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ABSTRAK 

 

 

 

 

 Kaedah percanggahan berasaskan fizik lazimnya menghadapi masalah kerana 

memerlukan kos pemprosesan yang tinggi menyebabkan kaedah tersebut tidak sesuai 

untuk digunakan secara praktikal di dalam aplikasi interaktif, walaupun jika 

percanggahan hanya berlaku pada kawasan kecik objek boleh canggah. Tesis ini 

mencadangkan kaedah percanggahan berasaskan pemilihan dinamik untuk objek yang 

mengalami percanggahan pada kawasan kecil. Ia dilakukan untuk memastikan 

interaktiviti dengan objek berisipadu yang mempunyai bilangan geometri yang banyak 

dengan mengurangkan kawasan yang akan diproses untuk percanggahan. Kaedah ini 

adalah satu bentuk algoritma pengoptimum yang akan memilih kawasan yang akan 

diproses untuk percanggahan berdasarkan keadaan kestabilan kawasan tersebut. Dengan 

menganggap tiada tenaga lain yang bertindak ke atas objek boleh canggah selain 

daripada tenaga menumpu, algoritma pengoptimum ini berjaya mengurangkan pengiraan 

percanggahan untuk sistem percanggahan berasaskan fizik. Kaedah ini sesuai digunakan 

untuk aplikasi masa nyata seperti pembedahan maya. 
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ABSTRACT 

 

 

 

 

 Physical based deformation method usually suffers from high computation cost 

which does not favors practical interactive applications, even if the deformation only 

occurs in a small area of the deformable object. This thesis proposed a dynamic selection 

based method for small area deformation to maintain interactivity with high geometric 

complexity of volumetric mesh by reducing areas for deformation processing. It is an 

optimization algorithm that selects small areas for deformation processing based on 

equilibrium state. Assuming no external forces other than concentrated loads, the 

optimization algorithm succeeded to reduce deformation computation for physical based 

deformation systems. The method is suitable for real time application like virtual 

surgery.  
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

This chapter describes the context of the work, presents the research 

statement, and provides an overview of the report.  

 

 

1.1 Introduction 

 

 

Real time deformation is an important aspect of interactive computer graphics 

especially in computer animation and medical application. It has been extensively 

studied since the introduction of global deformation by Barr in 1984 (Barr. 1984). In 

general, the studies of deformable modeling focuses on diversity of deformable 

object characterization, accurate material representation and gaining high simulation 

performance. With the increasing power of 3D hardware, the deformable modeling 

field has gain a new research direction. The input data for real time application can 

now contain thousands of polygons ensuring more accurate shape representation than 

ever before. Although the polygon rendering capacity increased, deforming large 

number of polygons remains a problem in real time applications. This is due to the 

high processing resources required by the deformable modeling method. In order to 

balance the available resources between processing and rendering, recent studies 

focuses more on deforming object with large number of polygons interactively. 
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Achieving interactive deformation is a crucial part in computer animation and 

medical applications. Deformable modeling can assist artist in modeling 3D content 

for computer animation by enabling higher degree of controls for modeling tools. 

These tools reduce artist workload and provide better results in less time compared to 

traditional method without deformation tools. Another form of deformation 

modeling, physical based deformation, used by computer animation to provide a 

method to simulate the behaviour of real world materials. The results are visually 

convincing in terms of realistic depiction of the real world compared to traditional 

animation method. With physical based animation, artists are no longer required to 

manually key framed the animation as the task has been shifted to the physical based 

animation system.  

 

 

Deformation modeling also has found its way to medical field. It is used 

mainly to simulate the behavior of soft tissues of the human body. One example of 

medical application is virtual surgery which allows trainee surgeons to feel and see 

exactly what they would if they were operating on real patient. This may help 

improve surgical skills of the surgeons as it would with pilot trained in flight 

simulator. The use of virtual objects reduces the cost of obtaining real material for 

surgical training and reduces the offensive nature of using real dead bodies for 

training. With virtual surgery application, surgeons can plan ahead the surgical 

procedures and perform surgical test without the risk of failure. However, the 

complex nature of the human tissue and the demanding accuracy required by medical 

application makes it a very challenging domain.  

 

 

The field of deformable object modeling has seen many improvements 

throughout the years.  This will be discussed in Section 1.2 (background and 

previous works that are related to this research).  This is followed by the problem 

statement in Section 1.3, Section 1.4 lists the research objectives, Section 1.5 

describes the domain and scopes and Section 1.6 introduces dynamic selection based 

method in brief.  Results and findings are given in Section 1.7. The final section, 

Section 1.8, gives a summary of each of the chapters in this research. 
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1.2 Background  

 

 

Computer graphics modeling had only been for rigid objects until Barr 

introduced global deformation technique, more than two decades ago (Barr. 1984). 

The idea behind this method is to apply another transformation to existing 

transformation before transformation is applied to the objects. In order to allow more 

deformation control over the objects, Sederberg introduced free form deformation 

(Sederberg et al. 1986). The method models non solid object behaviour by changing 

the object according to the changes experience by enclosing lattices. Both methods 

have been used extensively in 3D modelling tools and CAD tools. However, both 

deformation methods lack one crucial feature, and that is physical behaviour.  

