0.53 pH/hr compared to the 0.15 pH/hr for 250 µm pyrite. 

Its might be due to the the larger particles of pyrite containing a high amount of silica 

and carbonates (Nemati et al, 2000). The pH then sharply decreased at the rate of 0.05 

and 0.07 pH/hr for 500 µm and 250µm pyrite.  

 

 It is like to stress that amount of pH reduction for the first day of biooxidation 

(from mnt 15th to hours 24th) were highly influence by the size of pyrite. The average pH 

Eq 3.32

Eq 3.33

Eq 3.34
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reduced were at 0.0005 pH/hr, 0.0008 pH/hr,  0.0026 pH/hr, 0.002 pH/hr 8 and 0.0063 

pH/hr for 75µm, 125 µm, 180 µm, 250 µm  and 500 µm of pyrite respectively.      

 

 Compared with the E H  and Fe3+/Fe2+  trend, The value for the finer particle of 

pyrite was drastically decreased after addition of pyrite (from t=0 to t=30mnts) . The 

higher drop rate of the E H and Fe3+/Fe2+ value were observed in a biooxidation process 

containing finer particle of pyrite. The decreasing rate rate of initial EH and Fe3+/Fe2+ is 

shown as follows (table 3.17).  In contrast with fine partile, the E H and Fe3+/Fe2+ value 

for coarse particle 500 µm shows a little increased after addition of pyrite.  

 

 

Table 3.17: The decreasing rate rate of initial EH and  Fe3+/Fe2+ (from t=0 to t=30mnt) 
for the biooxidation using SL5B strain, containing 75µm, 125 µm  and 180 µm of pyrite. 
 
   

75µm  

 

dEH /dt= -210.6 mV/hr ln [Fe3+]/[Fe2+] /dt  = -7.147 hr-1 

125 µm 

 

dEH /dt= -88.8 mV/hr ln [Fe3+]/[Fe2+] /dt  = -3.932 hr-1 

180 µm 

 

dEH /dt= -147.6 mV/hr ln [Fe3+]/[Fe2+] /dt  = -2.124 hr-1 

250µm  

 

dEH /dt= -9.4 mV/hr ln [Fe3+]/[Fe2+] /dt  = 0.175 hr-1 

500 µm 

 

dEH /dt= 39.0 mV/hr ln [Fe3+]/[Fe2+] /dt  = 1.055 hr-1 

 

 
 From the results, the initial E H  and Fe3+/Fe2+  is highly dependent on a pyrite 

size, finer pyrite size or higher pyrite surface area leads to the higher rate of initial EH 

and  Fe3+/Fe2+ reduction. During the first hour of oxidation, the surface pyrite oxidation 

by ferric ions was dominating the process. However, due to the limitation in pyrite 
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surface area in larger particle i.e: 500 µm , its become a limiting factor on the ferric 

surface reaction.  

 

 Contrastive with pH trends, the overall EH values were considered increased 

during booxidation process for the 75µm, 125 µm and 180 µm. It is follows by the 

increasing in the ratios of Fe3+/Fe2+ value. The identical observation is also reported by 

Sjahrir (2000) and Bunyok (2004).  Synonym with the pH trend observation, the rate of 

increasing in EH value were inspirited by particle size. The finer particle size leads to the 

superior increased in overall EH value. The average EH raised were at 0.852, 0.823 and 

0.573 mV/hr for 75µm, 125 µm and 180 µm of pyrite respectively. However, for 

biooxidation with 250 µm and 500 µm of pyrite, the EH value considerably constant at 

the low value (at average of 495mV and 503mV for 250 µm  and 500 µm)  until the end 

of experiments.   

 
 Liquid solution from the biooxidation process was taken from the STR and 

inoculumn in the 250ml shake flasks. Sterilized silicon oil was then added into flasks to 

avoid oxygen transfer into inoculum. The dissolved oxygen consumtion for 48 hour 

incubation were recorded. Figures 3.25 shows the profiles of dissolved oxygen 

composition rate in a inoculation solution, for the SL5B biooxidation using different size 

of pyrite. 
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Figure 3.25-A: Profile of DO consumption rate by free-
pyrite cell suspension of  SL5B. Pyrite size: 75µm.  
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Figure 3.25-B: Profile of DO consumption rate by free-
pyrite cell suspension of  SL5B Pyrite size: 125µm.  
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 The trends in microbial growth and bioleaching observed with finer size fractions 

(75 µm, 125 µm and 180 µm) were similar to one another but contrasted with the 

experiment in the presence of pyrite with a larger diameter of 250 µm and 500 µm. The 

initial period of experiments coincided with a short lag phase in microbial growth, which 

was more pronounced in the presence of larger particles (Figs. 3.25 D and E). The 

microbial growth was reducing hastily after addition of 250 µm and 500 µm pyrite. The 

rate of 48 hours freely pyrite suspended DO consumption were reduce at 0.011mgO2/hr2  

for 500 µm of pyrite and 0.005 mgO2/hr2  for 250 µm of pyrite for the first 1.5 hrs of 

reaction. This was followed by the exponential phase of growth (from hrs 1.5th to hrs 

Figure 3.25: Profile of Dissolved oxygen consumption by free-pyrite cell suspension of  SL5B . Cell 
from STR biooxidation conducted at 700C with different size of  pyrite: 75µm (A), 125 µm(B), 180 
µm(C), 250 µm(D)  and 500 µm(E). Inoculated in a fresh medium for 48 hrs; ♦:initial DO reading for 
inoculate, ■ :DO reading after 24 hrs inoculate, ▲ :DO reading after 48 hrs inoculate and -x-: DO 
consumption rate during 48 hrs inoculation. Section A: First 24th hrs of biooxidation, Section B: 
Subsequent biooxidation at hr 24th to hr 360th. 
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Figure 3.25-C: Profile of DO consumption rate by free-
pyrite cell suspension of  SL5B Pyrite size: 180µm.  
 

0

5

10

0 10 20
0

0.07

0.14

0

5

1 0

24 72 120 168 216 264 312 360
0

0.07

0.14
SECTION A 

TIME (Hour) 

O
2

co
ns

um
pt

io
n(

m
gO

2/h
r)

SECTION B 

Figure 3.25-D: Profile of DO consumption rate by free-
pyrite cell suspension of  SL5B Pyrite size: 250µm.  
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Figure 3.25-E: Profile of DO consumption rate by free-
pyrite cell suspension of  SL5B Pyrite size: 500µm. 
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72nd for 250 µm of pyrite and from hrs 1.5th to hrs 216th for 500 µm of pyrite) . During 

that phase, the DO consumption were increased at the rate of 0.0011 mgO2/hr2 for 250 

µm of pyrite and 0.0005 mgO2/hr2 for 500 µm of pyrite.  

 

 Compared with the fine pyrite particles (75 µm, 125 µm and 180 µm), the 

microbial growth were found increased until hrs 96th for 75 µm and 125 µm pyrite and 

hrs 168th  for 180µm of pyrite. During these phase, the rate of microbial growth were 

dependent to pyrite size. The finer of pyrite will increased the initial growth rate, i.e: 

0.0008 mgO2/hr2, 0.0005 mgO2/hr2 and 0.0003 mgO2/hr2 for 75, 125 and 180 µm of 

pyrite respectively.  

 

 It is like to stress that the death phase have been observed at the end of 

experiment, in fermenter containing a fine particle of pyrite. The death phase have been 

started at hrs 216th, 264th and 312th for 75, 125 and 180 µm of pyrite respectively. Its 

shows that the culture reached the death phase earlier in a system containing finer 

particle.   

 

 The possible reason is a the extremely thermophilic culture such as Sulfolobus 

and Acidianus spp. lack a rigid peptidoglycan cell wall .Further, the fluidity of the 

cellular membrane increases with temperature (Kelly and Deming,1988). A combination 

of these factors results in a potential for culture to be sensitive to shear. Decreasing the 

particle size of the mineral adversely influenced the activity of the cells. The presence of 

fine particles apparently damaged the structure of the cells. 

 

 

 

3.2.4.2 Iron speciation in the pyrite and solution. 

 
 
 Speciation of Fe ion in the acidic solution consist of ferrous [Fe2+] and ferric 

[Fe3+]ion. The concentration of each species was determined using titration method. 

Figures 3.26 shows the profiles of Fe2+ and Fe3+ in the sample solution from pyrite 
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biooxidation using SL5B. The test were conducted on a different size of pyrite at 75µm, 

125 µm, 180 µm , 250 µm  and 500 µm. 
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Figure 3.26-A: Fe 2+ (■)and Fe 3+ 
(■)profiles of pyrite at size 75µm  
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Figure 3.26-B: Fe 2+ (■)and Fe 3+ 
(■)profiles of pyrite at size 125µm  
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Figure 3.26-C: Fe 2+ (■)and Fe 3+ 

(■)profiles of pyrite at size 180µm  

  [
Fe

] m
m

ol
 

0

125

250

0 0.5

1.5

3 10 48 96 168

264

360

Time(hr) 

Figure 3.26-D: Fe 2+ (■)and Fe 3+ 
(■)profiles of pyrite at size 250µm  
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Figure 3.26-E: Fe 2+ (■)and Fe 3+ 
(■)profiles of pyrite at size 500µm  
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180 µm (C), 250 µm (D) and 500 µm (E);  
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 Results from 3.26 shows the similarity in the profile of Fe 2+ and Fe 3+ for the 

biooxidation using 75µm, 125 µm  and 180 µm. The Fe 2+ concentration is found 

increased dramatically over a short period. The concentration of Fe 2+ was peak at the 

value around 140mM several hours after biooxidation. However the rate of increasing in    

Fe 2+ concentration if found dependent on the size of pyrite. The initial Fe 2+ 

concentration was increased at the rate of  247.2mM/hr, 84.1 mM/hr and 35.3 mM/hr for 

biooxidation using 75µm, 125 µm  and 180 µm of pyrite respectively.  It’s due to the 

initial oxidation deal with a Fe3+ oxidation on a pyrite surface. (Boon, 1999). Hence the 

reactions occurring on the surface of particle, rate of reaction should be increased with 

decreasing particle size of pyrite since the smaller particles, the larger the surface area 

per unit weight. It is shown in equation 3.34 and 3.35, by combining the equation, 

relation between mineral surface area (S) and particle radius (R) is shown in equation 

3.36: 

                                           
                                                        S=4πr2 
 

 

 

 

 

 

   

 
where  
ρ is the molar density, mol/vol, and  
r is the radius of the particle as a function of time.  
 

 

For the biooxidation containing 75µm and 125 µm of pyrite, the Fe 2+ concentration was 

then found decreased as well as increasing of Fe 3+ concentration for the subsequent 

hours.  The rate of Fe 3+ formation is found higher in a system containing 75µm of 

pyrite, at 18.1mM compared to the 13.1mM for 125 µm pyrite. During this period, 

Eq 3.36

Eq 3.35

Eq 3.34
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formation of  Fe 3+ ion in solution is due to oxidation of  Fe 2+ in solution by strain 

SL5B. 

 
 The steady state condition for Fe 3+ and Fe 2+ concentration have been observed 

at hours 1.5th to hours 96th for the biooxidation with 180 µm pyrite, the Fe 2+ 

concentration was stagnant at a value around 130mM. During this phase, pyrite 

oxidation via Fe 3+ attack on pyrite surface and bacterial oxidation on Fe 2+ ion is 

considered in equaliburium.  

 

 It is interesting to note that the concentration of ferrous iron for the for the 

biooxidation using 75µm, 125 µm  and 180 µm decreased as the pyrite exhausted or  

30% oxidize  and, at the termination of the experiment, all the soluble iron was 

considered in the ferric state. With larger particles (250 µm and 500 µm), however, high 

concentration of the dissolved iron was in the Fe 3+ state, even at the early stage of 

biooxidation. The similar observation also reported by Nemati et al (2000). In addition, 

the initial redox potential of the solution in the presence of larger particles was higher 

than that observed when smaller particles were used. This seems to occur because the 

oxidation of pyrite either biologically or chemically is slower than the regeneration of 

ferric iron by the cells with bigger particles of mineral and, as a result, part of the 

released iron remains in the Fe 3+  form. The depletion of surface area in the larger pyrite 

particle (250 µm and 500 µm) became a limitation to the Fe 3+ and bacterial to attach on 

the pyrite surface. 

 
 Instead of iron solubilized in the biooxidation process, there is also has a high 

tendency to reprecipitate in the form of jarosite. The formation of jarosite in the STR can 

be detrmined using sequential leaching using sulfuric acid. Figures 3.27 shows the 

profiles of iron composition in solution (solubilized iron) and in the form of jarosite 

precipitate for the SL5B biooxidation using different size of pyrite. 
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 The profile of jarosite formation is fluctuate in a each test. However, the final 

jarosite formation in test containing fine pyrite is higher compared to the system contain 

coarser pyrite.  As an example, the jarosite concentration in a reactor containing 75 µm 
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Figure 3.27.A: Profiles of iron solubilized(■) and iron-jarosites (■). 
Pyrite size: 75µm  
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Figure 3.27.B: Profiles of iron solubilized (■) and iron-jarosites (■). 
Pyrite size: 125µm  
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Figure 3.27.C: Profiles of iron solubilized (■) and iron-jarosites (■). 
Pyrite size: 180µm  
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Figure 3.27.D: Profiles of iron solubilized (■) and iron-jarosites (■). 
Pyrite size: 250µm  
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Figure 3.27.E: Profiles of iron solubilized (■) and iron-jarosites (■). 
Pyrite size: 500µm  
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Figure 3.27: Profiles of iron solubilized (■)and iron-
jarosites (■)of pyrite oxidation using SL5B. STR 
biooxidation conducted at 700C with different 
pyrite size: 75µm (A), 125 µm(B), 180 µm(C), 250 
µm(D)  and 500 µm(E) 
X-axis: Time (hour) is not in the scale 
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pyrite were 2 times higher compared to jarosite concentration in a 250 µm and 500 µm. 

That might be due to the higher concentration of Fe3+ ion and pH value of the solution 

containing 75 µm pyrite.  

 

 It is quite visible that the pH and EH of the system has effect on the extent of the 

oxidation and hydrolysis reaction. Since there is consumption of hydrogen ions, the pH 

of the liquid media were increased. However, this pH increase is counteracted by the 

hydrolysis of ferric iron as shown in equations 3.37, 3.38 and 3.39: 

 

 
 
 
 
 
 
 
 
 Furthermore, there is a reaction in competition with the hydrolysis reaction 

giving products of basic ferric hydroxysulphates with the formula MFe3(SO4)2(OH)6 

where M = K+, Na+, NH4,, Ag+ or H3O+ (Jensen and Webb, 1995). These 

hydroxysulphate precipitates are known as jarosites. The following is the formula for 

jarosite precipitation (Eq 3.40): 

 

 

 

 

 Since the 9K medium contains a high concentration of NH4 ions, the jarosites 

produced were ammoniojarosites with the formula NH4Fe3(SO4)2(OH)6. Jarosite 

formation has negative effects on many applications that require the use of biooxidation 

culture, especially in the process of biological gas desulphurization. Some of the effects 

include the diminishment of ferric iron used as the absorbent for hydrogen disulfide, 

blockage of pumps, valves, pipes, etc., and the creation of kinetic barriers due to the 

small diffusion of reactants and products through the precipitation zone (Jensen and 

Webb, 1995). 

+−++ +→+++ HOHSOMFeOHHSOMFe 8)()(623 624324
3

Eq 3.37 

Eq 3.38 

Eq 3.39 

Eq 3.40 
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3.2.4.3 Pyrite oxidation rate. 
 
 
Figure 3.28 shows a pyrite oxidation during bioleaching using SL5B at 70oC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

  

 Result from figure 3.28 shows that the particle size of pyrite can influence the 

performance of biooxidation using SL5B. The highest pyrite oxidation (94.4%) was 

obtained using 75µm pyrite, followed by 78% for 125 and 180µm, 52% for 250µm and 

42% for 500 µm pyrite. The initial oxidation of pyrite (first 5th hours) were exponential 

increased to achieve 28%, 17% and 14% for 75µm,125µm and 180µm of pyrite 

respectively. The pyrite oxidation then increased linearly till the end of the experiment. 

The oxidation rate for system containing 75µm, 125µm and 180µm of pyrite were at 

0.19% Fe/hr , 0.16% Fe/hr and 0.20% Fe/hr to achieve 94.4%, 78.0% and 77.6% oxidation of 

pyrite correspondingly 

 

 For the coarser pyrite size, a lag phase of pyrite oxidation was observed at the 

initial stages. However, the lag phase for reactor containing 250 µm of pyrite (72 hrs) is 

Figure 3.28: Percentages of pyrite oxidation using SL5B. STR biooxidation conducted at 700C with 
different size of  pyrite: 75µm (♦),125µm (■)and 180µm (▲), 250µm ( X) and 500µm (x ); Section A: 
First 24th hrs of biooxidation, Section B: Subsequent biooxidation at hr 24th to hr 360th. 
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shorter than that containing 500 µm pyrite (120hrs). During this period, the pyrite was 

slightly oxidized at a rate of 0.12% Fe/hr and 0.04 % Fe/hr for 250 µm and 500 µm. The 

exponential phase of the 250 µm pyrite oxidation was observed at 0.21% Fe/hr  between 72 

to 360 hour. For the 500µm pyrite, oxidation was at 0.23% Fe/hr  between 120 to 264 hour. 

The stationary phase of pyrite oxidation was observed at the end of the experiment (264 

to 360 hr) using 500µm pyrite. This descending trend was obvious in experiments using 

larger particles of pyrite, initially containing a high amount of silica. This suggests that 

the lack of an energy source is not the only contributing factor to cell death. The freely 

suspended biomass also undergoes rapid attrition in the presence of silica under 

conditions of non growth. This is in agreement with the finding of Scholtz et al. 1997 

 
 From the results in figure 3.27, there exists a relationship between bioleaching 

rate and particle size of pyrite. A decrease in the pyrite size leads to an increase 

bioleaching rates. In other words, a reduction in particle size and, thus, an increase in the 

surface area per unit mass of pyrite, improved mass transfer and accelerated the 

bioleaching of pyrite. The overall oxidation rate for SL5B at respective pyrite size is 

shown in table 3.18 

 
Table 3.18: The rate of pyrite oxidation for SL5B biooxidation at different pyrite size 
 
Pyrite 
size 

Oxidation rate T total 

75 µm 
 

Ox (%, Fe pyrite)  = -0.0004 Thrs
2 + 0.3551 Thrs + 22.04 396 hours 

125 µm 
 
 

Ox (%, Fe pyrite) = 2 x 10 -6 xThrs 3 - 0.0018 Thrs 2 + 0.5616 Thrs + 
14.288 

517 hours 

180 µm 
 
 

Ox (%, Fe pyrite)  = -3 x10-10 Thrs 4 - 2 x10-06 Thrs 3 + 0.0011 Thrs 2 + 
0.0774 Thrs + 11.85 

462 hours 

250 µm Ox (%, Fe pyrite)  = -3 x10-05 Thrs 2 + 0.1665 Thrs + 0.5539 
 

680 hours 

500 µm 
 

Ox (%, Fe pyrite)  = 0.1273 Thrs - 0.7623 791 hours 

 
 Table 3.18 shows that the smaller pyrite size enhances biooxidation rates.As an 

example, the reduction of size from 500µm to 75µm will reduce the T total (predict 
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complete oxidation) by a factor of 2.0.  The correlation between T total and particle size 

(R) is shown in figure 3.29 

 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 

 A similar trend of pyrite oxidation using different sizes of pyrite was also 

reported by Kargi and Robinson (1985). It was reported that the removal of pyrite from 

coal using S. acidocaldarius was improved by a factor of 2.1 when the particle size was 

decreased from 270 micron to 48 micron. The decrease of the particle size from a mean 

diameter of 202 micron (size fraction: 150±180 micron) to a mean diameter of 42.5 

micron (size fraction: 25±45 micron) also has the capability to increase the bioleaching 

rate from 0.05 kg m3 h-1 to 0.098 kgm3h-1. (Lindstrom et al. 1993) 

 

 It is important to note that information concerning the particle size effects in 

bioleaching of minerals by mesophiles such as T. ferrooxidans is well documented 

(Torma et al. 1972, Blancarte-Zurita et al. 1986, Hansford and Chapman 1992). 

However, in the case of thermophilic organisms, this effect is not completely 

understood. Thus, the mathematical modelling of fluid–solid systems is normally used to 

interpret experimental results and to gain insight into the reaction mechanisms. It is also 

useful in the design of liquid–solid reactors by quantifying rate parameters. (Levenspiel, 

1999). 
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Figure 3.29: Correlation between T total and pyrite size (R) in STR biooxidation 

using SL5B  
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3.2.4.4  The dissolution kinetics of pyrite 

 

 The dissolution kinetics of pyrite using thermophilic culture may depend on four 

major effects i.e:  the reaction kinetics and, specifically, the dependence of the 

dissolution rates on the concentration of fluid reactants; transport effects and mass 

transfer limitations;  the structural properties of particles expressed by the particle 

distribution function (Crundwell and Bryson,1992)  and the mechanical and dissolution 

effects leading to particle fragmentation and break-up induced either by the mechanical 

stirring or by the dissolution kinetics itself (Edwards et al 1990 and Chai et al 1991). The 

latter two effects depend on the polydispersity of the mixture and influence the dynamics 

of the particle distribution function during the process. 

 

 The decomposition of pyrite follows the unreacted core model and may be 

controlled by zero-order surface reaction, gas film/product layer diffusion or a 

combination of these mechanisms, depending on the reaction conditions. (Guilin Hu et 

al, 2005). However, inward diffusion of oxygen due to the pore-blocking effect by the 

formation of ferric oxide and product intermediate will interfere with the model.  

 

 The major models that have been developed for non-catalytic fluid–solid 

reactions are the shrinking core, shrinking particle, homogeneous and grain models. The 

shrinking core model is applicable to an initially non-porous particle, which reacts with 

a reagent leaving a reacted layer around the unreacted core. The shrinking particle model 

is similar to the shrinking core model except that no product layer is left around the 

unreacted core. The homogeneous model is applicable to a solid with a homogeneous 

distribution of pores, while the grain model is applicable to a solid consisting of 

individual dense grains compacted together. Among these models, the shrinking core 

model has been widely used in the area of hydrometallurgy to model leaching systems 

(Philip et al 2004, Szekely et al. (1976) and Levenspiel (1999).).  The shrinking core 

model was first developed by Yagi and Kunii (1955). In the establishment of the 

shrinking core model, the solid reactant is considered to be non-porous and is initially 

surrounded by a fluid film through which mass transfer occurs between the solid particle 
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and the bulk of the fluid (shown in figure 3.30). As the reaction proceeds, a pyrite layer 

forms around the unreacted core. (Szekely et al. 1976 and Levenspiel, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.30: Principles of shrinking unreacted core model (Baker and Bishop,1997) 
 
 

In leaching models, a liquid contact a solid, reacts with it, and transforms it into products 

shown in equation 3.41 and 3.42: 

 

                        A(l) + B(s)  R(soluble) + S(insoluble)              

                        A(l) + B(s)   R (soluble) 

Where 
A: Fe3+ or acid  
B: Pyrite 
C: Fe2+ and SO4

2- 
D: Jarosite, iron oxide, sulfur and its intermediate 

                                                                     

  

 

 

 

Remineralization region 

Leaching boundry 

Dissolved metal ion 

Acid 
Fe3+ 

Culture 

Metal ions leached 

Leachant Leached layer Unleached kernel

Eq 3.41 

Eq 3.42 
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3.2.4.5  Shrinking Particle Model 

 The major difference between the shrinking particle model and the shrinking 

core model is that in the former case, there is no inert layer firmed figure 2.31. 

Schematic diagram of a particle undergoing the shrinking particle form of reaction 

 

 

 

 

 

 

Figure 3.31: Schematic diagram of pyrite under shrinking particle model reaction 

 

 During shrinking particle and shrinking core reaction, the following processes 

can occur: (1) Diffusion of reactant A from bulk solution through film surrounding the 

solid particle to the surface of the solid.; (2) Diffusion of reactant A through the blanket 

of ash to the surface of the unreacted core.; (3) Reaction of reactant A with the solid at 

the solid surface.;(4) Diffusion of products through the ash back to the exterior surface 

of the solid and (5) Diffusion of products through the liquid film back into the main 

body of fluid. 

 

 Due to the back-reaction kinetics are rarely important in hydrometallurgical 

leaching reactions kinetics, only the first three steps is included in the development 

of the model. This however, might not be the case in all leaching reactions. It is 

possible that diffusion of products through the ash or the liquid film could be the 

controlling process. If all products were solid, step 4 and 5 will be insignificant. The 

Unreacted particle

Liquid film 
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slowest step controls the overall process. The case for which either of steps 1 to 3 

may be controlling is considered below. 

 

 Shrinking particle model for diffusion through liquid film as a limitation step 

(The model was derived at attachment A: Shrinking core and particle model).  Shrinking 

particle model for diffusion through liquid film as a limitation step for small particles 

 

tkX B 3
3/2)1(1 =−−  

 

Shrinking particle model for diffusion through liquid film as a limitation step for 

large particles 

 

tkX B 4
2/1)1(1 =−−  

k3 and k4 are constants which depends on the fluid properties and particles size. 

 

Shrinking particle model for diffusion surface chemical reaction as a limitation step 

 

tkX rB =−− 3/1)1(1  

 

 

 

3.2.4.6 Shrinking Core Model 

  

 The shrinking core model is similar to the shrinking particle model. In the 

shrinking core model, the solid reactant is considered to be non-porous and is initially 

surrounded by a fluid film through which mass transfer occurs between the solid particle 

and the bulk of the fluid (Figure 3.32). The shrinking core model was first developed by 

Eq 3.43

Eq 3.44

Eq 3.45



 183

Yagi and Kunii (1955). Detailed treatment has also been done by Wen (1968), Szekely 

et al. (1976), Ramachandran and Doraiswamy (1982), and Missen et al. (1999). 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: Schematic diagram of pyrite under shrinking core model reaction 

 

 

Pyrite oxidation rate behavior for diffusion through liquid film as a limitation step 

 

)(1 AsAb
ex

A CCk
dtS

dN
−−=                        

Where 

NA= moles of A in solution 

CAb= concentration of Fe3+ in bulk fluid (mol/m3)  
CAs= concentration of Fe3+ in surface solid (mol/m3)  

k1= mass transfer coefficient between fluid and particle ms-1 

t = time second 

Sex
 = external surface area of solid m2 

R = radius of solids m 

 

 

 

 

Unreacted core 

Inert/porous solid Liquid film 

Eq 3.46
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Shrinking core model for diffusion through liquid film as a limited step (The 

model was derived at attachment C: Shrinking core and particle model) 

 

tkX mB =          

 

 

R
Cbk

k Ab
m ρ

13
=  

Where 

ρ = molar density of B in solid mol/m3  

B = mol of pyrite consumed per mol Fe3+ reacted 

XB = fraction of pyrite oxidized 

 

Pyrite oxidation rate behavior for diffusion through inert layer as a limitation step  

 

dr
dCDr

dt
dN A

e
A 24π−=  

 

Shrinking core model for diffusion through inert layer as a limited step (The 

model was derived at attachment 1: Shrinking core and particle model) 

 

tkXX dBB =−+−− )1(2)1(31 3/2  

and 

2

6
R

CbD
k Abe

d ρ
=  

 

De : effective diffusion coefficient of A through inert layer m2s-1 

R : radial distance from centre of solid, m 

kd : reaction constant rate 

 

 

Eq 3.47

Eq 3.48

Eq 3.49

Eq 3.50

Eq 3.51
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Pyrite oxidation rate behavior surface chemical reaction controls  

 

)(2 As
n
Ab

ex

A CCk
dtS

dN
−−=  

 

Shrinking core model for surface chemical reaction as a limited step (The model 

was derived at attachment 1: Shrinking core and particle model) 

 

tkX rB =−− 3/1)1(1  

 

 and  

 

R
Cbk

k
n
Ab

d ρ
2=  

 

 n= order of reaction with respect to Fe3+  

k2= reaction rate constant, mol(1-n)m(3n-2)s-1 

 

 

Instead of model stated, Nona and Liddell (2005) was also suggested four shrinking core 

models were fit to the other condition of experimental data i.e: 

 

Spherical particles under heterogeneous chemical reaction as the controlling step: 

 

 

 

Spherical particles under product layer diffusion as the controlling step: 

 

 

 

 

Eq 3.55

Eq 3.56

Eq 3.52

Eq 3.53

Eq 3.54
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Cylindrical particles under heterogeneous chemical reaction as the controlling step: 

 

 

 

 

Cylindrical particles under product layer diffusion as the controlling step: 

  
 
 
 
 

 

 

3.2.4.7  Shrinking particle model for diffusion through liquid film as a limitation 
 step: Application of model to experimental data 
 

 The shrinking particle model behavior of pyrite was determined using STR 

biooxidation with culture SL5B at different size, and the particle was considered as a 

sphere shape. From the figure 1-(1-XB)2/3  vs leaching time (Shrinking particle model 

for diffusion through liquid film as a limitation step), the time required for complete 

pyrite oxidation can be predicted and it shown in table 3.19.   

 

Table 3.19: the time required for complete pyrite oxidation for diffusion through 
liquid film as a limitation step 
 
Initial pyrite size (r) 1-(1-XB)2/3  vs t   Ttotal Regression 

coefficient (R2) 
75 µm t = 0.0021x - 0.0102 481.05 0.99 
125 µm t = 0.0017x + 0.1406 505.53 0.87 
180 µm t = 0.0016x + 0.0695 581.56 0.97 
250 µm t = 0.0012x + 0.0029 830.92 0.98 
500 µm t = 0.0009x - 0.0069 1118.78 0.91 

 
 

Eq 3.57

Eq 3.58
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The relationship between required reaction time (t total) and initial pyrite size (R) is 

shown in figure 3.19,  

 

 

 

based on the integration between equation 3.60 and 3.61.  

 
 
 

 

Based on equation 3.60, the required leaching time for a pyrite bioleaching at certain 

particle size can be predicted, if diffusion through liquid film become a limitating step. 

 

 

 

3.2.4.8  Shrinking particle and core model for diffusion throughchemical 
 reaction as a limitation step: Application of model to experimental data 
 

 For the pyrite disolution model with the chemical reaction considered as 

controlling step, the equation for shrinking particle model and the shrinking core model 

is similar. Table 3.20 show the shrinking particle behavior of pyrite during STR 

biooxidation using SL5B at different pyrite size. 

 

Table 3.20: The time required for complete pyrite oxidation for the chemical reaction 
considered as controlling step 
 
Initial pyrite size (r) 1-(1-XB)1/3  vs t   Ttotal Regression 

coefficient (R2) 
75 µm t = 0.0013x - 0.0132 779.38 0.97 
125 µm t = 0.0011x + 0.0724 843.27 0.90 
180 µm t = 0.0010x + 0.0316 968.40 0.97 
250 µm t = 0.0006x + 0.00006 1666.58 0.98 
500 µm t = 0.0005x - 0.0044 2008.80 0.91 

 

Eq 3.60

Eq 3.59
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The relationship between required reaction time (t total) and initial pyrite size (R) is 

shown in 3.20, based on the equation 3.61, 

 

 

 

 

 Therefore is the relation between 1/ttotal and 1/R for the pyrite disolution with the 

chemical reaction considered as controlling step, for the shrinking particle model and the 

shrinking core model  

 

 
 
 
 
 Table 3.20 shows the low regression coefficient was obtained for 1/ t total

 vs 1/R 

or 1/R2 for the shrinking particle model. For the model with chemical reaction 

considered as controlling step, the regression coefficient is a 0.7198 .For the liquid film 

diffusion as a limitation step the regression coefficient was at 0.6013.  

 

 It is importance to note, that the biooxidation is a very complex process, which is 

dealing with precipitation (jarosite and sulfur) and formation of intermediate mineral 

(dolomite and iron sulfide). The precipitate is found has a high tendency to attach on a 

particle surface and intermediate mineral will develop a porous layer in the pyrite 

particle. Which is forming a porous layer between liquid medium and pyrite surface as 

shown in shown in fig.F-32 till F-34 (attachment F). Thus, the shrinking core model will 

be practically viable for this experiment.  

 

 

 

 

 

Eq 3.61

Eq 3.62



 189

RR
Cbk

t
bm

total

131 α
ρ

=

0012.01438.01
+=

Rttotal

3.2.4.9  Shrinking core model for diffusion through film diffusion as a limitation 
  step: Application of model to experimental data 
 

 Table 3.21 show the shrinking core behavior of pyrite during STR biooxidation 

using SL5B at different size, with the film diffusion with product layer considered as 

controlling step and the particle was in a sphere shape. 

 
Table 3.21: The time required for complete pyrite oxidation for the product diffusion 
considered as controlling step 
 
Initial pyrite size (r) XBvs t   Ttotal Regression 

coefficient (R2) 
75 µm t = 0.0022x + 0.2479 341.86 0.92 
125 µm t = 0.002x + 0.2036 398.20 0.85 
180 µm t = 0.002x + 0.1101 444.95 0.97 
250 µm t = 0.0016x + 0.0077 620.19 0.98 
500 µm t = 0.0013x - 0.0076 775.08 0.91 

 
The relationship between required reaction time (t total) and initial pyrite size (R) is 

shown in Table 3.21, based on the equation 3.63 

 

 

 

 

Therefore is the relation between 1/ttotal and 1/R for the pyrite dissolution with the 

chemical reaction considered as controlling step, for the shrinking particle model and the 

shrinking core model  

 

 
 
 
 
 
 
 
 
 

Eq 3.63

Eq 3.64
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3.2.4.10 Shrinking core model for diffusion through inert product layer as a 
    limitation step: Application of model to experimental data 
 

 
 Table 3.22 show the shrinking particle behavior of pyrite during STR 

biooxidation using SL5B at different size, with the product layer diffusion considered as 

controlling step and the particle was in a sphere shape 

 

 
Table 3.22: The required bioleaching time for pyrite at different particle size, when 
product layer diffusion becomes a rate limiting step in leaching reaction: 
 
Initial pyrite size (r) 1-3(1-XB)2/3+2(1-XB) vs t   Ttotal Regression 

coefficient (R2) 
75 µm t = 0.0017x + 0.0012 587.53 0.97 
125 µm t = 0.001x + 0.0147 985.30 0.93 
180 µm t = 0.0009x + 0.0116 1124.00 0.93 
250 µm t = 0.0003x + 0.0068 3356.00 0.93 
500 µm t = 0.0002x - 0.0054 5027.00 0.85 

 

   
 The required leaching time for pyrite with product layer diffusion as controlling 

step is much higher compared with direct chemical reaction. Increasing of pyrite size 

from 75 µm to 500 µm will increased the reaction time to 8.5 times folds.  

By integrating equation 3.61 and 3.62 with required leaching times, the relationship 

between required reaction time (t total) and initial pyrite size (R) have been postulated and 

presented in table 3.22 and equation 3.65:  

 

 

 

 

If the product layer diffusion becomes a rate controlling step in the bioleaching, the 

required leaching time for a pyrite bioleaching at certain particle size can be predicted 

by equation 3.66. 

 

Eq 3.65
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Eq 3.66
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ATTACHMENT C 
 
 
 
 

MODELING AND KINETIC OF FLUID-SOLID REACTION 
 
 

 
 
C. Shrinking particle model and Shrinking core model 
 
 
 Leaching reactions are heterogeneous reactions involving a solid and an aqueous 

solution containing the leaching agent. The solid in contact with water forms a stagnant 

saturated solution at the surface (boundary layer). When a reagent chosen to attack is 

incorporated into the water, it diffuses through the boundary layer to the surface of the 

solid where the chemical reaction takes place. The nature of the process vary, depending 

on the rate of the reaction at the boundary between the liquid and the solid. If it is fast, 

then the rate is primarily controlled by diffusion of the added reagent species and the 

process becomes a diffusion controlled process. However, if the reaction is slow, then it 

becomes a chemical reaction controlled process. Mixed control situations also do occur 

when both rates are comparable. A diffusion controlled process is characterized by being 

slightly dependent on temperature while a chemically controlled process is strongly 

dependent on temperature. The activation energy of diffusion controlled process is 

characterized as being 4 to 12 kJ/mole, while for a chemically controlled process, it is 

usually > 40 kJ/mole. An intermediate controlled process has an activation energy 20-35 

kJ/mole (Habashi, 1980).Many models have been developed to describe fluid-solid 

reactions. These include the shrinking/unreacted core model, shrinking particle model, 

homogeneous model and grain model (Levenspiel, 1999).  

 

 

C.1 Shrinking particle model  

 

 Shrinking particle model applied on a situation which no product layer forms. 

For example, when the leaching pyrite in an autoclave at 1600C (Wadsworth, 1969), 
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the reacting particle shrinks during reaction, and finally disappears. This process is 

illustrated in Figure A-1. In this situation, the film diffusion and/or surface chemical 

reaction become the rate controlling step. 

 
 
 
 
 
 
 
 

 

 

 

Figure C.1: Schematic diagram of pyrite solution under shrinking particle model 

reaction 

 

 

C.1.1 Shrinking Particle Model with film diffusion as control step 

In this situation, the concentration of Fe3+ will be uniform up to 

δ+= crr  

where 

Fe3+ approaches zero at r = rc.  

δ : Diffusion boundary layer thickness.  

Figure C.2 describe the shrinking particle model with film diffusion as step control 

pictorially.  

 

 

Unreacted particle

Liquid film 

        Eq. C-1 
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The rate of pyrite solubilization described as equation C-2. 

dt
dN

Sdt
dN

bS
Ab 111

−=−  

where  

S is the surface area of the particle, as defined in equation 

24 rS π=  

 
 
 
 
 
 
where  

r is the particle radius at time= t. 

 

bm
A Ck

dt
dN

r
=− 24

1
π

 

 

CaB 
 
 
 
 
 
CAs=CAc 

Unreacted core 

Liquid film 

Moving reaction surface 

R                                                    R 

Figure C.2: Shrinking particle reaction when diffusion through liquid film is the 
controlling step  

Eq. C-2 

Eq. C-3 

              Eq. C-4 
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therefore 
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By substituting Eq. C-6  
 

24 rdNbdN bA ρπ==  
 
 
Into equation  C-5, 
 

bmCbk
dt
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=− ρ    

 

By integrating equation C-7,  
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By substituting C-8 to C-9,  
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           Eq. C-5 

          Eq. C-6 

        Eq. C-7 

           Eq. C-8 

          Eq. C-9 

        Eq. C-10 

        Eq. C-11 
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Therefore 
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If the particle size is very small 
 

R
Dkm =     q1 

 
 
 
where D is the molecular diffusion coefficient, 
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C.1.2. Shrinking particle model with the diffusion through chemical reaction is 

the rate controlling step, 

 

The leaching behavior is when the diffusion through chemical reaction is the rate 

controlling step is represent in a figure C.3: 

 

         Eq. C-12 

        Eq. C-13 

        Eq. C-14 

        Eq. C-15 

      Eq. C-16 
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Assuming the reaction is first order and irreversible, and kr is the first order rate constant.  

 

At steady state,  

 
 
 
 
And considering  
 
 
 
 
 
and  
 
 
Substituting Eq C-20 
 

dNB =4ρπr2dr 
 
into the equation C-17 And integrating with equation C-18 and C-19, Therefore : 
 

 

CaB=CAs=CAc 

Unreacted core 

Liquid film 

Moving reaction surface 

R                                                    R 

Figure C.3: Shrinking particle reaction when diffusion through chemical reaction 
is the controlling step  

Eq: C-17

Eq: C-18

Eq: C-19

Eq: C-20
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Then equation C-21 And integrating with equation A-19: 
 
 
 
 
 

 

 

 

C.2. Shrinking core model 

 
 
 The shrinking core model is widely used to model liquid–solid reactions such as 

the leaching of metals from minerals. The major models that have been developed for 

non-catalytic fluid–solid reactions are the shrinking core, shrinking particle, 

homogeneous and grain models. The shrinking core model is applicable to an initially 

non-porous particle, which reacts with a reagent leaving a reacted layer around the 

unreacted core. The shrinking particle model is similar to the shrinking core model 

except that no product layer is left around the unreacted core. The homogeneous model 

is applicable to a solid with a homogeneous distribution of pores, while the grain model 

is applicable to a solid consisting of individual dense grains compacted together. Among 

these models, the shrinking core model has been widely used in the area of 

hydrometallurgy to model leaching systems (Philip et al 2004, Szekely et al. (1976) and 

Levenspiel (1999).).  The shrinking core model was first developed by Yagi and Kunii 

(1955). In the establishment of the shrinking core model, the solid reactant is considered 

to be non-porous and is initially surrounded by a fluid film through which mass transfer 

occurs between the solid particle and the bulk of the fluid (shown in figure C-4). As the 

reaction proceeds, an pyrite layer forms around the unreacted core. (Szekely et al. 1976 

and Levenspiel, 1999). 

 

Eq: C-21

Eq: C-22
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 Solid particles remain unchanged in size during reaction when it contains large 

amounts of unleachable materials at such leaching conditions. The unleachable materials 

form a porous product layer surrounding the particle by the reaction A-23, 

 

 

 

 

 

 

 

 

Figure C.4: Schematic diagram of pyrite under shrinking core model reaction 

 
A(l) + bB(s)  rR(soluble) + sS(insoluble) 

 
Where 
A: Fe3+ or acid  
B: Pyrite 
C: Fe2+ and SO4

2- 
D: Jarosite, iron oxide, sulfur and its intermediate 
 
 

 

 Shrinking core model occurs in many practical situations, selective leaching of 

solids occurs first at the outer skin of the particle. The zone of reaction then moves into 

the solid, and may leave behind completely converted material and inert solid. The 

insoluble product generated from the leaching reaction forms a permeable layer through 

which ions must diffuse in and out. For example, leaching of pyrite in ferric sulfide 

solution produces sulfur, jarosite, iron sulfite and dolomite through which ferric ions can 

diffuse, so the leaching reaction can proceed further. The net result may be an unreacted 

shrinking core with a solid non-reacted diffusion layer surrounding it, as illustrated in 

figures C.5.  

 

 

 

Eq: C-23 

Inert/porous solid 

Liquid film 
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C.2.1. Shrinking core model with film diffusion as step control 

 

 Figure C.6 represents the profile in a leaching system when the film diffusion of 

the reactant A is the limiting step.  

 

 

 

 

 

 

 

 

 

Unreacted core 

Product layer 

Liquid film 

Particle surface 

Moving reaction surface 

 

Cab 
 
CAs 
 
CA 
 
CAC 

              R         r               r       R 

Figure C.5: Shrinking core reaction. Reactant A concentration for the reaction:  

A(l) + bB(s)  rR(soluble) + sS(insoluble) 

 for a unchanged particle size and a solid non-reacted diffusion layer surrounded 
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dt
dN

Sdt
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bS
AB 111

=−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

The concentration of A (Fe3+ and SO4
2-) will be considered uniform up to r = R + δ and 

approaches zero at r = R. Here, δ is the diffusion boundary layer thickness. If the pyrite 

particle is considered to be a sphere, the surface area of the particle may be represented 

by the equation C-24 

 

 
                                           S=4πr2 
 
 
The reaction rate of pyrite (B) can be described  in equation C-25: 
 
 
 
 
 
 
where  

S is the surface area of the pyrite particle 

b is the stoichometric coefficient.  

        Eq: C-24 

Eq: C-25 

Unreacted core 

Product layer 

Liquid film 

Particle surface 

Moving reaction surface 

      R    r                                  r     R 

Cab 
 
 
 
 
 
 
CAs=CAC 

Figure C.6: Reaction condition of pyrite when diffusion through 
the liquid film is the limiting step 
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NB and NA are the total amount of reactant A (Fe3+ and SO4
2-) and B (pyrite) in the 

reaction system 

R is the particle radius during leaching 

 

 More complicated geometric shapes may be treated graphically by calculating 

the change in area with the fraction reacted. The negative sign in the equation C-25 

implies that NA the total amount of reactant A (Fe3+ and SO4
2-), is decreasing with time. 

The reaction rate of A can be described by the equation C-26, 

 
 
 
 
where  

km is a diffusion coefficient,  

CB and Cs are the Fe3+ and H2SO4 concentration in the bulk solution and at the pyrite 

surface  

 
If film diffusion is the rate controlling step, then, Cs=0. Therefore, 
 
 
 
 
The NA relationship holds at any given time: 
 
 
 
 
 
where  

ρ is the molar density, mol/vol 

r is the radius of the particle as a function of time.  