 

 

In order to allow physical behaviour to the deformable object, Terzopoulos 

proposed an elastic physical based deformation method in 1987 for use in pre-

computed computer generated animations (Terzopoulos et al. 1987). Later, he 

introduces inelastic physical behaviour such as viscoelasticity, plastic and fracture 

(Terzopoulos and Fleischer, 1988). Then in 1989, he presents a method to model the 

behaviour of fluid like molten objects (Terzopoulos et al. 1989). Generally, 

Terzopoulos and his colleagues proposed methods that are based on simplification of 

elasticity theory to model various physical behaviours for use in pre-computed 

computer generated animations.  

 

 

The behaviour of deforming objects is the topic of continuum mechanics, a 

branch of mathematics that tries to capture physical phenomena of continuous media 

in precise mathematical formulations. One branch of continuum mechanics, 

nonlinear elasticity, provides the mathematical description of how objects deform. 

Finite element method discretize infinite dimensional problem into systems of 

equations with a finite number of variables, to accurately describe physical based 
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deformation behaviour. However, due to the nature of the system and the complexity 

of the method, the method cannot be applied directly to real time animation systems.  

 

 

Thus, Bro-Nielsen proposed a fast finite element method for use in virtual 

surgery environment (Neilson and Cotin, 1996). He uses condensation techniques to 

reduce the complexity of the system equations and thereby achieve a considerable 

speed-up compared to the volumetric models in (Cotin et al. 1996). The effect of 

using condensation techniques is low generality of the simulations, i.e. no rapid 

displacement, no great displacement. Based on the principle of superposition, Cotin 

proposed a higher generality deformation system (Cotin et al. 1999). Although the 

method experienced high frame rate, it was implemented on low resolution mesh.  

Furthermore, pre computation method used does not permit topological changes to 

the deformable objects.  

 

 

By using high resolution mesh, the deformation behaviour can be modeled in 

higher accuracy. The problem with high resolution mesh is that it costs more 

computational resources. To reduce computational resources, several researchers 

have opted to use multi-resolution method in the mesh domain. Debunne uses 

automatic space and time adaptive object representation level of detail technique to 

allow local refinement or simplification of the computation model based on local 

error measurement (Debunne et al. 2001). Krysl uses adaptive local finite element 

mesh refinement using wavelet theory to accelerate finite element deformation 

(Krysl et al. 2003). Although both methods produce acceptable frame rates on high 

resolution mesh, they still suffer from high computation required by finite element 

method. 

 

 

Another way to reduce deformation processing time is by using simpler 

physics method, such as mass-spring systems. Mass-spring systems describe the 

deformable object as nodes connected by springs. It is commonly used in cloth 

simulation (Breen et al. 1994), (Volino and Thalmann. 1997), (Bridson et al. 2003), 

(Baraff and Witkin, 1998), (Provot, 1995), (Choi and Ko, 2002) and (Baraff et al. 
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2003). To model deformation for volumetric objects, the deformable object must first 

be discretized as one would with finite element method. The prominent problem of 

mass-spring systems is numerical instability under large time step (Baraff and 

Witkin, 1998). For large number of mass-spring nodes, the simulation system 

quickly converges error and became unstable. One solution to the stability problem is 

Verlet integrator, which capable of maintaining stability even for large number of 

nodes (Jacobsen 2003). Unfortunately, for deformable object with extremely large 

number of nodes, mass spring system is still too slow to be used for interactive 

systems.  

 

 

By using simple mathematical approach for deformation processing, Gibson 

proposed a fast deformation method for extremely large number of nodes (Gibson, 

1997). The method known as ChainMail, perform deformation based on nodes 

distance constraint. However, due to the used of simple distance constraints for 

deformation instead of continuum-based physics, the resulting behaviors are not 

physically convincing. Plus, it is hard to define real world materials. Nevertheless, 

ChainMail contributed new approach in the field of deformable object modeling by 

introducing force propagation method. Force propagation method works like sound 

wave effect in the sense that areas near contact are first displaced and displacements 

are propagated throughout the object.  

 

 

Since the introduction of ChainMail, there are many improvements on the 

force propagation method made by various researchers. To introduce physical-based 

deformation on ChainMail, Dusyak and Zhang presented an improvement method to 

the ChainMail algorithm by combining the ChainMail algorithm with a modified 

mass-spring system (Dusyak and Zhang, 2004). The result is a high speed simulation 

of physical-based deformation but the author does not describe multiple contacts 

handling, which apparently seems to be the problem. Another improvement to the 

ChainMail is by the work from Grimm et al.; in which deformation behaviors for 

surface deformations were improved by using dynamic length spring constraint 

based on distance to the source of collision (Grimm et al. 2004). Like Dusyak and 

Zhang, the author did not describe how to handle multiple contacts at all. Also, the 
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algorithm was tested for surface deformation only. Choi et al. used static selection of 

neighbouring nodes to handle deformation (Choi et al. 2002, Choi et al. 2003). One 

critical problem of the algorithm is that the deformation area cannot be scaled as 

needed. A special method is required to handle multiple contacts. Another 

improvement to the ChainMail algorithm is made by Park et al. who extended 

ChainMail algorithm by preserving original shape by keeping track of the direction 

vector from current node position to the original node position (Park et al. 2002). 