 

By differentiating equation C-28; 

 

 

Eq: C-26 

Eq: C-27 

     Eq: C-28 

Eq: C-29 
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Combining equation C-24, C-27 and C-29 gives the equation Eq C-30: 
 
 
 
 
 
By integrating equation C-30 
 
 
 
 
 
 
The equation A-31 gives the time required for a reaction to proceed from a particle 

radius of R to r. Also note that, 

 
 
 
 
 
 
where XB is the fractional conversion of pyrite. Therefore 
 
 
 
 
 
 
 
 
If defining t=ttotal when XB =1, then 
 
 
 
 
 
 
By substituting equation C-33 into C-34, 
 
 
 
 
 
 
 

Eq: C-30 

Eq: C-31 

Eq: C-32 

Eq: C-33 

Eq: C-34 

Eq: C-35 
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C.2.2. Shrinking core model with heterogeneous chemical reaction is the 
 controlling step 
 

 When the heterogeneous chemical reaction is the controlling step, the 

concentration of reactant (Fe3+ and H2SO4) at the unreacted core surface is the same as that 

of the bulk solution. Figure C.7 illustrates the concentration gradient with particles for this 

situation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assuming the heterogeneous reaction is first order and irreversible, and kr is the first order 

rate constant. At steady state,  

 

 
 
 
 
 
 
 

Eq: C-36 

Figure C.7: Pyrite reaction shrinking core diagram when the heterogeneous 
chemical reaction become a limiting step 

              R         r                    r       R

Cab = CAs = CAC 

Unreacted core 

Product layer 

Liquid film 

Particle surface 

Moving reaction surface 



 205

( )3
1

1 BX
R
r

−=⎟
⎠
⎞

⎜
⎝
⎛

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

R
rt

R
Cbk Br 1

ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

total

Br

tR
Cbk 1

ρ

( )3
1

11 B
total

X
t

t
−−=

And considering  
 
 
 
 
 
and 
 
 
 
 
 
 
Substituting Eq: C-39 
 

dNB =4ρπr2dr 
 
into the equation C-36: 
 
 
 
 
 
 
 
Then equation C-40 integrating with equation C-37: 
 
 
 
 
 

 

 

 
C.2.3. Shrinking core model with product layer diffusion control become a limiting 
step 

 The model is applicable when the reactant diffusion through the product layer is 

limiting, the concentration of the reactant A is uniform up to r equal to R and approaches 

zero at the unreacted core surface r = rs. At steady state, this situation can be described in 

figure C.8.  

 

Eq: C-37 

Eq: C-38 

      Eq: C-40 

  Eq: C-41 

Eq: C-39 
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where 
  Ds is the effective diffucivity 
 
 
By integrating equation C-42: 
 
 
 

 
 
 
 
 
Replacing bdNA = dNB = 4πr2dr, therefore,   
 
 
 
 

Eq: C-42 

Eq: C-43 

Eq: C-44 

Eq: C-45 

Figure C8: Pyrite reaction, shrinking core diagram when the product 

layer diffusion become a limiting step 
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Therefore 
 
 
 
 
 
 
By integrating equation C-47 with C-49: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Substituting equation C-50 in C-47 gives C-51 
 
 
 

 

 

 

C.3. Homogeneous Model 

 

  This model applies to the case when the initial solid particle is porous. In this case, 

the reaction between the fluid and the solid reactant may be viewed as occurring 

Eq: C-46 

Eq: C-47 

Eq: C-48 

Eq: C-49 

Eq: C-50 

Eq: C-51 
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homogeneously throughout the solid to produce a gradual variation in solid reactant 

concentration in all parts of the particle (see Figure 2.S). The solid is considered as an 

ensemble of small lumps of reactants distributed uniformly throughout the solid phase 

(Doraiswamy and Sharma, 1984; Wen, 1968). Figure 2.5. Variation of solid reactant 

concentration with time for the homogeneous model (Levenspiel,1999). 

 

 
 

(i) When Diffusion of A Through Solid is Rate Controlling 

In this case 

 

 
 
 
 
(ii) When Chemical Reaction is Rate Controlling 
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C.4. The Uniform Pore Model 

 This model was derived by Peterson (1951). The model assumes that the solid 

contains uniform, open and completely wetted cylindrical pores. The physical size of 

the porous solid does not change but the consumption of the solid phase will lead to 

progressive enlargement of the pores, till the whole structure collapses. When 

diffusion through the pores is rapid and hence offers little resistance, the 

concentration of the reactant is uniform throughout the particle and the conversion of 

the solid under the chemical reaction controlled regime is given by 

 

 

where, E0 is the initial porosity of the solid particle, G is the positive root of 
 

 
 

Tc is the time for the pore radius to become twice the initial value and is given by 

 
where rp is the initial radius of the pore and k is the surface chemical reaction rate 

constant. 
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C.5. The Random Pore Model 

 

 The model assumes that the solid particle contains overlapping sets of randomly 

distributed cylindrical pores. The size of each cylindrical pore is different and the pore 

size follows a specific distribution function. For a chemically controlled reaction, Bhatia 

and Perlmutter (1980) derived the following relationship between time and conversion, 

 

 
 

 Lo is the initial characteristic length of the pore (m/m3), S0 is the initial reaction 

surface area per unit volume (m2/m3'). For ash layer diffusion controlled process, the 

equation derived was more complicated and is reported in Bhatia and Perlmutter (1981). 

 

 

 

C.6. Grain Model 
 

 In this model, the solid particle is visualized as pellets consisting of individual 

dense grains compacted together. Each grain reacts individually following the shrinking 

core model (Figure 2.6). The derivation of the model is similar to the case of the SCM, 

and the details is given by Szekely et al. (1976) and Doraiswamy and Sharma (1984). 

 

(i) When Chemical Reaction is Rate Controlling 

 

 In this case, the concentration within the pellet is uniform and all the grains are 

exposed to the same fluid concentration. The time-conversion relationship is given by, 
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RG0 is the initial radius of a grain in the pellet 
 
 
(ii)  When Pore Diffusion is Rate Controlling 

 

 In this case, a sharp demarcation can be observed between the reacted and 

unreacted portions of the pellet and the behavior is similar to that of the SCM. the 

conversion-time relationship is, 
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Figure D-1: XRD analysis of pyrite surface  

ATTACHMENT D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 214

y = 0.0416x + 0.1467
R2 = 0.5018

y = 0.0298x + 0.1014
R2 = 0.5161

y = 0.016x + 0.0526
R2 = 0.5305

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5

y = 0.0549x + 0.0203
R2 = 0.9638

y = 0.0386x + 0.0127
R2 = 0.9681

y = 0.0204x + 0.0059
R2 = 0.972

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig D-2: Shrinking particle and core model for biooxidation of pyrite using 
SL5B on a 75 µm pyrite.  
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
 

Fig D-3: Shrinking particle and core model for pyrite oxidation at 70oC as 
control experiment. 
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
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Fig D-4: Shrinking particle and core model for biooxidation of pyrite using Sb. 
thermosulfudooxidans on a 75 µm pyrite.  
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
 

Fig D-5: Shrinking particle and core model for pyrite oxidation at 45oC as 
control experiment. 
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
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Fig D-6: Shrinking particle and core model for biooxidation of pyrite using T. 
ferrooxidans on a 75 µm pyrite.  
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
 

Fig B-7: Shrinking particle and core model for pyrite oxidation at 30oC as 
control experiment. 
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
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Solubilized iron in 
medium (mg/L) 

Iron in the form of 
jarosite (mg/L) 

Total oxidized 
iron (mg/L) 

[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8721.8 0 8721.8 15.625 24.275
0.25 8740.2 335 9075.2 18.125 24.725

0.5 8520.6 654.6 9175.2 26.725 17.225
1 8890.6 664.6 9555.2 29.85 12.35

1.5 8570.5 1132.7 9703.2 39.15 5.225
2 8760.9 942.3 9703.2 34.6 9.575
3 9200.8 1098.4 10299.2 38.275 5.125
5 9130.4 1640.8 10771.2 29.05 16.8

10 9440.1 1791.1 11231.2 15.2 31.625
24 10156.6 970.6 11127.2 17 28.1
48 10400.5 622.7 11023.2 14.375 32.625
72 8710.6 2520.6 11231.2 11.35 35.275
96 8240.5 2782.7 11023.2 8.3 39.7

120 7560.6 3826.6 11387.2 14.9 33.1
168 7490.4 3560.8 11051.2 15.95 33
216 7200.6 4258.6 11459.2 20.1 30.625
264 5640.4 6398.8 12039.2 14.975 34.625
312 5250.6 6664.6 11915.2 11.3 38.825
360 5510.6 6504.6 12015.2 9.15 43.2

Time  
Solubilized iron in 
medium (mg/L) 

Iron in the form of 
jarosite (mg/L) 

Total oxidized 
iron (mg/L) 

[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8834.5 0 8834.5 8.175 32.7
0.25 9246.2 740.7 9986.9 35.1 7.1
0.5 9408.2 714.3 10122.5 39.075 4.325
1 9815.1 687 10502.1 35.7 10.45

1.5 9892 765.7 10657.7 28.475 16.6
2 9877.8 847.9 10725.7 23.675 22.95
3 9762.8 854.5 10617.3 21.275 23.55
5 9846 1076.1 10922.1 17.425 28.6

10 9836.5 1153.6 10990.1 10 35
24 10156 1050.9 11206.9 13.225 32.925
48 10189 1207.5 11396.5 10.575 37.25
72 10045 1798.38 11843.38 13.35 33.275
96 10456 1787.7 12243.7 10.225 35.925

120 10982 1918.82 12900.82 8.9 37.975
168 10476 3238.14 13714.14 7.825 39.775
216 11015 2865.66 13880.66 11.5 36.45
264 10698 3870.22 14568.22 6.5 42.05
312 9752.2 5491.9 15244.1 4.25 39.025
360 9852.3 5491.8 15344.1 5.5 39.2

Table D-1: Iron speciation during biooxidation using SL5B 

Table D-2: Iron speciation during control oxidation at 70oC 
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Time 
Solubilized iron in 

medium (mg/L) 
Iron in the form of 

jarosite (mg/L) 
Total oxidized 

iron (mg/L) 
[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8893.7 0 8893.7 8.625 30.3
0.25 9000.6 179.4 9180 14.7 24.3
0.5 9030.5 117.5 9148 30.225 7.825
1 8970.4 149.6 9120 33.625 6.05

1.5 8920.6 259.4 9180 27 11.25
2 8970.2 209.8 9180 23 16.1
3 9060.5 191.5 9252 20.275 20.8
5 8890.6 273.4 9164 19.6 21.15

10 9000.2 343.8 9344 26.7 15.425
24 8800.4 659.6 9460 20.275 25.125
48 8800.4 703.6 9504 18.575 27.725
72 8690.6 753.4 9444 25 13.875
96 8750.4 677.6 9428 22.8 13.975

120 8490.9 881.1 9372 18.75 15
168 8880.7 991.3 9872 18 15.45
216 8880.4 1155.6 10036 19.425 12.675
264 8100.3 2371.7 10472 17.9 7.3
312 8400.1 2335.9 10736 19 4.45
360 7910.4 2361.6 10272 19.6 5

Time 
Solubilized iron in 

medium (mg/L) 
Iron in the form of 

jarosite (mg/L) 
Total oxidized 

iron (mg/L) 
[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8892.4 0 8892.4 11.375 30
0.25 9380.3 248.9 9629.2 14.875 26.85
0.5 9530.2 231.4 9761.6 32.2 10.4
1 9390.9 191.5 9582.4 20.9 21.85

1.5 9892.5 273.9 10166.4 27.7 17.65
2 9720.3 194.1 9914.4 31.6 13
3 9762.8 139.6 9902.4 36.15 9.25
5 10108 222.4 10330.4 29.05 15.4

10 10394 556.4 10950.4 13.1 33.25
24 10105 333.4 10438.4 21.35 23.2
48 10396 510.4 10906.4 22.15 22.85
72 10303 827.4 11130.4 18.95 22.7
96 10624 1518.4 12142.4 13.1 29.1

120 10742 1788.4 12530.4 10.05 32.8
168 10792 2630.4 13422.4 11.25 37.9
216 11118 2144.4 13262.4 18.65 31.9
264 10995 2199.4 13194.4 12.5 42.9
312 11296 2606.4 13902.4 15.1 33
360 11563 2099.4 13662.4 14.9 32.25

Table D-3: Iron speciation during biooxidation using Sb. thermosulfodooxidans 

Table D-4: Iron speciation during control oxidation at 45oC 
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Time 
Solubilized iron in 

medium (mg/L) 
Iron in the form of 

jarosite (mg/L) 
Total oxidized 

iron (mg/L) 
[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8900.6 0 8900.6 38 1.9
0.25 8906.6 87.8 8994.4 37.875 2.8
0.5 8908.6 69.8 8978.4 36.8 2.325
1 8906.6 99.8 9006.4 36.5 3.85

1.5 8925.6 112.8 9038.4 37 3.675
2 8940.6 137.8 9078.4 37 4
3 8930.5 99.9 9030.4 36.175 4.175
5 8940.4 114 9054.4 36.8 3.725

10 9000.6 125.8 9126.4 36.8 4.2
24 8900.6 153.8 9054.4 33.4 6.8
48 8800.5 441.9 9242.4 32.175 7.425
72 8830.9 463.5 9294.4 32.775 6.825
96 8670.4 652 9322.4 31.075 7.925

120 8610.6 735.8 9346.4 31.4 7.6
168 9060.5 617.9 9678.4 32.475 8.825
216 9200.4 538 9738.4 31 10.45
264 9170.6 583.8 9754.4 30.625 10.975
312 9011.6 786.8 9798.4 32.775 8.35
360 8670.6 1023.8 9694.4 35.725 3.7

 

Time 
Solubilized iron in 

medium (mg/L) 
Iron in the form of 

jarosite (mg/L) 
Total oxidized 

iron (mg/L) 
[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8910.7 0 8910.7 16.35 23.35
0.25 9040.2 115 9155.2 20.175 20.825
0.5 9350.6 132.6 9483.2 28.65 11.9
1 9390.2 405 9795.2 28 12.325

1.5 9792.6 87.4 9880 24.625 15.925
2 9720.2 223 9943.2 26 14.55
3 9762.8 128.4 9891.2 24 16.75
5 9680.5 102.7 9783.2 21.875 18.125

10 9960.5 342.7 10303.2 22.625 17.925
24 9690.6 400.6 10091.2 22.15 17.55
48 9510.3 780.9 10291.2 23.775 15.075
72 9560.6 1062.6 10623.2 23.775 16.225
96 9330.4 1360.8 10691.2 24 15

120 9441.3 1157.9 10599.2 22 16.2
168 10796 559.2 11355.2 21.225 19.325
216 11116 539.2 11655.2 23 16.7
264 12075 780.2 12855.2 22.7 13.45
312 10873 1682.2 12555.2 23.55 13.8
360 10415 2040.2 12455.2 23.55 12.1

     Table D-5: Iron speciation during biooxidation using T. ferrooxidans 

     Table D-6: Iron speciation during control oxidation at 30oC 
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STR of pyrite at 70oC 

SL5b 
DO from free suspended pyrite 
inoculums Time 

(hrs) 
DO in STR 
(%pO) 0 hr 24 hr 48 hr 

Control 
DO in STR 
(%pO) 

0 59.4 8.57 7.03 7.04 94.7
0.25 54.6 8.57 6.85 6.87 83.3

0.5 55.3 8.56 7.65 6.43 71.5
1 50.8 8.68 6.54 7.02 62.6

1.5 44.5 8.56 7.25 6.24 58.5
2 42.4 8.56 7.09 6.26 55.7
3 44.9 8.57 6.77 6.86 54.5
5 43.1 8.55 6.25 5.88 54.9

10 50.2 8.56 6.65 6.04 57.7
24 46.9 8.6 7.69 4.84 52.4
48 49.6 8.56 7.36 5.24 68.5
72 45.2 8.53 7.24 4.29 40.2
96 53.5 8.74 5.11 2.91 54.9

120 56.4 8.52 4.51 3.46 60.5
154 52.7 8.57 3.92 2.91 64.6
216 52.7 8.54 4.34 3.31 48.8
264 37.9 8.55 5.16 4.42 41.5
312 29.5 8.57 5.71 4.51 46.6
360 31.5 8.54 6.87 4.95 35.4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D-7: Dissolved oxygen reading for STR biooxidation at 70oC 
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STR of pyrite at 45oC 
Sb. thermosulfodooxidans 
DO from free suspended pyrite 
inoculums 

Control 
DO in STR 
(%pO) Time 

(hrs) 
DO in STR 
(%pO) 0 hr 24 hr 48 hr  

0 65.2 8.51 5.34 4.35 94.7
0.25 60.7 8.54 3.66 3.16 85.4

0.5 54.8 8.52 4.55 2.97 77.5
1 50.5 8.51 4.95 4.51 74.5

1.5 51.7 8.53 3.66 4.15 72.8
2 56.9 8.55 4.85 3.61 70.8
3 48.5 8.51 5.14 4.25 66.5
5 54.8 8.55 4.24 3.98 65.2

10 58 8.56 3.51 3.71 69.1
24 62.7 8.51 4.45 4.24 66.5
48 55.7 8.55 4.74 3.64 68.2
72 49.4 8.52 3.66 2.27 58.8
96 50.4 8.54 4.25 2.64 62.2

120 46.8 8.59 3.86 2.63 60.5
168 52.7 8.5 2.81 1.68 75.5
216 48.4 8.56 4.36 3.77 50.8
264 51.5 8.53 4.05 3.96 56.6
312 52.7 8.54 5.27 5.24 60.4
360 49.2 8.54 4.72 4.96 59.1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D-8: Dissolved oxygen reading for STR biooxidation at 45oC 
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STR of pyrite at 30oC 
T.ferooxidans 

DO from free suspended pyrite 
inoculums Time 

(hrs) 
DO in STR 
(%pO) 0 hr 24 hr 48 hr 

Control 
DO in STR 
(%pO) 

0 89.3 8.53 6.52 6.03 93.3
0.25 87.1 8.49 5.61 5.54 94.4

0.5 81.6 8.52 5.88 5.34 87.6
1 80.4 8.53 6.08 5.29 86.2

1.5 83.5 8.52 6.25 5.04 87.1
2 81.6 8.53 5.44 5.64 85.4
3 77.4 8.56 6.08 5.84 84.7
5 73.7 8.53 6.28 5.34 82.6

10 71.8 8.54 5.64 4.60 84.9
24 66.5 8.52 5.04 4.45 75.3
48 63.8 8.51 4.35 3.07 74.3
72 63.4 8.55 3.91 2.72 69.7
96 71.8 8.53 5.74 4.45 76.4

120 70.4 8.51 5.25 4.01 80.4
168 65.2 8.49 5.29 4.85 76.4
216 68.2 8.55 5.93 5.14 77.9
264 73.7 8.51 6.33 5.09 81.5
312 68.7 8.54 5.88 5.88 84.8
360 75.3 8.52 6.03 6.03 86

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D-9: Dissolved oxygen reading for STR biooxidation at 30oC 
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Fig D-8: Shrinking core model  with porous product diffusion as limiting step for 
pyrite oxidation at 70oC. 
█ STR biooxidation using SL5B 
█ Control at 70oC 
 
 

Fig D-9: Shrinking core model  with porous product diffusion as limiting step for 
pyrite oxidation at 45oC. 
█ STR biooxidation using Sb. thermosulfodooxidans 
█ Control at 45oC 
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Fig D-10: Shrinking core model with porous product diffusion as limiting step 
for pyrite oxidation at 30oC. 
█ STR biooxidation using T.ferooxidans 
█ Control at 30oC 
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Figure D11: Fe2+ ■and Fe3+ ■concentration in the  liquid medium during biooxidation 
using SL5B at 70oC.  
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Figure D12: Fe2+ ■and Fe3+  ■concentration in the  liquid medium for the control at 70oC.  
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Figure D13: Fe2+ ■and Fe3+  ■concentration in the  liquid medium using S.Themorsulfodooxidans at 
45oC.  

 

Figure D-14: Fe2+ ■and Fe3+  ■concentration in the  liquid medium for the control at 45oC.  
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 Figure D-16: Fe2+ ■and Fe3+  ■concentration in the  liquid medium during for control at 30oC.  

 

Figure D-15: Fe2+ ■and Fe3+  ■concentration in the  liquid medium during biooxidation using T. 
Ferrooxidans at 30oC..  
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ATTACHMENT E 

 

Data for Stirred Tank Reactor of pyrite using SL5B, using different medium to 

pyrite ratios 

 

Shrinking particle model 

Shrinking particle behavior of pyrite, with the film diffusion considered as 
controlling step 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig E-1 : Shrinking particle and core model for initial biooxidation of pyrite 
using SL5B with 1% pyrite.  
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
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Fig E-2 : Shrinking particle and core model for initial biooxidation of pyrite 
using SL5B with 3% pyrite.  
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
 

Fig E-3 : Shrinking particle and core model for initial biooxidation of pyrite 
using SL5B with 5% pyrite.  
█ Shrinking particle model with film diffusion as limiting step 
█ Shrinking particle/core model with chemical reaction as limiting step 
█ Shrinking core model with film diffusion as limiting step 
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Fig E-4 : Shrinking core model  with porous product diffusion as limiting step 
for pyrite oxidation at 1%, 3% and 5% pyrite densities. 
█ STR biooxidation using SL5B, 1% pyrite densities 
█ STR biooxidation using SL5B, 3% pyrite densities  
█ STR biooxidation using SL5B, 5% pyrite densities 
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Time 
Solubilized iron in 

medium (mg/L) 
Iron in the form of 

jarosite (mg/L) 
[Fe2+] 

(mL KMnO4) 
[Fe3+] 

(mL KMnO4) 
0 8834.5 0 32.7 157.8 

0.25 9246.2 740.7 140.4 165.1 
0.5 9408.2 714.3 156.3 168.0 
1 9815.1 687.0 142.8 175.3 

1.5 9892.0 765.7 113.9 176.6 
2 9877.8 847.9 94.7 176.4 
3 9762.8 854.5 85.1 174.3 
5 9846.0 1076.1 69.7 175.0 

10 9836.5 1153.6 40.0 175.5 
24 10156.0 1050.9 52.9 180.4 
48 10189.0 1207.5 42.3 180.4 
72 10045.0 1798.4 53.4 179.3 
96 10456.0 1787.7 40.9 186.6 

120 10982.0 1918.8 35.6 196.1 
168 10476.0 3238.1 31.3 187.0 
216 11015.0 2865.7 46.0 196.6 
264 10698.0 3870.2 26.0 190.9 
312 9752.2 5491.9 17.0 174.1 
360 9852.3 5491.8 22.0 175.9 

Time 
Solubilized iron in 

medium (mg/L) 
Iron in the form 

of jarosite (mg/L) 
[Fe2+] 

(mL KMnO4) 
[Fe3+] 

(mL KMnO4) 
0 8927.4 0 28.4 164.0 

0.25 9589.2 1335.1 167.7 174.0 
0.5 8363.8 3164.1 147.0 153.0 
1 8073.8 2515.7 138.0 148.0 

1.5 6928.2 3997.3 114.0 130.0 
2 8336.6 2982.5 105.0 153.0 
3 8683.0 2938.5 110.0 152.0 
5 8636.2 3485.7 100.0 152.0 

10 11236.6 2086.5 102.0 197.0 
24 13425.0 1605.7 131.0 240.0 
48 13485.0 2448.1 126.0 245.0 
72 13815.0 2751.7 164.0 253.0 
96 13873.0 3050.1 152.0 243.0 

120 13393.0 3209.7 116.0 250.0 
168 13183.0 4738.1 130.0 236.0 
216 14873.0 2650.8 152.0 274.0 

Table E-1 : Iron speciation for biooxidation on 1% pyrite 

Table E-2 : Iron speciation for biooxidation on 3% pyrite 
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Time 

Solubilized iron 
in medium 

(mg/L) 

Iron in the form 
of jarosite 

(mg/L) 

[Fe2+] 
(mL KMnO4) 

[Fe3+] 
(mL KMnO4) 

0 8797.6 0 28.2 157.1 
0.25 8918.6 1685.2 147.0 159.3 
0.5 9105.6 1996.2 133.0 162.6 
1 9705.4 1894.2 138.0 173.3 

1.5 9505.2 4360.4 120.0 169.7 
2 10768.6 723.4 105.0 192.3 
3 10247.8 2237.8 110.0 183.0 
5 10656.6 1445.7 100.0 190.3 
10 11507.6 784.9 98.0 205.5 
24 11516.8 1588.8 124.0 205.7 
48 12078.8 2532.8 107.0 215.7 
72 11076.8 2712.8 119.0 197.8 
96 11307.8 2581.8 130.0 201.9 
120 11505.8 3279.8 164.0 205.5 
168 13076.8 6754.8 216.0 233.5 
216 13706.4 8159.2 214.0 244.8 
264 13700.6 9591 220.0 244.7 
312 18077.6 7132.5 297.0 322.8 
360 16769.4 8836.2 276.0 299.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table E-3 : Iron speciation for biooxidation on 5% pyrite 
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DO from free suspended pyrite inoculums 
Time (hrs) 

DO in STR 
(%pO) 0 hr 24 hr 48 hr 

0 59.4 8.57 7.03 7.04 
0.25 54.6 8.57 6.85 6.87 
0.5 55.3 8.56 7.65 6.43 
1 50.8 8.68 6.54 7.02 

1.5 44.5 8.56 7.25 6.24 
2 42.4 8.56 7.09 6.26 
3 44.9 8.57 6.77 6.86 
5 43.1 8.55 6.25 5.88 
10 50.2 8.56 6.65 6.04 
24 46.9 8.6 7.69 4.84 
48 49.6 8.56 7.36 5.24 
72 45.2 8.53 7.24 4.29 
96 53.5 8.74 5.11 2.91 
120 56.4 8.52 4.51 3.46 
154 52.7 8.57 3.92 2.91 
216 52.7 8.54 4.34 3.31 
264 37.9 8.55 5.16 4.42 
312 29.5 8.57 5.71 4.51 
360 31.5 8.54 6.87 4.95 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table E-4 : Dissolved oxygen reading for STR biooxidation with 1% pyrite 
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DO from free suspended pyrite inoculums 
Time (hrs) 

DO in STR 
(%pO) 0 hr 24 hr 48 hr 

0 61.4 8.34 6.72 6.96 
0.25 57.5 8.54 7.56 6.86 
0.5 56.6 8.54 7.82 6.6 
1 48.8 8.49 7.23 6.93 

1.5 52.5 8.34 7.05 6.63 
2 48.5 8.61 7.46 6.95 
3 54.2 8.51 7.43 6.65 
5 52.5 8.34 6.03 6.01 
10 59.4 8.59 6.65 6.27 
24 48.4 8.57 6.87 3.25 
48 44.8 8.59 8.02 8.05 
72 41.1 8.58 5.14 2.35 
96 33.8 8.58 5.01 2.05 
120 27.3 8.63 3.97 2.75 
154 22.8 8.61 5.16 1.48 
216 34.5 8.63 3.87 3.05 
264 29.7 8.55 4.95 4.55 
312 25.6 8.59 6.6 5.88 
360 26.4 8.57 7.75 7.35 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table E-5 : Dissolved oxygen reading for STR biooxidation with 3% pyrite 
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DO from free suspended pyrite inoculums 
Time (hrs) 

DO in STR 
(%pO) 0 hr 24 hr 48 hr 

0 56.4 8.59 7.15 7.61 
0.25 53.7 8.52 7.35 7.02 
0.5 49.7 8.57 7.76 7.38 
1 48.5 8.52 7.65 7.47 

1.5 46.4 8.52 7.26 7.32 
2 38.5 8.56 7.65 7.48 
3 39.1 8.56 7.99 7.59 
5 33.8 8.57 6.82 6.97 
10 22.7 8.57 6.88 4.84 
24 25.5 8.63 3.24 2.05 
48 34.9 8.78 5.75 2.01 
72 29.3 8.59 7.53 7.01 
96 26.5 8.34 7.15 6.61 
120 27.7 8.34 7.84 5.26 
154 25.2 8.34 6.97 6.08 
216 20.3 8.59 7.25 7.31 
264 20.9 8.35 7.84 6.05 
312 18.8 8.35 7.12 6.61 
360 17.1 8.57 8.08 8.06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table E-6 : Dissolved oxygen reading for STR biooxidation with 5 % pyrite 
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ATTACHMENT F 

 

Reading for Stirred Tank Reactor of pyrite using SL5B, using different size of 

pyrite size  

 
 
Table F-1: pH value for STR test at different pyrite size 
 
 

Pyrite size (µm) 
 
Time (Hr) 75 125 180 250 500

0 1.84 1.86 1.87 1.89 1.81
0.25 1.83 1.85 1.87 1.92 1.95
0.5 1.84 1.82 1.87 1.88 1.93
1 1.83 1.84 1.86 1.88 1.93

1.5 1.86 1.83 1.85 1.86 1.88
2 1.83 1.84 1.81 1.79 1.90
3 1.85 1.83 1.83 1.81 1.95
5 1.80 1.88 1.78 1.84 1.91
10 1.85 1.83 1.79 1.81 1.88
24 1.85 1.86 1.81 1.82 1.74
48 1.83 1.76 1.80 1.76 1.73
72 1.75 1.72 1.79 1.74 1.76
96 1.73 1.77 1.81 1.68 1.79
120 1.76 1.70 1.78 1.74 1.83
168 1.66 1.75 1.69 1.73 1.78
216 1.79 1.75 1.72 1.76 1.77
264 1.64 1.80 1.80 1.72 1.73
312 1.70 1.67 1.77 1.76 1.73
360 1.76 1.71 1.75 1.73 1.67
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Table F-2: Eh value for STR test at different pyrite size 
 
 

Pyrite size (µm) 
 
Time (Hr) 75 125 180 250 500

0 541.2 523.7 533.8 508.2 502.1

0.25 473.3 495.5 482.6 505.5 506.2

0.5 435.9 479.3 460.0 503.5 521.6

1 404.4 486.1 487.3 502.8 488.0

1.5 434.2 450.0 470.5 504.1 486.6

2 458.0 436.8 480.0 506.2 518.4

3 389.1 455.5 449.6 510.8 544.8

5 470.0 441.0 412.9 512.5 549.1

10 411.2 485.3 434.2 578.8 564.4

24 420.0 412.2 446.1 465.0 474.4

48 542.2 443.3 475.0 465.0 471.7

72 597.5 440.0 507.4 465.0 470.0

96 525.2 485.0 503.1 465.0 470.0

120 596.7 514.2 476.7 490.0 507.5

168 530.6 623.1 556.7 490.9 496.2

216 695.4 586.2 651.1 487.6 460.0

264 704.7 726.0 617.1 501.5 509.5

312 755.8 669.0 622.2 514.7 567.0

360 750.7 731.9 656.2 504.8 537.2
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Table F-3: ln Fe3+/Fe2+ value for STR test at different pyrite size 
 
 

Pyrite size (µm) 
 
Time (Hr) 75 125 180 250 500

0 1.3863 0.7917 1.2144 1.4064 1.0545

0.25 -1.5981 -0.2761 0.7919 1.4643 1.7940

0.5 -2.2011 -1.1742 0.1523 1.4939 1.5821

1 -1.2285 -1.3573 0.4006 1.2221 0.8858

1.5 -0.5396 -0.5033 -1.3143 0.6587 1.2474

2 -0.0311 0.3083 -1.1299 0.5650 1.3041

3 0.1016 0.6916 -1.1896 0.8869 0.5253

5 0.4955 0.7020 -1.1065 0.4083 0.7795

10 1.2528 1.1641 0.0220 0.8567 0.1689

24 0.9121 0.6737 -0.7802 1.3122 0.1261

48 1.2592 1.1716 -0.4958 0.9658 0.5273

72 0.9133 1.4971 -0.8090 0.8755 0.9933

96 1.2566 0.8046 -1.3640 0.7250 0.8473

120 1.4509 1.2657 0.7097 1.1802 1.7872

168 1.6259 1.7622 1.5469 1.1327 0.5331

216 1.1536 1.3002 1.1211 0.8232 0.4727

264 1.8671 0.9531 1.5550 1.4432 0.3385

312 2.2173 1.2806 1.2669 1.3863 0.1065

360 1.9639 1.4000 0.0774 0.8874 -0.3567
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Table F-4: Dissolved oxygen  value for the free pyrite-anaerobic inoculation from STR 

sample at 75µm pyrite 

 

 

 
 
 
 
 
 
 
 
 

Time of sample  Inoculums duration  Regression 

taken form STR 0 24 48 d[O2]/dt coefficient 

0 8.57 7.03 7.04 0.0319 0.7451 

0.25 8.57 6.85 6.87 0.0354 0.7412 

0.5 8.56 7.65 6.43 0.0431 0.993 

1 8.68 6.54 7.02 0.0354 0.5463 

1.5 8.56 7.25 6.24 0.0469 0.9945 

2 8.56 7.09 6.26 0.0492 0.9748 

3 8.57 6.77 6.86 0.0346 0.7106 

5 8.55 6.25 5.88 0.0554 0.8517 

10 8.56 6.65 6.04 0.0531 0.9185 

24 8.6 7.69 4.84 0.0792 0.9185 

48 8.56 7.36 5.24 0.0715 0.975 

72 8.53 7.24 4.29 0.0892 0.9514 

96 8.74 5.11 2.91 0.0983 0.9803 

120 8.52 4.51 3.46 0.1054 0.8976 

168 8.57 3.92 2.91 0.1192 0.8788 

216 8.54 4.34 3.31 0.1108 8.0117 

264 8.55 5.16 4.42 0.088 0.9472 

312 8.57 5.71 4.51 0.0862 0.9472 

360 8.54 6.87 4.95 0.0708 0.9984 
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Table F-5: Dissolved oxygen  value for the free pyrite-anaerobic inoculation from STR 

sample at 125 µm pyrite 

 
 

Time of sample  Inoculums duration  Regression 

taken form STR 0 24 48 d[O2]/dt coefficient 

0 8.63 7.52 6.95 0.0369 0.9667 

0.25 8.56 7.8 6.34 0.0456 0.9679 

0.5 8.53 7.15 6.06 0.0513 0.9954 

1 8.56 7.25 6.21 0.0488 0.9956 

1.5 8.58 6.24 6.02 0.052 0.8139 

2 8.56 6.95 5.91 0.0556 0.9848 

3 8.61 7.46 6.07 0.0513 0.997 

5 8.61 6.03 5.27 0.0694 0.9099 

10 8.56 7.24 6.27 0.0469 0.9923 

24 8.63 7.52 6.85 0.0356 0.98 

48 8.59 7.23 5.6 0.0619 0.9973 

72 8.56 5.06 4.18 0.0912 0.8934 

96 8.58 3.84 3.57 0.1063 0.7903 

120 8.63 7.52 4.25 0.0925 0.925 

168 8.56 5.06 3.98 0.0956 0.9149 

216 8.59 5.85 4.23 0.092 0.9785 

264 8.63 4.78 4.11 0.0944 0.8584 

312 8.56 5.83 5.52 0.0688 0.8256 

360 8.61 6.32 6.02 0.0525 0.8356 
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Table F-6: Dissolved oxygen  value for the free pyrite-anaerobic inoculation from STR 

sample at 180 µm pyrite 

 
 

Time of sample  Inoculums duration  Regression 

taken form STR 0 24 48 d[O2]/dt coefficient 

0 8.58 6.23 6.47 0.0425 0.6691 

0.25 8.61 6.92 6.2 0.05 0.9488 

0.5 8.56 6.71 5.91 0.055 0.9503 

1 8.58 7.6 5.89 0.0569 0.9749 

1.5 8.58 6.43 5.89 0.0569 0.8956 

2 8.56 6.55 5.6 0.0625 0.959 

3 8.56 7.77 5.42 0.0656 0.924 

5 8.63 6.96 5.35 0.0669 0.9999 

10 8.58 7.68 6.2 0.05 0.9806 

24 8.62 8.13 6.47 0.0425 0.9096 

48 8.57 6.43 5.8 0.0594 0.9119 

72 8.56 5.54 4.82 0.0775 0.888 

96 8.59 6.96 5.26 0.07 0.9999 

120 8.56 5.63 4.94 0.0744 0.8868 

168 8.59 3.25 3.25 0.1 0.75 

216 8.56 6.27 4.94 0.0775 0.9771 

264 8.59 7.4 3.8 0.1 0.9222 

312 8.63 7.68 3.93 0.0975 0.8942 

360 8.56 5.02 4.8 0.0781 0.7937 
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Table F-7: Dissolved oxygen  value for the free pyrite-anaerobic inoculation from STR 

sample at 250 µm pyrite 

 
 

Time of sample  Inoculums duration  Regression 

taken form STR 0 24 48 d[O2]/dt coefficient 

0 8.56 7.86 7.5 0.0219 0.9668 

0.25 8.59 8.26 7.75 0.0175 0.9848 

0.5 8.61 8.39 7.85 0.016 0.9428 

1 8.56 8.36 7.86 0.015 0.9423 

1.5 8.62 8.13 7.94 0.0144 0.9423 

2 8.56 7.23 7.58 0.0213 0.5092 

3 8.58 7.68 7.31 0.0269 0.9464 

5 8.63 7.14 7.14 0.0313 0.75 

10 8.56 7.4 6.71 0.036 0.9789 

24 8.56 6.15 4.94 0.075 0.9647 

48 8.59 6.07 4.55 0.0844 0.98 

72 8.56 4.5 3.94 0.0975 0.8394 

96 8.57 5.61 4.41 0.0863 0.945 

120 8.63 5.63 4.46 0.0856 0.9397 

168 8.57 4.26 3.38 0.1088 0.8753 

216 8.59 3.45 3.48 0.1056 0.7456 

264 8.56 3.05 2.69 0.1194 0.7958 

312 8.57 3.5 3.29 0.1106 0.7828 

360 8.56 3.78 3.13 0.1169 0.8383 
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Table F-8: Dissolved oxygen  value for the free pyrite-anaerobic inoculation from STR 

sample at 500 µm pyrite 

 

 
Time of sample  Inoculums duration  Regression 

taken form STR 0 24 48 d[O2]/dt coefficient 

0 8.63 7.5 7.37 0.0256 0.8265 

0.25 8.58 7.88 7.46 0.0231 0.9796 

0.5 8.6 8.08 7.64 0.02 0.998 

1 8.56 8.12 8.02 0.012 0.8833 

1.5 8.6 8.08 8.05 0.01 0.795 

2 8.56 8.36 7.92 0.0125 0.9552 

3 8.61 8.43 7.88 0.015 0.9192 

5 8.59 8.26 7.85 0.0156 0.9963 

10 8.58 7.88 7.54 0.0219 0.9627 

24 8.63 7.5 7.14 0.03 0.9183 

48 8.59 6.25 5.94 0.0556 0.8364 

72 8.57 8.08 4.96 0.0769 0.8471 

96 8.63 4.91 4.33 0.0894 0.8491 

120 8.56 5.45 4.18 0.09 0.9444 

168 8.63 5 4.29 0.0906 0.8689 

216 8.58 8.26 2.37 0.1231 0.9997 

264 8.56 8.12 2.35 0.125 0.8029 

312 8.63 5.26 2.68 0.124 0.9942 

360 8.59 3.35 2.61 0.1263 0.8423 
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Shrinking particle model 

Shrinking particle behavior of pyrite, with the film diffusion considered as 

controlling step. 
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Fig F-1 : Shrinking particle behavior for film diffusion considered as controlling 
step (1-(1-XB)2/3 ) on a 75 µm pyrite. 

Fig F-2 : Shrinking particle behavior for film diffusion considered as controlling 
step (1-(1-XB)2/3 ) on a 125 µm pyrite. 
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Fig F-3 : Shrinking particle behavior for film diffusion considered as controlling 
step (1-(1-XB)2/3 ) on a 180 µm pyrite. 

Fig F-4 : Shrinking particle behavior for film diffusion considered as controlling step 
(1-(1-XB)2/3 ) on a 250 µm pyrite. 
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Fig F-5 : Shrinking particle behavior for film diffusion considered as controlling 
step (1-(1-XB)2/3 ) on a 500 µm pyrite. 

Fig F-6 : relation of required leaching time (ttotal) and intial particle size for 
Shrinking particle model for film diffusion considered as controlling step  
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Fig F-7 : Shrinking particle behavior for film diffusion considered as controlling 
step (1-(1-XB)1/2 ) on a 75 µm pyrite. 

Fig F-8 : Shrinking particle behavior for film diffusion considered as controlling step 
(1-(1-XB)1/2 ) on a 125 µm pyrite. 



 248

y = 0.0009x + 0.0012
R2 = 0.98

0

0.1

0.2

0.3

0 40 80 120 160 200 240 280 320 360

y = 0.0014x + 0.0501
R2 = 0.9714

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 40 80 120 160 200 240 280 320 360

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-(1-X
B ) 1/2 

Time (hr)

1-(1-X
B ) 1/2 

Time (hr)

Fig F-9 : Shrinking particle behavior for film diffusion considered as controlling step 
 (1-(1-XB)1/2 ) on a 180 µm pyrite. 

Fig F-10 : Shrinking particle behavior for film diffusion considered as controlling step 
(1-(1-XB)1/2 ) on a 250 µm pyrite. 
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Fig F-11 : Shrinking particle behavior for film diffusion considered as controlling step 
(1-(1-XB)1/2 ) on a 500 µm pyrite. 

Fig F-12 : relation of required leaching time (ttotal) and intial particle size for 
Shrinking particle model for film diffusion considered as controlling step for large 
particle 
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Fig F-13 : Shrinking particle behavior for chemical reaction  considered as controlling 
step ((1-XB)1/3 ) on a 75 µm pyrite. 

Fig F-14 : Shrinking particle behavior for chemical reaction  considered as controlling 
step ((1-XB)1/3 ) on a 125µm pyrite. 
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Fig F-15 : Shrinking particle behavior for chemical reaction  considered as controlling 
step ((1-XB)1/3 ) on a 180 µm pyrite. 

Fig F-16 : Shrinking particle behavior for chemical reaction  considered as controlling 
step ((1-XB)1/3 ) on a 250 µm pyrite. 
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Fig F-17 : Shrinking particle behavior for chemical reaction  considered as controlling 
step ((1-XB)1/3 ) on a 500 µm pyrite. 

Fig F-18: relation of required leaching time (ttotal) and intial particle size for 
Shrinking particle model for chemical reaction considered as controlling step  
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The shrinking core behavior of pyrite with the film diffusion with product layer 

considered as controlling step. 
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Fig F-19 : Shrinking core behavior for film diffusion considered as controlling step (XB) 
on a 250 µm pyrite. 

Fig F-20 : Shrinking core behavior for film diffusion considered as controlling step (XB) 
on a 250 µm pyrite. 
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Fig F-21 : Shrinking core behavior for film diffusion considered as controlling step (XB) 
on a 250 µm pyrite. 

Fig F-22 : Shrinking core behavior for film diffusion considered as controlling step (XB) 
on a 250 µm pyrite. 
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Fig F-23 : Shrinking core behavior for film diffusion considered as controlling step (XB) 
on a 250 µm pyrite. 

Fig F-24: relation of required leaching time (ttotal) and intial particle size for 
shrinking core model for film diffusion considered as controlling step  
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Fig F-25: Behavior of 3-2XB-3(1-XB)2/3 for 75 µm pyrite particle 
as a function of leaching time (hr)  
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Fig  F-26: Behavior of 3-2XB-3(1-XB)2/3 for 125 µm pyrite particle as a 
function of leaching time (hr)  
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Fig  F-27: Behavior of  3-2XB-3(1-XB)2/3 for 180 µm pyrite particle as a 
function of leaching time (hr)  
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Fig  F-28: Behaviour of 3-2XB-3(1-XB)2/3 for 250 µm pyrite particle as a 
function of leaching time (hr)  
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Fig F-29: Behaviour of 3-2XB-3(1-XB)2/3 for 500 µm pyrite particle as a 
function of leaching time (hr)  
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Fig  F-30: Relationship of required leaching time ttotal,hrs and initial particle size 
(R) of pyrite 
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Figure F-31: SEM images of pyrite particle at a size 75µm, before biooxidation  
 

Figure F-32 A: SEM images of pyrite particle at a size 75µm, after biooxidation  
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Figure F-33: SEM images of pyrite particle at a size 250µm, before biooxidation  
 

Figure F-34: SEM images of pyrite particle at a size 250µm, after  biooxidation  
 



 
 
 
 
 

PART 4 
 
 
 
 

IN SITU APPLICATION 
 
 
 
 

TREATMENT AND RECOVERY OF METAL FROM BATTERIES 
COLLECTED BY DEWAN BANDARAYA KUALA LUMPUR 

 
 
 
FOREWORD 

 

Unit Kesihatan Dewan Bandaraya Kuala Lumpur has embarked on a Battery Recycling 

Campaign which will require the collection and recycling of all used batteries from 

household and other premises. It aims to prevent spent batteries ending up in 

incinerators or landfills and at the same time to recover the various metals used in 

batteries.  Due to the metals they contain, batteries pose environmental concerns when 

they are incinerated or land filled. Since thousands of tones of different metals are used 

in battery production, their collection and recycling will also contribute substantially to 

saving natural resources, hence creating a safer and healthier environment.  

 

 

 
4.0 Introduction 
 

Recently, a campaign ‘Minggu Alam Sekitar 2002” has been launched by the Ministry 

of Science Technology and the Environment in Kuala Lumpur. The Department of 

Health, Dewan Bandaraya Kuala Lumpur has proactively responded and embarked on 

batteries recycling program for the elimination of potential health hazard of pollution 
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due to trace metals in batteries in the environment. The program offers various recycling 

plans for communities, retailers, businesses, and public agencies.  

 

This paper summarizes the environmental, legislative, technical, and economic 

factors affecting the use and disposal of batteries. An overview of various battery 

technologies, their applications and annual production volumes establishes the scope of 

their impact on the environment. Legislative reaction and technological solutions to the 

potentially harmful environmental and human health effects resulting from battery 

disposal are examined. Consideration of reverse logistics issues and future challenges 

are summarized as part of the analysis. 

 

The document presented here tries to adopt a pragmatic and organized approach 

toward the environmentally sound management of the recycling of battery wastes. 

Research work has been carried out by UTM in order to analyze the strengths and 

weaknesses of leaching technology in the metal recovery processes. In addition, this 

study provides a critical review of the mechanisms for coordination of program as well 

as an evaluation of the type of measures being used to integrate environmental 

considerations into the development process.  

 

 

 

4.1 Specific Objectives 
 

• Protection of improving people and the environment according to the 

precautionary principle 

 

• Optimum use of resources 

(Conservation of non-renewable resources and sustainable use of renewable; 

adoption of reuse and recycle as means to protect non-renewable natural resources) 
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• Solving of disposal problems 

(Disposal without leaving "time bombs" for future generations and without shifting 

wastes to countries with underdeveloped environmental standards and monitoring 

systems) 

 

• Economically acceptable waste management 

(Inter alia, disclosure of the true costs and a favorable cost-benefit ratio of measures 

taken, existence of incentives for environmentally friendly action) 

 

• Socially acceptable waste management 

(Inter alia, avoidance of severe exceptional burdens on the population at particular 

locations, reasonable satisfaction of human needs such as mobility and availability of 

choice when purchasing products). 

 

 

 

4.2 Collection 

 

 The volume of batteries made by manufacturers in Malaysia has risen 

tremendously over the last five years. Locally some 1000 tons of batteries are purchased 

yearly, in Kuala Lumpur.  Approximately 0.5 metric tones of spent batteries are 

collected since 2003, through about 20 collection points and also upon request spent 

batteries are fetched from private sector on free of charge basis. The returning rate of 

spent batteries today is less then 0.1%, much too low a figure. It is astonishing as: such 

great effort has been done to collect harmless wastes for instance glass, plastic bottles, 

paper and aluminum cans. Why are batteries, which, after all, are a concentrate of heavy 

metals and a source of raw material, disposed of in the normal municipal waste? It I high 

time that we find a solution for the safe disposal of spent batteries. In the meantime 

spent batteries are disposed off in landfill, which lead to hazardous leachate, not 

environmental friendly. Certain landfill had to be closed and is now a contaminated site 

which requires continuous monitoring and remediation. 
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So far, there has been no recycling process initiated for spent dry batteries in 

Malaysia apart from the work conducted by Unit Kesihatan, DBKL for the collection of 

spent batteries during 2002. For this project, some clinics and schools were installed 

with waste battery collection units to encourage. However, due to negligence, the 

collection points are perceived as litter cans by people and filled with rubbish. 

 

Specific legislation, based on the polluter–payer principle, has been established 

in some countries. This means that the manufacturer or the importer of the batteries is 

also responsible for its destination, after it is used by the consumer. Malaysian 

legislation does not oblige for the recycling of dry and alkaline batteries, since the 

concentration of heavy metals is within established limits. Recycling effort has been 

introduced for example: aluminum cans, old newspaper and car batteries. 

 

When discussing battery recycling, collection is a great problem, since it depends 

not only on public awareness, but commitment of industries, distributors and the 

government. For this, DBKL should be commended for taking the first step towards 

battery recycling and recovery.   

 

The steps that should be taken for recycling of the waste batteries can be summarized as 

follows: 

 

1. Public awareness should be promoted, with emphasis on effects of batteries on the 

environment. For example: 

• The waste batteries have hazardous effects on human health and environment. 

• The leakage from the waste batteries damages devices. 

• The recycling of waste batteries contributes to the national economy. 

 

2. All nationwide municipalities should ensure that consumers dispose of their spent 

batteries safely into the collection containers in their neighborhood. 
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3. These spent batteries should be collected on regular basis and forwarded to the main 

collection units. 

 

4. The collected waste batteries should be classified based on their contents and the 

recovery plant limitation. 

 

5. Valuable metals contained in the waste batteries should be recovered by 

hydrometallurgical and/or pyrometallurgical methods. 

 

 Another measure taken to achieve high collection rates is to install an appropriate 

and efficient battery collection infrastructure. This infrastructure must be well planned 

since it involves several different sectors of the society such as scrap dealers, battery 

dealers, and consumers into an organized scheme which provides a continuous flow of 

the recycling process. Perhaps the greatest challenge is to encourage end-users to 

participate. For small batteries, consumers are not willing to return their batteries to the 

outlet where they have bought them.  

 

1. Some guidelines for batteries container and collection centers:  

• Container must be acid-resistant. 

• Container should look attractive and contains the batteries recycling logo. 

• Container should not be too expensive and bulky.  

• Collection point must be fairly distributed and easy to be reached by consumers 

i.e:  in their neighborhood, retailer, garden and pump station. 

• The storage place must be sheltered from rain, other water sources and heat 

sources. 

• The storage place must have a ground cover, preferably plastic or any other acid-

resistant material that may retain any leakage and direct it to a collecting 

container from where it can be removed afterwards. 

• The storage place must have an exhaust system, in order to avoid hazardous gas 

accumulation. 
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• The storage place must have a restricted access and be identified as a hazardous 

material storing place. 

• Collection points must not store large amounts of used batteries and must not be 

considered as a permanent storage place. Batteries must be cleared frequently. 

 

 

 

4.2.1 Suggestion batteries container 

 

The follows is an example of box for batteries recycling (Europe patent FR2766799) 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 4.1: Box for batteries recycling 

 

A protective hood has a long skirt close-fitting over the free-standing cylindrical bin, 

whose rim supports its interior flange leaving the skirt just above ground level. An 

inclined partition, dividing the hood interior, has an opening above the centre line. Items 

for collection are passed through a side opening and dropped through the partition. 

Rubbish, rain, etc. are trapped in the upper compartment. Periodically, the hood is lifted, 

the bin with contents removed to a recycling centre and the hood slipped down again 

over a replacement bin. Bin and hood may be of heavy duty plastic.   

Protective hood 

Free-standing cylindrical bin 

i h d

Whose rim 

Interior flange Inclined partition  

Upper compartment 
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 In Kuala Lumpur, a collecting system ha been started by DBKL and it is still 

difficult to assess its efficiency. There are several established collection methods, mainly 

implemented in some countries, such as the US, some European countries and Japan.  

 

1) Mail-back 

Mail-back procedures are used by product manufacturers to transport spent batteries 

back to consolidation points. This approach is typically used for custom battery packs 

which must be ordered from the product manufacturer or custom battery pack 

manufacturer. In this scheme, the end user orders the replacement battery via mail order 

and returns the spent battery in the same or special return packaging to a designated 

consolidation point. Typically, shipping cost and recycling cost are borne by the seller of 

the replacement battery. 

 

2) Retail collection boxes 

Retail collection boxes are most effective for batteries which can be purchased over the 

counter in retail outlets. In this arrangement, the buyer can conveniently deposit the 

spent battery in a designated receptacle in the same store or outlet where the new 

replacement battery is purchased. Some outlets offer the depository service even if the 

type of battery is not sold at their establishment. Many pharmacies in the USA, for 

example, voluntarily provide take back boxes for mercuric oxide button cells even 

though such batteries can no longer be sold. There is no cost to the consumer, the 

pharmacy contributes shelf space, and pays a fee to local recycling services who operate 

“milk runs” to collect and consolidate the batteries. Ultimately, mercuric oxide batteries 

are sent to an authorized mercury reclamation facility. 

 

3) 3rd Party waste hauler 

Permitted hazardous waste haulers are another choice to make. The cost of this service is 

usually high and not a desirable choice for economical handling of waste batteries. This 

option is the best choice for damaged or leaking batteries. 
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4) Reverse logistics operations for products 

Manufacturers of larger, commercial or industrial type electronic products frequently 

operate a reverse logistics operation for high value spare parts which can be repaired 

and reused as spare replacement parts. Take back service for products offers another 

advantage when the product itself has reached end of life. In this way, the concern about 

keeping batteries out of municipal waste streams is addressed as part of an ongoing 

remanufacturing process. 

 

 

 

4.2.2 Financial 

 

Dry battery recycling program is much more complex than expected. The 

technologies used are quite sophisticated. Due to the highly developed technology, small 

dimensions of treatment plant, storage, campaign and publicity, battery recycling is not a 

profitable activity. Therefore, a funding scheme with contribute from involved parties, 

namely producers, importers and retailers should be set up to address the batteries 

recycling program.   

 

The cost efficiency of recycling spent batteries is perhaps the greatest challenge 

to managing the environmental burden of batteries. Technological, economic and 

legislative factors all interact to complicate recycling. Two of the biggest material 

obstacles to using existing metal reclamation processes are mercury and plastic. Many 

ferrous and non-ferrous metal recycling processes cannot deal with the control of 

mercury vapors, electrolyte materials and plastics found in batteries.  
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4.3 Metal determination 

 

4.3.1 Physical condition of batteries 

 

 From 158 kg of batteries received from DBKL, the batteries were mixed well 

and divided into 4 portions. The batteries were then sorted by their physical condition 

i.e: size, origin and type. (Fig. 4.2) 

 

 

 

 

 

 

 

 

 

 

 

 

The largest portion of collected batteries were those of AA size (27.76 kg), followed by 

D (11.96kg) and C (13.76kg). Most portable devices require AA, C or D batteries, which 

accounts for the largest percentage of batteries used for general household purposes. i.e: 

AA (Clock, toys and walkman), D (Radio and torchlight) and C (torchlight). Button cell, 

mobile phone batteries and 6V type batteries (16.14%) constitute those group under 

miscellaneous   

 

It is interesting to note that 37.29% of the total batteries collected was imported 

(mostly from China), compared to 49.56% which was produced locally. Large portion of 

imported batteries found inside our waste stream is due to its cheap prices, short life 

time and is usually sold together with equipment, especially toys. The cheap imported 

type batteries has a high tendency to leak and might have a high Hg and Pb content 

Figure 4.2: Portion of 
batteries segregation by size 

Figure 4.3: Portion of batteries 
segregation by origin of producer 

miscellaneous 
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From the batteries collected, 79% was the non rechargeable type, 13% rechargeable and 

8% of unknown type. More non rechargeable batteries have been collected compared to 

the rechargeable batteries. Low prices and short lifetime contribute to the large 

consumption of non rechargeable batteries.  

 

The metal composition differs considerably depending on the battery type, thus 

some batteries are potentially more hazardous than others. Changing the trend of 

batteries consumption will affect the efficiency of metal recovery. As an example, for 

the Ni–Cd batteries, cadmium, mercury and lead are very toxic metals commonly found 

in these batteries. 

  

 

 

 

 

 

 

 
 

Figure 4.4: Portion of 
batteries, segregation by 
recharge ability 

Figure 4.5: Portion of 
rechargeable batteries  

Figure 4.6: Portion of non-
rechargeable batteries  
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4.3.2 Metal content 
 
Table 4.1: Metal content of non rechargeable dry cell (Zn-C and Alkaline batteries). 
 

Element 
Zn-C 
(entire batteries)  

Zn-C  
(Dry powder) 

Alkaline 
(entire batteries) 

Alkaline  
(dry powder) 

Mn (%) 27.065 33.023 29.025 38.596 
Zn (%) 5.023 7.0568 12.4862 19.85634 
Fe (%) 2.184 0.021245 1.9658 0.001453 
As (ppm) 3.425 - 2.159 - 
Cd (ppm) 12.47 - 4.253 - 
Co (ppm) 26.14 - 84.25 - 
Cr (ppm) 23.45 - 29.48 - 
Cu (ppm) 5.124 - 2.814 - 
Hg (ppm) - 0. 002356 - 0.04598 
Ni (ppm) 52.34 69.85 85.23 102.35 
Pb (ppm) 23.92 1.5625 49.87 65.68 

 
 The metal composition of zinc–carbon and alkaline batteries is quite similar. 

These batteries contain basically manganese, zinc and iron as main metallic species. The 

outer layer of batteries comprises mainly of iron (Fe). Steel casing can be separated 

easily using a magnetic separator. Other heavy metals Cu, Ni, Cr, As, Cd, Co, Hg and Pb 

are found in trace amounts. Low levels of mercury have been detected at 0.002 ppm and 

0.04ppm from the Zn-C and alkaline batteries respectively, even though have been 

labeled as no mercury added.  

 

After the dismantling of the batteries, the black powder was analyzed and found 

to contain the following metals (Table 4.2). 

 

Table 4.2: Zn and Mn content of Zn-C and alkaline batteries dust.  
 
Element Zn-C  Alkaline  
Mn (%) 33.02 38.60 
Zn (%) 7.06 19.86 

 

Thus recovery of these metals can be attempted due to their relatively large 

amounts in this kind of waste. Recycling rates for metals are growing in many developed 
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countries. In the 1980s, the lead, zinc and tin industries were in a crisis caused by 

stagnation of the market, and secondary raw materials from lead batteries, zinc plant 

leach operations and steel plant dusts. The same route can treat residues from zinc–

carbon batteries as well as alkaline, because of the similarity in metal composition. 

 

Moisture content of the batteries was found at 4.25% and 3.85% for Zn-C and 

alkaline batteries respectively. Water acted as batteries electrolyte, consisting of 

potassium hydroxide for alkaline batteries and ammonium chloride for Zn-C batteries. 

Instead of metal, the batteries also contain non soluble plastics, paper, carbon and ash. 

Figure 4.7 shows a cross section diagram of the alkaline and zinc carbon batteries. 

 

Figure 4.7: Cross section of alkaline and zinc carbon batteries 
 
 

 
 

 

 

 

 

 

Alkaline                                               Zinc carbon batteries 

 

 

The chemical reaction involved in zinc-carbon and alkaline-manganese batteries is as 

follows: 

Zinc-carbon 

Anode             Zn(s)  Zn2+
(aq) + 2e-  

Cathode          2NH4
+

(aq) + 2MnO2(s) + 2e-  Mn2O3(s) + H2O(l) + 2NH3(aq) 

            Electrolytes    NH4Cl and ZnCl2 
                                   2NH4

+
(aq) + 2e- -> 2NH3(g) + H2(g) 
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Alkaline-manganese 

Anode               Zn(s) + 2OH-(aq) -> Zn(OH)2(s) + 2e- 

Cathode             2MnO2(s) + H2O(l) + 2e- -> Mn2O3(s) + 2OH-(aq)   

Electrolytes       KOH 

 Alkaline and carbon-zinc "heavy duty" dry cell batteries are the normal 

"disposable" batteries. They cannot be recharged or recycled. In the past, these contained 

mercury and were not allowed in household trash. In recent years, however, virtually all 

of the common disposable batteries have been removed of mercury and government 

disposal guidelines state that "appropriate disposal" includes "landfill."  Some 

communities collect batteries as part of a recycling program, but the batteries generally 

end up in a hazardous waste landfill and not recycled. 

Both batteries have presented a serious challenge to recycling efforts for several reasons:  

 Recoverable component materials are of relatively low value and concentration 

in these battery cells. The average metal composition is approximately 3% steel (case), 

10% zinc, carbon, 35% manganese and the balance consists of copper, paper, plastic and 

electrolyte. The highest valued component of the major components is zinc. It is 

generally accepted that the zinc portion of any material or product should be greater than 

50%, to justify an economically feasible recovery (for the value of the zinc alone). 

Therefore, previous attempts to recover the zinc from alkaline batteries through 

recycling were quite expensive, because of the lower zinc content. 

 Individual component materials are extremely difficult to separate from one 

another; magnetic separation will only separate the outside steel case as the other 

components are not magnetic. 

 The small quantity of electrolyte found in these so-called "dry cell" batteries is 

highly corrosive and emits ammonia when crushed or pulverized. 
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 The mercury content of batteries collected today is very high; separating it out is 

not economically viable. Some will probably be stored at hazardous waste sites 

 

 Zinc-carbon/air and alkaline-manganese batteries can be reprocessed using a 

number of different methods, which include smelting and other thermal-metallurgical 

processes to recover the metal content (particularly zinc). 

 

Table 4.3: Metal content of rechargeable dry cell    
                               
Element Ni Cd Ni MH Li ion 
As (ppm) 1.025 1.5234 3.1402 
Cd (%) 17.953 - - 
Co (%) 0.617 3.569 15.756 
Cr (ppm) 22.018 21.052 37.156 
Cu (ppm) 64.248 59.482 6897.42 
Hg (ppm) 0. 2631 0. 01186 0.00952 
Mn (%) 0.086 1.482 12.729 
Ni  (%) 19.127 35.876 9.256 
Pb (ppm) 263.5 1.048 0.9235 
Fe (%) 29.354 22.485 6.152 
Zn (%) 0.04356 0.5725 - 
Al (%) 0.053 0.6235 5.689 
Li (%) - - 4.315 
La - 2.458 - 
V - - 13.248 

 

Compared to disposable batteries, the metal content of rechargeable batteries is more 

varied. Metal content of Ni Cd, NiMH and Li ion batteries is slightly higher at 67.3%, 

67.1% and 74.0% respectively, compared to 43.5 % for alkaline batteries. Nickel metal 

hydride (NiMH) batteries represent one of the fastest growing sectors in the battery 

market.  Amongst the many uses include cordless power tools, personal stereos, portable 

telephones, lap-top computers, shavers, motorised toys with a life of 4-5 years. NiMH 

batteries are a more environmental friendly alternative to NiCd and tend to have a longer 

life. Energy storage capacity of Lithium ion (Li-Ion) batteries are reported to be greater 

than NiCd and NiMH batteries. 
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The usages of rechargeable batteries offer an advantage i.e: reduction in volume 

of batteries used; however more metals are used in these batteries, which might pose as 

carcinogen. Nickel-Cadmium (Ni-Cads) rechargeable batteries contain 18.0% Cd and 

263.5ppm Pb. These metals which causes damage to blood and reproductive system, can 

be toxic to aquatic invertebrates and can bio-accumulate in fish, which makes them unfit 

for human consumption. These batteries pose no hazard when in use, since the cadmium 

is in a stable form and contained in the battery, but they can break apart in landfills, 

allowing the toxic metals to leach into the ground and water supplies. Several countries 

now prohibit consumers from dumping NiCad batteries as household trash. The warning 

and recycling logo might prove useful in order to convey this message. 

 There are various types of lithium batteries in the market today. These batteries 

are considered the superior performing batteries. They were originally most often used 

for primary power in such critical devices such as heart pacemakers. Today, their use is 

rapidly growing and they are commonly used in devices such as cameras because of 

their high performance, longer life and reliability. The use of lithium batteries in 

manufactured components is expected to increase drastically, which is a cause for worry 

due to high content of Li (4.13%). Lithium is reactive and may ignite upon shorting, 

opening or crushing. In fact, as each cell is crushed in a deactivating process, the cell 

explodes. The component materials may then be discharged into a solution of potassium 

hydroxide, where lithium is reduced to lithium salts.  Figure 4.8 shows a cross section 

diagram of the of Ni-Cd and NiMH batteries 

 

 

 

 

 

 

 

 

 

 



 276

Figure 4.8: Cross section of Ni-Cd and NiMH batteries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Cross section diagram of Ni-Cd batteries 
 

Cross section diagram of Ni-MH batteries 
 

Positive Electrode: 
Active material = Nickel oxyhydroxide (NiOOH) 
 

Positive Electrode: 
Active material = Nickel oxyhydroxide (NiOOH) 
 

Negative Electrode: 
Active material = Cadmium 

Negative Electrode: 
Active material = Metal hydride  
 
Ni-MH technology uses AB5 alloy composition 
(e.g. LaNi5). 
 
AB5 composition offers better corrosion resistance 
for longer cycle life and better recharging following 
storage. 

Electrolyte 
Primary electrolyte: dilute solution potassium 
hydroxide solution with minor constituents as 
enhancer 

Electrolyte 
Primary electrolyte: aqueous potassium hydroxide 
solution  
 

Cell Reactions 
During Discharge: 
NiOOH + H20 + e- Ni(OH)2 + OH- 
and 
Cd + 2OH-  Cd(OH)2 + e- 
 
Overall Reaction: 
Cd + 2NiOOH+2H2O  Cd(OH)2 + 2Ni(OH)2   
 
The process is reversed during charge. 
 

Cell Reactions 
During Discharge: 
NiOOH + H20 + e- Ni(OH)2 + OH- 
and 
MH + OH- M + H2O + e- 
 
Overall Reaction: 
MH + NiOOH M + Ni(OH)2 
 
The process is reversed during charge. 
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4.3.3 Metal content of batteries collected by DBKL 
 
 
Table 4.4: Metal content of batteries collected by DBKL (18.36 kg immersed in 50L aqua regia)  

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The batteries were found to contain 22.84% Mn, 6.04% Zn and 5.3% Fe 5.15 % Ni and 

0.38% Al. The quantity of these metals are worthy for recycling.  

  

 It is important to note that the concentration of toxic metals i.e: Hg, Pb and As in 

the collected batteries is much higher compared to the batteries produce locally. A large 

proportion of these probably come from imported batteries and batteries collected before 

1980. High concentration of toxic metals becomes a disturbing problem in recycling 

process. For example, in the recycling of metals zinc-carbon and alkali manganese 

batteries must contain less than 5 ppm mercury.  In the EU, a new batteries guideline 

intended to reduce the amount of mercury in domestic batteries from the currently 

permitted 250 ppm to almost zero has been formulated. With this guideline it is hoped 

that mercury will not be present in collected batteries from 2003 onwards, and recycling 

processes will become environmentally and economically viable.  

Element Content 
As (ppm) 5.0236 
Cd (%) 0.3835 
Co (%) 2.1356 
Cr (ppm) 26.139 
Cu (ppm) 242.47 
Hg (ppm) 7.0235 
Mn (%) 22.842 
Ni  (%) 5.1454 
Pb (ppm) 31.534 
Fe (%) 5.2996 
Zn (%) 6.0357 
Al (%) 0.2777 
Li 0.1517 
La 0.3020 
V 0.4658 
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During the last decade, the producers of batteries have been engaged in trying to 

find substitutes for toxic substances still used in batteries, to match environmental 

requirements; however, the basic systems of the batteries and its composition(steel, 

plastic, zinc, manganese dioxide, steel casings, paper, carbon, and brass) still remains 

the same 

 

 

 

4.4 Laboratory test works 

 
4.4.1 Column leaching test work 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.5: Column condition 

 1 2 3 4 
Duration (month) 1st-2nd 2nd-5th 6th -8th 9th -12th 
volume 60L 60L 200L 200L 
content 50kg of mix batt. + 

45kg of D size Zn-
carbon type 
batteries.  

50kg of mix batt. + 45kg of 
D size Zn-carbon type 
batteries. 

50kg of mix batt. + 45kg 
(AA) +150kg (D) size Zn-
carbon type batteries. 

50kg of mix batt. + 
90kg (AA) +190kg (D) 
size Zn-carbon type 
batteries. 

 Column bottom: 5 
cm of sand 
Column top: 5 cm 
of sand 

Column bottom: 5 cm of 
sand 
Column top: 5 cm of sand 
20% sand mix with 
batteries 
 

Column bottom: 5 cm of sand 
Column top: 5 cm of sand 
20% sand mix with batteries 

Column bottom: 5 cm 
of sand 
Column top: 5 cm of 
sand 
50% sand mix with 
batteries 

Leachate solution  
 

5L. sprayed at 
17ml/mnt, solution 
top up daily, single 
drop 
 

5L. sprayed at 17ml/mnt, 
solution top up daily, 4 
nozzle 
Air supply from the bottom 
of column  

10L. sprayed at 25ml/mnt, 
solution top up daily, 4 
nozzle 
 

10L. sprayed at 
25ml/mnt, solution top 
up daily, 4 nozzle 
 

Column bottom: 5 cm of sand: 
avoid clogging  

Sprinkler: 4 nozzle, 
single drop 

Column top: 5 cm of 
sand: improved the 
flow distribution. 
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Picture 

 
 
 
 
 
 
 
 
 

 

 
 
 
Table 4.6: Leaching condition 
 

 Column A Column B 
1     1st-2nd month Part 1: Chemical leaching 

 
Solution used: 
Portion 1A 
. Hydrochloric acid (1M) 
 
Duration 10 days. 
 
Portion 1B 
.Ferric chloride added to achieve 0.5M 
hydrochloric acid  (1M) test 
 
Duration 50 days  

Part 1: Chemical leaching 
 
Solution used: 
Portion 1A 
. Sulfuric acid (1M) 
 
Duration 10 days. 
 
Portion 1B 
.Ferric sulphate added to achieve 0.5M into 
sulfuric acid (1M) test 
 
Duration 50 days  

2     2nd-5th month Part 2: Bioleaching 
Culture used: 
Part 2A: 
. Mixture of Thiobacillus ferrooxidans and 
Leptospirillum ferrooxidans  
Continuing test for another 15 days, sample  
 
Off spraying: days 15th -20th     
 
Part 2B: 
Culture SL5B 
Continuing test for another  60 days,  
 
Off spraying: days 15th -20th,  35th -40th     
     

Part 2: Bioleaching 
Culture used: 
Part 2A: 
. Mixture of Thiobacillus ferrooxidans and 
Leptospirillum ferrooxidans  
Continuing test for another 15 days 
 
Off spraying: days 15th -20th     
 
Part 2B: 
Culture SL5B 
Continuing test for another  60 days,  
 
Off spraying: days 15th -20th,  35th -40th 

3     6th -8th month Part 3: Acid leaching (200L column) 
Portion 3A 
Solution used: 
. Hydrochloric acid (0.5M) 
 
Duration 10 days. Solution changed every 5 
days for metal recovery  

Part 3: Acid leaching (200L column) 
Portion 3A 
Solution used: 
. Sulfuric acid (0.5M) 
 
Duration 10 days. Solution changed every 5 
days for metal recovery  
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Portion 3B  
Bioleaching  
Culture used: H2SO4 producer 
. Mixture of Thiobacillus thioooxidans and 
Acidianus Brierleyi   
Grown in hydrochloric acid  (0.5M) test 
solution (portion 3A) , added with basalt salt  
 
Continuing test for another 40 days 
Solution changed every 10 days for metal 
recovery  
Off spraying: days 15th -20th ,  40th -50th        
 

 
Portion 3B 
Bioleaching 
Culture used: H2SO4 producer 
. Mixture of Thiobacillus thioooxidans and 
Acidianus Brierleyi   
Grown in sulfuric acid  (0.5M) test solution 
(portion 3A) , added with basalt salt  
 
Continuing test for another 40 days 
Solution changed every 10 days for metal 
recovery  
Off spraying: days 15th -20th,  40th -50th            
 

4     9th -12th month Part 4: Ferric leaching (200L column) 
 
Portion 4A 
Ferric chloride 0.3M added to TT and AB (3B) 
solution  
 
Duration 10 days. Solution changed every 5 
days for metal recovery  
 
Portion 4B  
Bioleaching  
Culture used: ferric ion producer 
. Mixture of Thiobacillus ferrooxidans and 
Leptospirillum ferrooxidans 
Grown in Ferric chloride (0.3M) test solution 
(portion 4A) , added with basalt salt  
 
Continuing test for another 30 days 
Solution changed every 10 days for metal 
recovery  
Off spraying: days 15th -20th  
 
Part 4C: Bioleaching (200L column) 
Culture SL5B 
Inoculated in a 4B solution ( containing TF 
and LF)  
Continuing test for 50 days, 
Off spraying: days 20th -30th  
 
 

Part 4: Ferric leaching (200L column) 
 
Portion 4A 
Ferric sulphate 0.3M added to TT and AB (3B) 
solution  
 
Duration 10 days. Solution changed every 5 
days for metal recovery  
 
Portion 4B  
Bioleaching  
Culture used: ferric ion producer 
. Mixture of Thiobacillus ferrooxidans and 
Leptospirillum ferrooxidans 
Grown in Ferric sulphate (0.3M) test solution 
(portion 4A) , added with basalt salt  
 
Continuing test for another 30 days 
Solution changed every 10 days for metal 
recovery  
Off spraying: days 15th -20th  
 
Part 4C: Bioleaching (200L column) 
Culture SL5B 
Inoculated in a 4B solution ( containing TF 
and LF) 
Continuing test for 50 days, 
Off spraying: days 20th -30th  
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Roasting 

5 point sam
pling for each portion (0.5m

 height each portion) . D
 size, Zn-C

 type batt. 

Soaked with aqua regia 
70oC, 1.5 hrs 

 (1:5 of wt batt: vol aqua regia) 

Filtered  

Metal determination
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Recovery of metal at different height of column:          1st-2nd month and           2nd-5th month.   
Y-axis - % of metal recovered 
X-axis: Position of metal recovered from column 
 

Column 1 
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0- 0.5m
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60L Column 
 

200L Column 
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Recovery of metal at different height of column:          6st-8nd month and           9nd-12th month.   
Y-axis - % of metal recovered 
X-axis: Position of metal recovered from column 
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4.5 Laboratory test 
 
4.5.1 Shake flask test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Filtereted, metal content 
determination  

Residue digested and check 
for unleachable metal 

Filtered 

Leaching test  (sample taken gradually) 

Respective batteries, weight and 
added into solution 

Culture incubated in respective 
medium and temp, aseptically 

Bioleaching test 

 

Filterat, metal content 
determination  

Residue digested and check 
for unleachable metal 

Filter 

Leaching test  (sample taken gradually) 

Respective batteries, weighed 
and added into solution 

Solution containing respectively 
chemicals prepared  

Chemical leaching test 

 

Culture incubated 

Filterate, Nutrient 
added  

Residue  

Filtered 

Leaching test  (sample taken gradually) 

Respective batteries, weighed 
and added into solution 

Solution containing respective 
chemicals prepared  

Combination of chemical leaching 

and bioleaching test 

Bioleaching test  (sample taken gradually) 

Filterate, metal content 
determination  

Residue digested and check 
edfor unleachable metals 

Filtered 
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Shake flask test: Set 1 
 

Set 1: 
 Shaken, not broken 

Flask 250mL, Leaching solution 100mL, shaken at 200 rpm using orbital shaker, 5 pc. of AA type batteries 
unbroken. 
 
Culture used: 
Thiobacillus ferrooxidans ( 300C ),  
Leptospirillum ferrooxidans (300C )  
Thiobacillus thiooxidans (300C ). 
SulfobacillusThermosulfodioxidans ( 450C ), 
Acidianus Brierleyi( 700C ), 
SL5B( 700C ), 
 
Chemical used: 
Hydrochloric acid (1M) 
Sulfuric acid (1M) 
Ferric chloride (1M) 
Ferric sulphate (1M) 
Sodium thiosulphate (0.250 M Na2, 0.15 M NH4OH, 0.02 M CuSO4 , pH;9.0) 
Sodium hypochlorite (75 mL/L  NaOCl, 25 g/L NaCl and 0.35 M HCl ) 
 
 
Duration 90 days 
 

 
 

Set 1A: Metal extraction from Zn-C batteries. Not broken but shaken at 200 rpm for 90 
days 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 90 days of leaching using different 
types of culture. Batteries are unbroken but shaken at  
200 rpm.  

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 90 days of leaching using different 
types of chemical as lixiviant solution . Batteries are 
unbroken but shaken at 200 rpm.  
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Set 1B: Metal extraction from alkaline batteries. Not broken but shaken at 200 rpm for 
90 days 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Set 1C: Metal extraction from Ni-Cd rechargeable batteries. Not broken but shaken at 
200 rpm for 90 days 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Percentages of        Fe,     Zn and      Mn solubilization 
from alkaline dry cell, 90 days of leaching using 
different types of culture. Batteries are unbroken but 
shaken at 200 rpm.  

Percentages of        Fe,     Zn and      Mn solubilization 
from alkaline dry cell, 90 days of leaching using 
different types of chemical as lixiviant solution . 
Batteries are unbroken but shaken at 200 rpm.  

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Cd and      Ni solubilization 
from Ni-Cd dry cell, 90 days of leaching using different 
types of culture. Batteries are unbroken but shaken at 
200 rpm.  

Percentages of        Fe,     Cd and      Ni solubilization 
from Ni-Cd dry cell, 90 days of leaching using different 
types of chemical as lixiviant solution . Batteries are 
unbroken but shaken at 200 rpm.  

Bacterial leaching Chemical lixiviant 



 287

8.74

18.16

21.05

18.24

6.59

13.59

3.52

15.49

16.89

25.48

19.13

9.24

11.29

1.21

32.57 31.08

31.92

31.08

17.12

17.92

24.83

24.54

28.08 26.79

22.49

22.64

22.23

27.38

0

5

10

15

20

25

30

35

40

HCL H2SO4 FECL3 FE2SO43 NA2S2O3 NAOCL NH42CO3

FE

CO

LI

AL

3.94

4.15 1.55

6.59

2.35

4.71

9.52 7.84

1.24

12.25

0.84

16.52

22.21

22.46

16.05

28.56

18.85

28.56

13.44

12.64

13.68

18.56

13.28

22.32

0

5

10

15

20

25

30

35

40

TF LF TT ST AB SL5B

FE

CO

LI

AL

 Set 1D: Metal extraction from Li-rechargeable batteries. Not broken but shaken at 200 
rpm for 90 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shake flask test: Set 2 
 

Set 2: 
 U

nshaken, broken 

Flask 250mL, not shaken, Leaching solution 100mL, 5 pc. of AA type batteries were broken and shredded. 
 
Culture used: 
Thiobacillus ferrooxidans ( 300C ),  
Leptospirillum ferrooxidans (300C )  
Thiobacillus thiooxidans (300C ). 
SulfobacillusThermosulfodioxidans ( 450C ), 
Acidianus Brierleyi( 700C ), 
SL5B( 700C ), 
 
Chemicals used: 
Hydrochloric acid (1M) 
Sulfuric acid (1M) 
Ferric chloride (1M) 
Ferric sulphate (1M) 
Sodium thiosulphate (0.250 M Na2, 0.15 M NH4OH, 0.02 M CuSO4 , pH;9.0) 
Sodium hypochlorite (75 mL/L  NaOCl, 25 g/L NaCl and 0.35 M HCl ) 
 
 
Duration 90 days 
 

 
 
 

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Cd,      Li and      Al 
solubilization from Li-ion dry cell, 90 days of leaching 
using different types of culture. Batteries are unbroken 
but shaken at 200 rpm.  

Percentages of        Fe,     Cd,      Li and      Al 
solubilization from Li-ion dry cell, 90 days of leaching 
using different types of chemical as lixiviant solution. 
Batteries are unbroken but shaken at 200 rpm.  
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Set 2A: Metal extraction from Zn-C batteries for 90 days. Batteries were not shaken but 
broken  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Set 2B: Metal extraction from alkaline batteries for 90 days. Batteries were not shaken 
but broken  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 90 days of leaching using different 
types of culture. Batteries are broken but not shaken. 

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 90 days of leaching using different 
types of chemical as lixiviant solution . Batteries are 
broken but not shaken.  

Percentages of        Fe,     Zn and      Mn solubilization 
from alkaline dry cell, , 90 days of leaching using 
different types of culture. Batteries are broken but not 
shaken 

Percentages of        Fe,     Zn and      Mn solubilization 
from alkaline dry cell, 90 days of leaching using 
different types of chemical as lixiviant solution . 
Batteries are broken but not shaken.  
.  

Bacterial leaching Chemical lixiviant 
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Set 2C: Metal extraction from Ni-Cd rechargeable batteries for 90 days. Batteries were 
not shaken but broken  
 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
Set 2D: Metal extraction from Li-rechargeable batteries for 90 days. Batteries were not 
shaken but broken  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shake flask test: Set 3 
Shake flask test: Set 3 

Percentages of        Fe,     Cd and      Ni solubilization 
from Ni-Cd dry cell, 90 days of leaching using different 
types of culture. Batteries are broken but not shaken 
 

Percentages of        Fe,     Cd and      Ni solubilization 
from Ni-Cd dry cell, 90 days of leaching using different 
types of chemical as lixiviant solution . Batteries are 
broken but not shaken.  
.  

Bacterial leaching Chemical lixiviant 

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Cd,      Li and      Al 
solubilization from Li-ion dry cell, 90 days of leaching 
using different types of culture. Batteries are broken but 
not shaken 
 

Percentages of        Fe,     Cd,      Li and      Al 
solubilization from Li-ion dry cell, 90 days of leaching 
using different types of chemical as lixiviant solution . 
Batteries are broken but not shaken.  
.  
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Set 3: 
 Shaken, broken 

Flask 250mL, Leaching solution 50mL, shaken at 200 rpm using orbital shaker, A pieces of AA type batteries 
were broken and shredded. 
 
Culture used: 
Thiobacillus ferrooxidans ( 300C ),  
Leptospirillum ferrooxidans (300C )  
Thiobacillus thiooxidans (300C ). 
SulfobacillusThermosulfodioxidans ( 450C ), 
Acidianus Brierleyi( 700C ), 
SL5B( 700C ), 
 
Chemical used: 
Hydrochloric acid (1M) 
Sulfuric acid (1M) 
Ferric chloride (1M) 
Ferric sulphate (1M) 
Sodium thiosulphate (0.250 M Na2, 0.15 M NH4OH, 0.02 M CuSO4 , pH;9.0) 
Sodium hypochlorite (75 mL/L  NaOCl, 25 g/L NaCl and 0.35 M HCl ) 
 
Duration 30 days 
 

 
 
Set 3A: Metal extraction from Zn-C batteries for 30 days. Batteries were broken 
and shaken at 200 rpm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 30 days of leaching using different 
types of culture. Batteries are broken and shaken at 
200rpm. 

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 30 days of leaching using different 
types of chemical as lixiviant solution . Batteries are 
broken and shaken at 200rpm. 
.  
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Set 3B: Metal extraction from alkaline batteries for 30 days. Batteries were broken 
and shaken at 200 rpm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set  2C: Metal extraction from Ni-Cd rechargeable batteries for 30 days. Batteries 
were broken and shaken at 200 rpm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of        Fe,     Zn and      Mn solubilization 
from alkaline dry cell, 30 days of leaching using 
different types of chemical as lixiviant solution . 
Batteries are broken and shaken at 200rpm. 
.  
.  

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Cd and      Ni solubilization 
from Ni-Cd dry cell, 30 days of leaching using different 
types of culture. Batteries are broken and shaken at 
200rpm. 
 
 

Percentages of        Fe,     Cd and      Ni solubilization 
from Ni-Cd dry cell, 30 days of leaching using different 
types of chemical as lixiviant solution . Batteries are 
broken and shaken at 200rpm. 
 
.  

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Zn and      Mn solubilization 
from Zn-C dry cell, 30 days of leaching using different 
types of culture. Batteries are broken and shaken at 
200rpm. 
. 
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Set 3D: Metal extraction from Li-rechargeable batteries for 30 days. Batteries were 
not shaken but broken 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bacterial leaching Chemical lixiviant 

Percentages of        Fe,     Cd,      Li and      Al 
solubilization from Li-ion dry cell, 30 days of leaching 
using different types of culture. Batteries was broken 
and shaken at 200rpm. 
 

Percentages of        Fe,     Cd,      Li and      Al 
solubilization from Li-ion dry cell, 30 days of leaching 
using different types of chemical as lixiviant solution . 
Batteries are broken and shaken at 200rpm. 
.  
.  
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Shake flask test: Set 4 
 
 

Set 4 
Shaken, broken and inner part dism

antling 
 

Flask 250mL, Shaken at 200rpm, Leaching solution 100mL, D type batteries Zn-carbon batteries, internal 
portion manually exposed ( inner part: ground, sieved, washed and dried), weight: 25g  
 
Culture used: 
Thiobacillus ferrooxidans ( 300C ),  
Leptospirillum ferrooxidans (300C )  
Thiobacillus thiooxidans (300C ). 
SulfobacillusThermosulfodioxidans ( 450C ), 
Acidianus Brierleyi( 700C ), 
SL5B( 700C ), 
 
Chemical used: 
Hydrochloric acid (1M) 
Sulfuric acid (1M) 
Ferric chloride (1M) 
Ferric sulphate (1M) 
Sodium thiosulphate (0.250 M Na2, 0.15 M NH4OH, 0.02 M CuSO4 , pH;9.0) 
Sodium hypochlorite (75 mL/L  NaOCl, 25 g/L NaCl and 0.35 M HCl ) 
Ammonium carbonate (1M) 
 
Duration 30 days. 
 

 
 
Set 4: Metal extraction from Zn-C batteries dust (inner part) for 30 days. Batteries 
dust were ground, wash and dried 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shake flask test: Set 5 

Percentages of       Zn and       Mn solubilization from 
the dust of Zn-C dry cell, 30 days of leaching using 
different types of culture. Batteries are broken and inner 
part of batteries were dismantled, ground, wash and 
dried. Slurry was shaken at 200rpm. 

Percentages of        Zn and      Mn solubilization from 
Zn-C dry cell, 30 days of leaching using different types 
of chemical as lixiviant solution Batteries are broken and 
inner part of batteries were dismantled, ground, wash 
and dried. Slurry was shaken at 200rpm..  

Bacterial leaching Chemical lixiviant 
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Set 5: 
Shaken, broken, inner part dism

antling and  roasted 

Flask 250mL, Shaken at 200rpm, Leaching solution 100mL, D type batteries Zn-carbon batteries, internal 
portion manually exposed ( inner part: ground, sieve and dried), weight: 25g , sample then roasted on the hot 
plate ( 8 hrs, max current) 
 
Culture used: 
Thiobacillus ferrooxidans ( 300C ),  
Leptospirillum ferrooxidans (300C )  
Thiobacillus thiooxidans (300C ). 
SulfobacillusThermosulfodioxidans ( 450C ), 
Acidianus Brierleyi( 700C ), 
SL5B( 700C ), 
 
Chemical used: 
Hydrochloric acid (1M) 
Sulfuric acid (1M) 
Ferric chloride (1M) 
Ferric sulphate (1M) 
Sodium thiosulphate (0.250 M Na2, 0.15 M NH4OH, 0.02 M CuSO4 , pH;9.0) 
Sodium hypochlorite (75 mL/L  NaOCl, 25 g/L NaCl and 0.35 M HCl ) 
Ammonium carbonate (1M) 
 
Duration 10 days. 

 
 
Set 4: Metal extraction from Zn-C batteries dust (inner part) for 10 days. Batteries 
dust were ground, dismantled, wash and dried. Sample then roasted on the hot 
plate ( 8 hrs, max current) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shake flask test: Set 6 

Percentages of       Zn and       Mn solubilization from 
the dust of Zn-C dry cell, 10 days of leaching using 
different types of culture. Batteries are broken and inner 
part of batteries were dismantled, ground, wash and 
dried. Sample then roasted on the hot plate ( 8 hrs, max 
current). Slurry was shaken at 200rpm. 

Percentages of        Zn and      Mn solubilization from 
Zn-C dry cell, 10 days of leaching using different types 
of chemical as lixiviant solution Batteries are broken and 
inner part of batteries were dismantled, ground, wash 
and dried. Sample then roasted on the hot plate ( 8 hrs, 
max current) Slurry was shaken at 200rpm..  

Bacterial leaching Chemical lixiviant 
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 Combination of chemical leaching and bioleaching test 
 

 

Table 4A: Combination of chemical leaching and 

bioleaching (Chloride system) 

 

Table 4A: Combination of chemical leaching and 

bioleaching  (Sulfate system) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Manganese and Zinc solubilisation profiles for chemical leaching and bioleaching 
 
 
 

HCl (1.0 M) 
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Manganese leached by sequential leaching test using combination of acid, ferric and 
bioleaching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Zinc leached by sequential leaching test using combination of acid, ferric and 
bioleaching 
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4.6 Laboratory test 
 
4.6.1 Stirred tank reactor (STR) test 
 
 
STR: SET 1 
 

STR
 Set 1: 

H
2 SO

4  leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching using H2SO4: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days 
    Variable : H2SO4 concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.5M 
 
2: Constant parameters: Pulp densities: 10%, H2SO4 concentration 0.5M, Duration 3 days 
    Variable : Temperatures: 20oC,40 oC, 50 oC,  60 oC, 70 oC,  80 oC 
 
3: Constant parameters: H2SO4 concentration 0.5M ,Temperatures: 50oC, Duration 3 days 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: H2SO4 concentration 0.5M ,Temperatures: 50oC, Pulp densities: 15%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 1: Lixiviant solution leaching using H2SO4 
 
 
Set 1A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using different 
concentrations of H2SO4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentrations of  H2SO4. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Slurry was stirred at 
400rpm. 
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Set 1B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
temperatures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 1C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different temperatures. Batteries are broken and inner part of batteries 
were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 1D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using H2SO4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 2 
 

STR
 Set : 

H
C

l leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching using HCl: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days 
    Variable : HCl  concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.5M 
 
2: Constant parameters: Pulp densities: 10%, HCl  concentration 1M, Duration 3 days 
    Variable : Temperatures: 20oC,40 oC, 50 oC,  60 oC, 70 oC,  80 oC 
 
3: Constant parameters: HCl  concentration 1M ,Temperatures: 20oC, Duration 3 days 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: HCl concentration 1 M ,Temperatures: 20oC, Pulp densities: 20%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using H2SO4. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 2: Lixiviant solution leaching using HCl 
 
 
Set 2A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using different 
concentrations of HCl 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 2B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. HCl leaching at different temperatures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentration of  HCl. Batteries are broken and inner part 
of batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using HCl at different temperatures. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 2C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 2D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using HCl 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using H2SO4. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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STR: SET 3 
 

STR
 Set 2: 

A
m

m
onium

 carbonate  leaching 
 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching using (NH4 )2CO3: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days 
    Variable : (NH4 )2CO3 concentration: 0.5M, 1 M, 1.5 M,  2.0 M, 2.5 M and 3.0 M 
 
2: Constant parameters: Pulp densities: 10%, (NH4)2CO3 concentration 3M, Duration 3 days 
    Variable : Temperatures: 20oC,40 oC, 50 oC,  60 oC, 70 oC,  80 oC 
 
3: Constant parameters: (NH4 )2CO3 concentration 3 M ,Temperatures: 20oC, Duration 3 days 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: (NH4 )2CO3 concentration 3.0 M ,Temperatures: 20oC, Pulp densities: 10%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 1: Lixiviant solution leaching using (NH4 )2CO3 
 
 
Set 3A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using different 
concentration of (NH4 )2CO3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentrations of  (NH4 )2CO3. Batteries are broken and 
inner part of batteries were dismantled, ground, washed and dried. Slurry was stirred 
at 400rpm. 
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Set 3B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. (NH4 )2CO3 leaching at different 
temperature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 3C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using HCl at differents temperature. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 3D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using 
(NH4)2CO3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 4 
 

STR
 Set 4: 

Thiobacillus thiooxidans 
leaching 

 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. 
Inner part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching using culture 
of Thiobacillus thiooxidans : 
 
Condition of leaching 
1: Constant parameters: Thiobacillus thiooxidans,Temperatures: 30oC, Duration 5 days 
    Variable : Pulp densities: 2%, 5%,10%,15%,20%, 50%, 100% 
 
2: Constant parameters: Thiobacillus thiooxidans ,Temperatures: 30oC, Pulp densities: 15%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs, 72hrs, 84hrs and 120hrs. 
 
 

 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using  (NH4 )2CO3. Batteries are broken and inner part of batteries 
were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 4: Lixiviant solution leaching using Thiobacillus thiooxidans 
 
Set 4A: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at differents 
ratio of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 4B: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using TT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 
days of leaching using TT. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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STR: SET 5 
 

STR
 Set 4: 

Acidianus Brierleyi 
leaching 

 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually 
exposed. Inner part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching 
using culture of Acidianus Brierleyi: 

 
Condition of leaching 
1: Constant parameters: Acidianus brierleyi,Temperatures: 70oC, Duration 5 days 
    Variable : Pulp densities: 2%, 5%,10%,15%,20%, 50%, 100% 
 
2: Constant parameters:Temperatures: 50oC, Pulp densities: 15%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs, 72hrs, 84hrs and 120hrs. 
 
 

 
 
Set 5A: Lixiviant solution leaching using Acidianus brierleyi 
 
Set 5A: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 5B: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using AB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 6 
 

STR
 Set 6: 

Fe
3 (SO

4 )2  leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching using Fe3(SO4)2: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days 
    Variable : Fe3(SO4)2  concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.5M 
 
2: Constant parameters: Pulp densities: 10%, Fe3(SO4)2  concentration 0.5M, Duration 3 days 
    Variable : Temperatures: 20oC,40 oC, 50 oC,  60 oC, 70 oC,  80 oC 
 
3: Constant parameters: Fe3(SO4)2  concentration 0.5M ,Temperatures: 50oC, Duration 3 days 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: Fe3(SO4)2 concentration 0.5M ,Temperatures: 50oC, Pulp densities: 15%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 6: Lixiviant solution leaching using Fe3(SO4)2 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 
days of leaching using AB. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 6A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using different 
concentrations of Fe3(SO4)2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 6B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dusts 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentrations of  Fe3(SO4)2. Batteries are broken and 
inner part of batteries were dismantled, ground, washed and dried. Slurry was stirred 
at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different temperatures. Batteries are broken and inner part of batteries 
were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 6C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 7D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using Fe3(SO4)2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using Fe3(SO4)2. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry were stirred at 400rpm. 
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STR: SET 7 
 

STR
 Set 6: 

Fe
3 C

l   leaching 
 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching using Fe3Cl: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days 
    Variable : Fe3Cl concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.5M 
 
2: Constant parameters: Pulp densities: 10%, Fe3Cl  concentration 0.5M, Duration 3 days 
    Variable : Temperatures: 20oC,40 oC, 50 oC,  60 oC, 70 oC,  80 oC 
 
3: Constant parameters: Fe3Cl concentration 0.5M ,Temperatures: 50oC, Duration 3 days 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: Fe3Cl concentration 0.5M ,Temperatures: 50oC, Pulp densities: 15%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
Set 7: Lixiviant solution leaching using FeCl3 
 
 
Set 7A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using different 
concentration of FeCl3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentration of  FeCl3. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Slurry was stirred at 
400rpm. 
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Set 7B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dusts 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 7C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different ratio 
of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different temperatures. Batteries are broken and inner part of batteries 
were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 7D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using Fe3Cl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 8 
 

STR
 Set 8: 

M
ix cultyre of Thiobacillus 

ferroxidans (TF) and Leptospirilium
 

ferroxidans(LF) at ratio: 1:1 
leaching 

 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually 
exposed. Inner part of batteries were ground, sieved, washed and dried. Lixiviant solution 
leaching using mix culture of Thiobacillus ferroxidans (TF) and Leptospirilium ferroxidans(LF) 
at ratio: 1:1: 

 
Condition of leaching 

1: Constant parameters: TF:LF; 1;1 
,Temperatures: 30oC, Duration 5 days 
    Variable : Pulp densities: 2%, 5%,10%,15%,20%, 50%, 100% 
 
2: Constant parameters:Temperatures: 30oC, Pulp densities: 10%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs, 72hrs, 84hrs and 120hrs. 
 
 

 
Set 8: Lixiviant solution leaching using mix culture of Thiobacillus Ferroxidans 
(TF) and Leptospirilium Ferroxidans(LF) at ratio: 1:1 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using Fe3(SO4)2. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 8A: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 8B: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using TF:LF; 
1;1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 
days of leaching using TT. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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STR: SET 9 
 

STR
 Set 9: 

SL5B 
leaching 

 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually 
exposed. Inner part of batteries were ground, sieved, washed and dried. Lixiviant solution leaching 
using culture of SL5B: 

 
Condition of leaching 
1: Constant parameters: SL5B,Temperatures: 70oC, Duration 5 days 
    Variable : Pulp densities: 2%, 5%,10%,15%,20%, 50%, 100% 
 
2: Constant parameters:Temperatures: 70oC, Pulp densities: 15%, 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs, 72hrs, 84hrs and 120hrs. 
 
 

 
Set 9: Lixiviant solution leaching using culture SL5B 
 
 
Set 9A: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching at different 
ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 9B: Metal extraction from Zn-C batteries dust (inner part) for 5 days. Batteries dust 
were ground, dismantled, washed and dried. Lixiviant solution leaching using SL5B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 10 
 

STR
 Set 10: 

R
oasted, H

2 SO
4  leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot plate ( max current) 
Lixiviant solution leaching using H2SO4: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days, Sample roasted, 24hrs. 
    Variable : H2SO4 concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.2M 
 
2: Constant parameters: Pulp densities: 10%, H2SO4 concentration 0.2M, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
3: Constant parameters: H2SO4 conc: 0.2M ,Temperatures: 20oC, Duration 3 days, Sample roasted 4hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: H2SO4 conc: 0.2M ,Temperatures: 20oC, Pulp densities 10%, Sample roasted 4hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
Set 10: Roasted batteries, Lixiviant solution leaching using H2SO4. 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 5 
days of leaching using SL5B. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Slurry was stirred at 400rpm. 
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Set 10A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching using different concentrations of H2SO4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 10B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).  Leaching using different roasting duration of sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentrations of  H2SO4. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Sample then roasted on 
the hot plate (max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting durations of sample. Batteries are broken and 
inner part of batteries were dismantled, ground, washed and dried. Sample then 
roasted on the hot plate (max current) Slurry was stirred at 400rpm. 
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Set 10C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching at different ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 10D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching using H2SO4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate ( max current). Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using H2SO4. Batteries are broken and inner part of batteries was 
dismantled ground, washed and dried. Sample then roasted on the hot plate (max 
current). Slurry was stirred at 400rpm. 
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STR: SET 11 
 

STR
 Set 10: 

R
oasted, H

C
l leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot plate ( max current) 
Lixiviant solution leaching using HCl: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days, Sample roasted, 24hrs. 
    Variable : HCl concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.2M 
 
2: Constant parameters: Pulp densities: 10%, HCl concentration 0.4M, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
3: Constant parameters: HCl conc: 0.4M ,Temperatures: 20oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: HCl conc: 0.4M ,Temperatures: 10oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 11: Roasted batteries, Lixiviant solution leaching using HCl 
 
Set 11A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching using different concentrations of HCl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentrations of  HCl. Batteries are broken and inner part 
of batteries were dismantled, ground, washed and dried. Sample then roasted on the 
hot plate (max current) Slurry was stirred at 400rpm. 
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Set 11B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).Leaching using different roasting durations of sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 11C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching at different ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting durations of sample. Batteries are broken and 
inner part of batteries were dismantled, ground, washed and dried. Sample then 
roasted on the hot plate (max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 
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Set 11D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate ( max 
current).  Lixiviant solution leaching using Fe2(SO4)3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 12 
 

STR
 Set 12: 

R
oasted, Fe

2 (SO
4 )3  leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot plate ( max current) 
Lixiviant solution leaching using Fe2(SO4)3: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days, Sample roasted, 24hrs. 
    Variable : H2SO4 concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.2M 
 
2: Constant parameters: Pulp densities: 10%, Fe2(SO4)3 concentration 0.6M, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
3: Constant parameters: Fe2(SO4)3 conc: 0.6M ,Temperatures: 20oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: Fe2(SO4)3 conc: 0.6M ,Temperatures: 20oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 12: Roasted batteries, Lixiviant solution leaching using Fe2(SO4)3 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using HCl. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Sample then roasted on the hot plate (max 
current). Slurry was stirred at 400rpm. 
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Set 12A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate ( max 
current).  Lixiviant solution leaching using different concentrations of  Fe2(SO4)3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 12B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).  Leaching using different roasting durations of sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentration of  Fe2(SO4)3. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Sample then roasted on 
the hot plate (max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting duration of sample. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Sample then roasted on 
the hot plate (max current) Slurry was stirred at 400rpm. 
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Set 12C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching at different ratios of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 12D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching using Fe2(SO4)3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratio of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using Fe2(SO4)3. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Sample then roasted on the hot plate (max 
current). Slurry was stirred at 400rpm. 
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STR: SET 13 
 

STR
 Set 13: 

R
oasted, FeC

l3  leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. Inner 
part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot plate ( max current) 
Lixiviant solution leaching using FeCl3: 
 
Condition of leaching 
1: Constant parameters: Pulp densities: 10%, Temperatures: 20oC, Duration 3 days, Sample roasted, 24hrs. 
    Variable : FeCl3 concentration: 0.2M, 0.4M, 0.6M, 0.8M, 1.0M and 1.2M 
 
2: Constant parameters: Pulp densities: 10%, FeCl3 concentration 0.4M, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
3: Constant parameters: FeCl3conc: 0.4M ,Temperatures: 20oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
4: Constant parameters: FeCl3 conc: 0.2M ,Temperatures: 20oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
Set 13: Roasted batteries, Lixiviant solution leaching using FeCl3 
 
Set 13A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching using different concentrations of FeCl3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different concentrations of  FeCl3. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Sample then roasted on 
the hot plate (max current). Slurry was stirred at 400rpm. 
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Set 13B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).  Leaching using different roasting durations of sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 13C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
were ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching at different ratio of solid/solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting durations of sample. Batteries are broken and 
inner part of batteries were dismantled, ground, washed and dried. Sample then 
roasted on the hot plate (max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 
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Set 13D: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current). Lixiviant solution leaching using FeCl3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 14 
 

STR
 Set 14: 

R
oasted, Thiobacillus thiooxidans leaching 

 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually exposed. 
Inner part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot plate ( max 
current) Lixiviant solution leaching using culture of Thiobacillus thiooxidans: 
 
Condition of leaching 
 
1: Constant parameters: Pulp densities: 10%, Thiobacillus thiooxidans, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
2: Constant parameters: Thiobacillus thiooxidans,Temp: 30oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
3: Constant parameters: Thiobacillus thiooxidans,Temp: 30oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 14: Roasted batteries, Leaching using Thiobacillus thiooxidans(TT) 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using FeCl3. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Sample then roasted on the hot plate ( max 
current). Slurry was stirred at 400rpm. 
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Set 14A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).Leaching using different roasting durations of sample 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 14B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current). Lixiviant solution leaching at different ratios of solid/solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting duration of sample. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Sample then roasted on 
the hot plate ( max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratio of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 



 327

77.44

91.55 88.9 87.26 87.24
90.52

6.42 6.41
10.37

5.65 6.04 7.74
0

10

20

30

40

50

60

70

80

90

100

4 8 12 24 48 72

Zn 
MN

Set 14C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current). Lixiviant solution leaching using Thiobacillus Thiooxidans 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 15 
 

STR
 Set 15: 

R
oasted, Acidianus Brierleyi 

leaching 
 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually 
exposed. Inner part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot 
plate ( max current) Lixiviant solution leaching using culture of Acidianus Brierleyi(AB): 

 
Condition of leaching 
 
1: Constant parameters: Pulp densities: 10%, Acidianus Beierleyi, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
2: Constant parameters: Acidianus Brierleyi,Temp: 70oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
3: Constant parameters: Acidianus Brierleyi,Temp: 70oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 15: Roasted batteries, Leaching using Acidianus Brierleyi(AB) 
 
Set 15A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).Leaching using different roasting durations of sample 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using Thiobacillus Thiooxidans. Batteries are broken and inner part 
of batteries were dismantled, ground, washed and dried. Sample then roasted on the 
hot plate ( max current). Slurry was stirred at 400rpm. 
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Set 15B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current)Lixiviant solution leaching at different ratio of solid/solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting duration of sample. Batteries are broken and inner 
part of batteries were dismantled, ground, washed and dried. Sample then roasted on 
the hot plate ( max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 
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Set 15C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current). Lixiviant solution leaching using Acidianus Brierleyi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 16 
 

STR
 Set 16: 

R
oasted, M

ix cultyre of Thiobacillus 
ferroxidans (TF) and Leptospirilium

 
ferroxidans(LF) at ratio: 1:1 

leaching 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually 
exposed. Inner part of batteries were ground, sieved, washed and dried. Sample then roasted on the 
hot plate ( max current) Lixiviant solution leaching using mix culture of Thiobacillus ferroxidans 
(TF) and Leptospirilium ferroxidans(LF) at ratio: 1:1: 

 
Condition of leaching 
 
1: Constant parameters: Pulp densities: 10%, TF:LF; 1;1, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
2: Constant parameters: TF:LF; 1;1,Temp: 30oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
3: Constant parameters: TF:LF; 1;1,Temp: 30oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 16: Roasted batteries, Leaching using mix culture of Thiobacillus Ferroxidans 
(TF) and Leptospirilium Ferroxidans(LF) at ratio: 1:1 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using Acidianus Brierleyi. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate ( max current). Slurry was stirred at 400rpm. 
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Set 16A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).Leaching using different roasting duration of sample 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 16B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current) Lixiviant solution leaching at different ratios of solid/solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting time. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate ( max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratios of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 
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Set 16C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current). Lixiviant solution leaching using TF:LF; 1;1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STR: SET 17 
 

STR
 Set 14: 

R
oasted, SL5B 

leaching 
 

2L reactor, Agitated at 400 rpm, D type batteries Zn-carbon batteries, internal portion manually 
exposed. Inner part of batteries were ground, sieved, washed and dried. Sample then roasted on the hot 
plate ( max current) Lixiviant solution leaching using culture of SL5B: 

 
Condition of leaching 
 
1: Constant parameters: Pulp densities: 10%, SL5B, Duration 3 days 
    Variable : Roasting duration: 2hrs, 4hrs, 6hrs, 8hrs, 12hrs and 24hrs 
 
2: Constant parameters: SL5B,Temp: 70oC, Duration 3 days, Sample roasted 24hrs 
    Variable : Pulp densities: 5%,10%,15%,20%, 50%, 100% 
 
3: Constant parameters: SL5B,Temp: 70oC, Pulp densities 10%, Sample roasted 24hrs 
    Variable : Duration: 4hrs, 8 hrs, 12 hrs, 24hrs, 48hrs and 36hrs. 
 
 

 
 
Set 17: Roasted batteries, Leaching using culture SL5B 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using TF:LF; 1;1. Batteries are broken and inner part of batteries 
were dismantled, ground, wash and dried. Sample then roasted on the hot plate ( max 
current). Slurry was stirred at 400rpm. 
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Set 17A: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries 
dusts were ground, dismantled, washed and dried. Sample then roasted on the hot plate 
(max current).Leaching using different roasting time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 17B: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current).  Lixiviant solution leaching at different ratios of solid/solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching using different roasting time. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate ( max current) Slurry was stirred at 400rpm. 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 days 
of leaching at different ratio of solid/solution. Batteries are broken and inner part of 
batteries were dismantled, ground, washed and dried. Sample then roasted on the hot 
plate (max current). Slurry was stirred at 400rpm. 
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Set 17C: Metal extraction from Zn-C batteries dust (inner part) for 3 days. Batteries dust 
was ground, dismantled, washed and dried. Sample then roasted on the hot plate (max 
current). Lixiviant solution leaching using SL5B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.0 Purification test:  
 
Set 18: Precipitation,  
 
 
pH adjustment 
 

Set 18: 
Precipitation, pH

 
adjustm

ent 

pH of solution adjusted to 2,3,4,5,6,7,8,9,10,11 by gradually adding KOH: 
Sample of solution taken for metal determination at respective pH 
Raw sample 
• Solution from column test H2SO4  
• Solution from column test Fe2(SO4)3  
• Solution from column test HCl  
• Solution from column test FeCl3  
 

 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn solubilization from the dust of Zn-C dry cell, 3 
days of leaching using SL5B. Batteries are broken and inner part of batteries were 
dismantled, ground, washed and dried. Sample then roasted on the hot plate ( max 
current). Slurry was stirred at 400rpm. 
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Set 18A:  Metal precipitate from H2SO4 column test solution. pH of solution adjusted to 
2,3,4,5,6,7,8,9,10,11 using KOH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 18B:  Metal precipitate from Fe2(SO4)3  column test solution. pH of solution adjusted 
to 2,3,4,5,6,7,8,9,10,11 using KOH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn precipitate from H2SO4 column test solution. pH of 
solution adjusted to 2,3,4,5,6,7,8,9,10,11 using KOH. Sample was stirred for 2 hrs at 
respective pH. 

Percentages of   ♦Zn and  ■  Mn precipitate from Fe2(SO4)3  column test solution. pH 
of solution adjusted to 2,3,4,5,6,7,8,9,10,11 using KOH. Sample was stirred for 2 hrs 
at respective pH. 
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Set 18C:  Metal precipitate from HCl column test solution. pH of solution adjusted to 
2,3,4,5,6,7,8,9,10,11 using KOH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 18D:  Metal precipitate from FeCl3 column test solution. pH of solution adjusted to 
2,3,4,5,6,7,8,9,10,11 using KOH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Percentages of   ♦Zn and  ■  Mn precipitate from HCl column test solution. pH of 
solution adjusted to 2,3,4,5,6,7,8,9,10,11 using KOH. Sample was stirred for 2 hrs at 
respective pH. 

Percentages of   ♦Zn and  ■  Mn precipitate from FeCl3 column test solution. pH of 
solution adjusted to 2,3,4,5,6,7,8,9,10,11 using KOH. Sample was stirred for 2 hrs at 
respective pH. 
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Set 19: Precipitation,  Different temperature 
 

Set 19: 
Precipitation, 

 D
ifferent tem

perature 
  

Temperature of solution adjusted to 40,50,60,70,80 and shaken for 3 days, 
Sample of solution taken for metal determination at respective temperature 
 
Raw sample 
• Solution from column test Fe2(SO4)3  
• Solution from column test FeCl3  
 

 
 
Set 19A:  Metal precipitate from Fe2(SO4)3  column test solution. Temperature of 
solution adjusted to 40,50,60,70,80 and shaken for 3 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Percentages of   ♦Zn  ▲  Fe and  ■  Mn precipitate from Fe2(SO4)3   column test solution. Temperature 
of solution adjusted to 40,50,60,70,80 and shaken for 3 days 
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Set 19B:  Metal precipitate from FeCl3 column test solution. Temperature of solution 
adjusted to 40,50,60,70,80 and shaken for 3 days 
 
 
 
 
 
 
 
 
 
 
 
 
 
Percentages of   ♦Zn  ▲  Fe and  ■  Mn precipitate from FeCl3column test solution. Temperature of 
solution adjusted to 40,50,60,70,80 and shaken for 3 days 
 
 
Set 20:  

Solvent extraction 

Solution and respective organic solvent blend well overnight at ratio 1:1: 

a) Solvent used 

- mixture of 5-dodecylsalicylaldoxime and tridecanol in a high flash-point hydro-

carbon diluents  

 Solvent then stripped using: 

- 1M Sulfuric acid 

 

Raw sample 

• Solution from batteries digestion 

• Solution from column test HCl  

• Solution from column test FeCl3  

• Solution from column test H2SO4  

• Solution from column test Fe2(SO4)3  
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Set 20:  
Solvent extraction 
Solution and respective organic solvent, blend well overnight: 
 
b) Solvent used 

- mixture of 5-dodecylsalicylaldoxime and 2-hydroxy-5-nonyl-acetophenone 

oxime in a high flash point kerosene  

 Solvent then stripped using: 

- 1M Sulfuric acid 

 

 

20A: Percentages of   metal extraction  using mixture of 5-dodecylsalicylaldoxime and tridecanol in a high 
flash-point hydro-carbon diluent. Sample from column test solution.  

20B: Percentages of   metal stripped  using 1M H2SO4. Solvent containing a mixture of 5-
dodecylsalicylaldoxime and tridecanol in a high flash-point hydro-carbon diluent. Ratio solvent/stripping 
solution 1:1.  
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Raw sample 

• Solution from batteries digestion 

• Solution from column test HCl  

• Solution from column test FeCl3  

• Solution from column test H2SO4  
 
 
Solution from column test Fe2(SO4)3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Set 21:  
Solvent extraction 
 
 

20A: Percentages of   metal extraction  using mixture of 5-dodecylsalicylaldoxime and 2-hydroxy-5-
nonyl-acetophenone oxime in a high flash point kerosene. Sample from column test solution.  

20B: Percentages of   metal stripped  using 1M H2SO4. Solvent containing a mixture of 5-
dodecylsalicylaldoxime and 2-hydroxy-5-nonyl-acetophenone oxime in a high flash point kerosene. Ratio of 
solvent/stripping solution at 1:1.  
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Solution and respective organic solvent, blend well overnight: 

c) Solvent used 

- mixture of 5-dodecylsalicylaldoxime and tridecanol in a high flash-point hydro-

carbon diluent  

 Variable: Solution/Solvent ratio 

        -  1/1, 2/1, 3/1, 4/1, 5/1  

 

Raw sample 

• Solution from column test FeCl3  

• Solution from column test Fe2(SO4)3  

• Solution from batteries digestion 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21A: Percentages of   metal extraction  using mixture of 5-dodecylsalicylaldoxime and tridecanol in a high 
flash-point hydro-carbon diluent. Sample from FeCl3 column test solution. Solution/Solvent ratio set at        -  
1/1, 2/1, 3/1, 4/1and 5/1  
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21C: Percentages of   metal extraction  using mixture of 5-dodecylsalicylaldoxime and tridecanol in a high 
flash-point hydro-carbon diluent. Sample from aqua regia batteries digestion. Solution/Solvent ratio set at        
-  1/1, 2/1, 3/1, 4/1and 5/1  
 

21B: Percentages of   metal extraction  using mixture of 5-dodecylsalicylaldoxime and tridecanol in a high 
flash-point hydro-carbon diluent. Sample from Fe2(SO4)3 column test solution. Solution/Solvent ratio set at        
-  1/1, 2/1, 3/1, 4/1and 5/1  
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Solvent extraction 

Solution and respective organic solvent blend well overnight. 

d) Solvent used 

- mixture of 5-dodecylsalicylaldoxime and 2-hydroxy-5-nonyl-acetophenone 

oxime in a high flash hydro-carbon diluent  

 Variable: Solution/Solvent ratio 

        -  1/1, 2/1, 3/1, 4/1, 5/1  

 

Raw sample 

• Solution from column test FeCl3  

• Solution from column test Fe2(SO4)3  

• Solution from batteries digestion 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21A: Percentages of   metal extraction  using  mixture of 5-dodecylsalicylaldoxime and 2-hydroxy-5-nonyl-
acetophenone oxime in a high flash hydro-carbon diluent .Sample from FeCl3 column test solution. 
Solution/Solvent ratio set at   -  1/1, 2/1, 3/1, 4/1and 5/1  
 



 343

31.15

59.78

66.97

69.44

68.54

42.25

56.84

78.25

85.42

82.47

6.77 2.56

10.53

19.36

6.24

0

10

20

30

40

50

60

70

80

90

5;1 4;1 3;1 2;1 1;1

Zn
Mn
Fe

0

10

20

30

40

50

60

70

80

90

100

5;1 4;1 3;1 2;1 1;1

Zn Mn Fe

Ni Cd Li

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.0 Proposed pilot scale process for batteries recycling 

 

 

 

21C: Percentages of   metal extraction  using mixture of mixture of 5-dodecylsalicylaldoxime and 2-hydroxy-
5-nonyl-acetophenone oxime in a high flash hydro-carbon diluent. Sample from aqua regia batteries digestion. 
Solution/Solvent ratio set at   -  1/1, 2/1, 3/1, 4/1and 5/1  
 

21B: Percentages of   metal extraction  using mixture of 5-dodecylsalicylaldoxime and 2-hydroxy-5-nonyl-
acetophenone oxime in a high flash hydro-carbon diluent. Sample from Fe2(SO4)3 column test solution. 
Solution/Solvent ratio set at        -  1/1, 2/1, 3/1, 4/1and 5/1  
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4.7 Case 1: Treatment process conducted by Kualiti Alam Sdn Bhd. 

 

Cementation and secured landfill 

 

 Cementation is prescribed for the treatment of dry cell batteries and other 

miscellaneous wastes which could not be properly and safely treated by existing 

treatment facilities. Cement and sand are the main materials used to encapsulate and 

cement hazardous and toxic contaminants in the wastes and prevent them from leaching 

into the environment. The cost for cementation and disposal at a secured landfill is RM 

900 per tonne of dry cell batteries. 

 
 

Waste Group Z Packaged Waste 
RM per tonne 

Dry Cell batteries  900   

 A number of companies have been sending their wastes for these two treatment 

methods since 1997. Dry cell type C onwards and button cell haze been classified as 

scheduled waste for batteries manufacturers, while AA and AAA batteries is permitted 

to landfill.  

 In the cementation plant, metal containing wastes, which do not fulfill the criteria 

for disposal directly into the Secure Landfill, are treated. Such wastes are typically metal 

hydroxide sludge containing heavy metals such as lead, arsenic, nickel, zinc and 

chromium. During the cementation process the heavy metals become insoluble and the 

wastes therefore can safely be disposed off in the Secure Landfill. Fly ash from the 

Incinerator Plant and sludge from the PCT Plant are also treated at the cementation 

plant. 

 At the cementation plant, waste is loaded into waste bunkers, where it will be 

mixed with other similar waste. It is then loaded into the waste hopper before being 

transferred to the mixer by screw conveyors. In the mixer, waste is carefully mixed with 

consumables such as cement, lime and water. The system is able to handle waste that 
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contains foreign materials such as stones, wood and scrap iron. A typical cementation 

recipe is as follows:- 

Waste (kg) Fly Ash (kg) Cement (kg) Lime (kg) Sand (kg) Water (kg) 

100 20 35 7 100 30 
  

 After treatment, the waste will appear as a concrete mixture. The mixture is 

disposed off to the secure landfill for the final curing over a few days. The objective of 

the whole process is to fix all the heavy metals in the inorganic solid waste into a 

concrete/silica matrix for long-term disposal in the secure landfill. As a result, hazardous 

heavy metals will not leach out to the environment. 

 The Secure Landfill is the final destination for the cemented batteries. The 

landfill site is some 80 acres in area to accommodate the construction of 8 secure landfill 

cells with a total volume of 2.5 million cubic meters. As it is a permanent waste disposal 

facility, all waste materials have to meet the strict Landfill Acceptance Criteria as 

provided for under the Department of Environment Secure Landfill Licensing 

Conditions. Only inorganic solid waste that meets all parameters of the Landfill 

Acceptance Criteria is eligible for direct landfill disposal. Otherwise, the waste will have 

to be treated at either the solidification or incineration plant. 

 The secure landfill is designed to prevent seepage of leachate into ground water 

with a double membrane comprising a one-meter thick compacted clay liner and a 2 mm 

thick High Density Poly-Ethylene geo-membrane. Above the HDPE membrane is a 

drainage system made up of a 0.4-meter thick layer of crushed rocks. Rainwater, which 

percolates from the top of the landfill, is called leachate and it is channeled to the 

leachate collection sump found within each landfill cell.  
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SCHEMATIC CROSS-SECTION OF A SECURE LANDFILL 

 

 Waste can be disposed off in the landfill in drums, polypropylene bags, in bulk 

or in cemented form. Radioactive, infectious and explosive wastes are not treated or 

disposed off at this Waste Management Centre. The records, including the consignment 

note numbers, amount and location are kept at the landfill office. Internal waste, such as 

slag from the incineration plant and solidified materials from the solidification plant are 

sent to the landfill for final disposal. Other internal waste such as incineration ash and 

physical/chemical treatment plant slurry, are treated at the solidification plant prior to 

disposal.           

 The Leachate Treatment Plant (LTP) is capable of treating leachate from secure 

and rubber sludge landfills, internal wastewater generated from plant operations as well 

as the first ten-minute flush of rainwater run-off.  The Leachate Treatment Plant is a 

requirement under Kualiti Alam’s Environmental Management Programme. 

• Cementation is a simple method to treat batteries, preventing it from natural 

leaching. 

• Low cost, low explosion and leakage risk during process. 

• No metals can be recovered   
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4.7.1 Case 2: The BATENUS process 

 

 The BATENUS process has been operated by Batterierecycling Schtnebeck 

GmbH at Schőnebeck/ Sachsen-Anhalt. The process was developed by Pira GmbH, a 

research institute in Stiihlingen, Germany, during a period of five years. The 

development included process design, laboratory experiments, pilot-plant experiments, 

testing each individual operation under realistic conditions, and fine tuning of the 

modular units towards each other. This new process combines hydrometallurgical 

operations in a nearly closed reagent cycle that involves electrochemical and membrane 

techniques. It utilizes a combination of proven hydrometallurgical operations like solid-

liquid extraction, selective ion exchange and solvent extraction with state-of the- art 

membrane technology, i.e. reverse osmosis and electro dialysis with bipolar membranes. 

  

 Most municipalities and bigger companies in Germany collect all kinds of 

consumer batteries. This mixture must then be handled as hazardous waste and is 

subjected to special treatment. BATENUS offers the possibility of a nearly complete 

metal recovery from mixtures of spent batteries. This plant has a capacity of 7000 tons 

batteries per annum. The average specific energy consumption in a plant processing is 

about 2500 kWh / t of batteries. 

 

The plan operator claims that their process as: 

• in a flexible, modular construction, which can easily be modified 

• with a very low sensitivity towards variations of the composition of the input 

• forming a nearly closed cycle, thus avoiding effluent emissions 

• producing metals of high purity and easily marketable basic materials and chemicals 
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The schematic diagram of the BATENUS recycling process is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A mixture of batteries that are delivered to the BETANUS plant is first shredded. 

A magnet removes scrap iron from the shredded material. Paper, plastics and nonferrous 

metals are separated from the battery contents with the sieves. The battery contents are 

then pulverized in order to get a very fine powder which is then passed to the          

hydrometallurgical unit. The fine particles are leached out using acidic leaching media. 

The leaching suspension is filtered and the filter cake (consisting mainly of manganese 

oxide and carbon black) is washed and dried. 

 

The filtrate is cleaned of mercury traces by a ion exchanger. Zinc is extracted from 

the mercury-free process solution in a multistep solvent extraction. Stripping of the 

organic phase with sulfuric acid yields a pure zinc sulfate solution from which zinc 

metal is generated electrolytically. 

 

Copper, nickel and cadmium are successively separated from the solution by 

selective ion-exchangers. The resins are eluted by sulfuric acid yielding the 

corresponding sulfate solutions. The pure metals are recovered by electrolysis. The iron 

concentration has to be controlled in the nickel eluate.  
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At this stage the main process solution contains only manganese and alkaline metal 

sulfate. Addition of sodium carbonate yields a manganese carbonate precipitate. This 

precipitate is filtered out and washed with water. After drying, this product can be 

marketed as a raw material for manganese or manganese dioxide production. 

 

The remaining alkaline metal sulfate solution is concentrated by reverse osmosis. 

Subsequently the concentrate is split into acid and base by electro dialysis with bipolar 

membranes (EDBM).  

 

The diluted salt solution from the EDBM is again concentrated by reverse osmosis. 

The resulting concentrate is led back to EDBM and demineralized water is recovered for 

washing purposes 

 

 

 

4.7.2 Case 3: Recytec process 
 

 Industrial batch pilot plant of Recytec was started in 1991 with a capacity of 500 

t/year. Continuous industrial base plant is successfully operated in 1994 with 800 tons of 

waste batteries. Recytec is considered by the battery producers as highly expensive due 

to the high temperatures used and is feed batteries selective. 

 

The built-in process steps consist of: 

• one-step thermal treatment (650 °C, inert atmosphere, 1 ton/batch) 

• shredding (maximum 10 ram) 

• washing and sieving ( < 2 ram) 

• magnetic and inductive separation of washed scraps (ferrous, non-ferrous, inerts) 

• anodic dissolution and electrolytic deposition of nonferrous scraps 

• chemical dissolution of active mass and electrolytic deposition of zinc, cadmium, 

copper and nickel 
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A schematic diagram of the Recytec process is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.7.3 Our proposed batteries recycling process  
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The components of the process are magnetic separation, washing using water, heat pre-

treatment, bioleaching process, metal recovery, regeneration of leaching solution and 

cementation. 

Mechanical separation 
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The first mechanical operation is sieving out the button cells, paper and plastic. Those 

cells are sent to a mercury recovery company. The batteries are shredded. At the 

shredder exit, a magnet removes scrap iron. After washing, this scrap is sold to a scrap 

dealer. Paper, plastics and nonferrous metals are separated from the battery contents 

with the aid of sieves. A further separation yields a paper/plastics portion and a 

nonferrous scrap portion using gravity separator. The battery powder is then subjected to 

the heat treatment plant and hydrometallurgical unit. 

 

 

 

4.7.4 Heat treatment plant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Burner 
• Closed brick chamber  
• using kerosene   
• 300-4000C, 6hr 
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4.7.4.1 Leaching plant  
 
 
Option 1: Heap Leaching 
 
Based on our experience in setting up a pilot scale heap leaching plant at Lubuk Mandi 

gold mine, we would propose heap leaching of batteries to Dewan Bandaraya Kuala 

Lumpur. 

Some advantages of heap leaching are: 

1. capability to processing a huge amount of  waste. 

2. Less power and  capital required 

3. Easy to handle 

 
Summary of Pilot Plant Description 
Material and equipment Description  

Heap content 
 

- 100 tonnes of roasted-non rechargeable batteries powder 
- Agglomerate with 15% culture 
- Fully covered with roof 
- Safety leakage protection system   
 

Pad and liner  
 

- Area: 10m x 5m at 2m height 
-  Pad slope: 0.50-1.00 
- Liner type: 0.2mm HDPE pad / layering with sand 
- Pond: Pregnant pond  
                Overflow pond 
                Settlement pond 
                Biooxidation tank 
                Chemical storage tank 
 

Spraying irrigation  - Sprayer: Rain bird garden spray with radius of spraying 
1m 

- Rate of irrigation – 36.3 m3/hour 
- Drainage: total leakage system with a improved drainage 

system  
-  

Leaching media - Biological leaching 
       Mixed culture of mesophilic and thermophilic  
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Milestone of pilot process of batteries bioheap leaching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Project Activities (Project Milestone) 

 Permit and enforcement: 1st - 2nd month 

 Earth work: 2nd month 

 Stacking the batteries: 4th - 5th month 

 Prepare the culture: 3rd - 4th month 

 Piping, water and electricity: 5th month 

 Biooxidation: 6th - 10th month 

 Metal purification: 8 th and 10th month 

Clay layer,  
compact,10cm 

HDPE layer 3mm , 
covered by geotextile   Collecting 

drain   

Settlement 

Overflow pond 

Heap of  
batteries dust  

Pregnant pond  

Sprayer  or  irrigator  

Pipe to metal  
recovery plant   

Oxidation drum  

Pipe to 
sprayer  
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4.7.4.2 Conditions for heap leaching  

 

Option 1: Heap containing a Zn-Mn dust   

 

Step 1:   

Solution containing 2% H2SO4 .sprayed for heap acidification. The heap is already 

agglomerated with TT and AB.  

Solution mostly loaded with Zn.  

Zn recovered using LIX 612 or precipitation at pH 4~5 at high concentration 

 

Step 2:  

Reconditioning of leaching solution.  Adding of FeSO4.7H2O and basalt salt to grow TF 

and SL5. Heap is schedule for off-irrigation every 15 days for metal recovery and 

accelerates biological reaction inside heap. Metal recovery using ferro-manganese 

jarosite precipitation at pH 5~8.      

 

Option 2: Heap containing a Zn-Mn dust   

 

Leaching medium contain FeSO4.7H2O and basalt salt. TF and SL5 have been grown 

before spraying. The heap is already agglomerated with TT and AB. 

Solution mostly loaded with Zn and Mn. 

Metal recovery using ferro-jarosite precipitation at pH 3~5.   

 

Option 3: Heap containing a Zn-Mn dust  and Ni, Cd, LiOH, and other metal 

hydrate 

 

Step 1:   

Solution containing 2% H2SO4 .sprayed for heap acidification. The heap is already 

agglomerated with TT and AB.  

Solution mostly loaded with Zn, Li and some Cd.  

Zn recovered using LIX 612 and precipitation at pH 4~5 at high concentration 
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Step 2:  

Reconditioning of leaching solution.  Adding of FeSO4.7H2O and basalt salt to grow TF 

and SL5. Heap is schedule for off-irrigation every 15 days for metal recovery and 

accelerate biological  reaction inside heap.  

Mn, Ni and Cd extracted using LIX984 and Mn  recovered using ferro-manganese 

jarosite precipitation at pH 3~4 

Li and other metal recovered using activated carbon or other water treatment. 

 

Option 4: Leaching using stirred reactor 

 

Rate of metal leaching using stirred reactor is much higher than heap. It does not require 

a large space for processing. However, this process is complicated, power and water 

consuming. A series of parallel stirred tanks have been proposed to treating batteries 

dust and other metal hydrate separately. 
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STR 2A:  
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STR 2B:  
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4.7.4.3 Battery Breaking 

 

Many of these batteries have steel cases which require removal by cutting the case open 

with a cutting torch, a hand-held gas powered saw, or other equipment that can separate 

the case from its contents. 

 

Consideration factor during breaking: 

•  For manual cutting or breaking operations, acid or alkaline mist containing metal may 

be emitted which may dry and release dust if disturbed. 

•  Automated operations using crushers may release metal containing mist that may dry 

and release dust if disturbed. 

•  Vibrating equipment with metal dust contaminated surfaces may cause re entrainment 

of metal dust. 

•  Cutting industrial battery cases open with a torch may result in exposures to airborne 

metal dust. 

 

 

 

4.7.4.4 Battery shredder 

 

The most common raw material at a batteries recycling process consist of mixture of 

dry cell. Batteries are typically unloaded by hand from trailers, conveyors, or from 

pallets. The batteries are then prepared for smelting by draining the electrolyte and 

separating the plates, rubber, plastic containers, and iron. 

 The four most common processes for breaking of batteries are:  

• High speed saw 

• Slow speed saw 

• Shear 

• Whole battery crushing 



 361

The use of saws and shears involves cutting the tops off of the batteries, then dumping 

the contents of the battery. The whole battery crushing process involves crushing the 

entire battery in a crusher, shredder or hammer mill, and separating the components by 

gravity separation. 

 

 

 

4.8 Battery Shredding and Emission Control Unit 

 

 

 

 

 

 

 

 

Possible Work Control Practices during shredding and breaking 

• Provide properly designed local exhaust hoods with local exhaust ventilation for saws, 

shears, shredders, and crushers (hammer mills) to control emissions. 

• Automate the process with slow speed saws to cut off the tops of batteries. Slow speed 

saws emit less metal dust and acid mist than high speed saws. 

• Provide curtains or shields on battery- breaking equipment to contain mists and liquid 

droplets containing particulate.  

• Use wet suppression techniques to control exposure levels during cutting and sawing 

operations. 

• Provide adequate make-up air. 

• If it is determined through source identification sampling that lead dust is coming from 

mobile equipment or is coming from adjacent areas, reevaluate material handling 

patterns and work practices and isolate the area through barriers and provide 

ventilation as needed. 
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4.8.1 Battery Separating 

 

After the batteries have been "broken", the non ferrous metal must be separated from the 

steel casing, plastic and paper.  The three most widely used techniques for 

accomplishing this task are: 

•  Tumbler  

•  Sink/Float Process 

 

1. Tumbler 

 

A "tumbler" is a device in which batteries are placed after the batteries have been sawed 

or sheared off to separate the battery plates from the cases. Ribs inside the tumbler dump 

the groups as it slowly rotates. The batteries dust fall through the slots in the tumbler 

while the steel cases, plastics and rechargeable batteries are conveyed to the far end and 

are collected as they exit. Steel cases are being collected via magnetic separation. Plastic 

and rubber are separated from the non-ferrous metal via gravity separation. 

 

2. Sink/Float Process 

 

The "sink/float process" is typically combined with the hammer mill or crushing process 

for battery breaking. Battery pieces, both batteries dust and cases, are placed in a series 

of tanks filled with water. Batteries dust material sinks to the bottom of the tanks and is 

removed by screw conveyor or drag chain while the case material floats and is skimmed 

off the tank's surface. 

 

 

 

 

 

 

 
View of sink/float 
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4.9 Cost estimation  

 
The estimation cost to setting up the pilot scale test of metal recovery from spent dry 

cell.  The cost is not inclusive the manpower, chemical analysis, permitted and 

enforcement. 

 

Pilot scale test to process 150tonne of batteries. 

The proposed recovery plant consists of following major compartment: 

   
 
 
 
 
 

1. Batteries Breaker and Separation 

 
A) Breaker 
 
Batteries can be crush using steamroll - to exposed the inner part  

 
Machine 

 
Quantity  

 
Cost/unit/day 

 
Estimation 

cost 
Excavator 1 RM 3000.00 
Lorry 1 RM 2500.00 
Steamroll 1 

Facilities can be 
provided by DBKL 

RM 3000.00 
 
      Batteries shredded  

 
Machine 

 
Quantity  

 
Capacity 

 
Estimation 

cost 
Shredder 1 20 tonne /days RM 25000.00 

 
 
 
 
 
 
 
 
 
 
 

Battery Breaking 

and Separating 

Pre-leaching: 
Tank leaching 
Zinc recovery 

Roaster 
 

Leaching: 
Heap leaching 

Manganese recovery 
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B)  Separation 
 

Machine 
 

Quantity 
 

Capacity 
 

Estimation 
cost 

Agitation tank  
- Motor with controller 
- Stirrer 
- Water pump 
- Water tank 
- Piping  
 

1 5m3 RM 16000 

Sieving 
- Sedimentation tank 
- Water collection tank 
 

1  RM 2600 

Magnet separator   RM 10000 
Gravity separation  1 20 tonne /days RM 2600 

 
 

2.  Pre-leaching: Agitation tank leaching, Zinc recovery 
 

 
Machine 

 
Quantity 

 
Capacity 

 
Estimation 

cost 
Agitation tank  
- Motor with controller 
- Stainless steel Stirrer  
- Water pump 
- Water tank 
- Piping  
 

1 5m3 RM 15000 

Zn recovery plant : SX-EW 
- Solvent Extraction 
- Stripping plant 
- Electro winning 
 

1  RM 10000 

Chemical  
- Leaching 
- Solvent 

  RM 8500 

Sedimentation tank and 
dryer 
 

1  RM 2500 
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3. Roasting 
 

 
Machine 

 
Quantity 

 
Capacity 

 
Estimation 

cost 
Furnace 1 500kg/batch RM 13000 

Fly ash remover   RM 2500 

Exhaust air chiller 
 

  RM 7000 

Fuel 
 

  RM 500 

 
 

4. Leaching: Heap leaching Manganese recovery 
 

 
Instrument 

 
Quantity 

 
Cost/unit 

 
Total Cost 

Heap construction 
Based: 
HDPE pad 
Compact Clay 
Geomambrane 
Building structure 
Pond 
Drain 
 

  RM 40 000 

Piping  
Chemical pump 
Water tank 
Sprinkler 
Culture tank 
 
 
 

  RM 15 000 

Zn recovery plant :  
- Precipitation 
 

1  RM 12 700 

Chemical and others   RM 3900 
 
 
Total estimation cost: RM 195 000 
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