 

 

This research tries to find solutions to the above mentioned problems noted 

by previous researchers.  

 

 

 

 

1.3 Problem statement 

 

 

The advent of hardware acceleration rendering support has made geometry a 

popular choice for real time and interactive applications rendering. With increasing 

complexity of 3D geometric data and growing demand for realistic deformation 

functionality, significant effort is being devoted to the design of robust, fast, and 

scalable algorithms for geometry deformation processing. The problem for 

volumetric object lies within the fact that it consists of internal structure that requires 

deformation processing. To achieve high degree of deformation accuracy, classical 

physics based on continuum mechanics (for computing construction stress) are used 

for deformation processing. Deformation processing usually consists of dynamics 

formulation integration throughout the deformable objects. Deformation processing 

usually involves up to millions of every internal volume elements for a complex 

geometry object, thus sacrificing interactivity.  Managing large sets of data for high 

speed data transfer under limited available memory storage requires special attention 

to ensure interactivity.  

 

 



 7

For small deformation based on concentrated loads, the largest primitive 

elements’ (vertices) displacements are on the area near applied concentrated loads. 

The further the elements distance from the contact point centre, the lesser force 

experienced by the elements. This is due to the damping forces conducted by every 

passing element during force propagation. Similar phenomena can be observed by 

softly touching a pillow. Notice that only small area near touched area are deformed. 

Traditional deformation methods perform deformation processing throughout the 

object even if the vertices did not experience noticeable deformation or if the vertices 

did not experience any deformation at all. Based on this observation, this research 

proposed a deformation method where deformation will be process on the areas that 

are most likely to experience noticeable deformation for non critical interactive 

applications. This way, the effect upon having high geometry deformable objects 

seems transparent for total application performance as the system only process 

deformation for a limited sets of elements.   

 

 

This research addresses the deformation processing problem for small 

deformation situations. The hypothesis is stated as: 

 

The cost of deformation processing can be reduced by only deforming small 

areas (or regions, nodes, vertices etc) that are most likely will undergo deformations. 
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1.4 Objectives 

 

 

It is desirable to put computation resources where it will be most beneficial. 

To this effect, this research outlines the most critical objectives as follows: 

1. To inquire into appropriate deformable objects representation. 

2. To investigate, analyze and formulate an appropriate technique for collision 

response encompassing deformable objects adequate for interactive 

application. 

3. To develop an algorithm of collision response for deformable body motion. 

4. To design and develop a real-time simulation model based on objects 

representation and handling of real-time collision response. 

 

 

 

1.5 Scopes 

 

 

The scopes of this project are as follows:- 

• Deformable volumetric objects are represented geometrically. 

• Objects are manifold and do not experience topological changes such as 

cutting and fracture. 

• Deformations are performed based on concentrated loads. 

• Object deformations are fully elastic. Deformed objects should return to its 

original state after removal of applied external forces. 

• Interactions are described as single manipulator tool versus deformable object 

vertex. 

• No volume preservation. 

• No frictional forces will be considered. 
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1.6 Dynamic selection-based method 

 

 

This research proposed an algorithm known as dynamic selection-based 

method. In short, the algorithm reduces the cost of deformation processing by 

dynamically select small areas for deformation. It is used with mass-spring system as 

the main deformation system. 

 

  

   

  
Figure 1.1 Example of dynamic selection-based method. 
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Dynamic selection based method is highly inspired by force propagation 

theory. Known as ChainMail, it was first introduced for deformable modeling by 

Sarah F. Gibson (Gibson. 1997). Based on the reviews, ChainMail doesn’t seem to 

include any physical based justification in its deformation. In depth discussion of this 

topic are available in Chapter 4.  

 

 

 

 

1.7 Results 

 

 

The results from this research are summarized as follows: 

Object representation: Deformable objects are represented using mass-

spring model. 

Reduced area for deformation:  For every frame, deformable object is 

evaluated for deformation. The result from the evaluation is a small area of 

deformable object that will be selected for deformation. Similar in nature to 

ChainMail (Gibson 1997), this will reduce required deformation processing time as 

only small areas are actually deformed per frame. 

Dynamically enlarge or shrink deformation area: Unlike previous 

deformation method inspired by force propagation, dynamic selection based method 

can dynamically enlarge or shrink deformation areas. Previous works usually either 

resort to static range of areas (Choi et al. 2003) or propagate over the deformable 

object infinitely (Dusyak and Zhang. 2004). Other methods that can dynamically 

enlarge or shrink deformation area do not have physical-based justifications in their 

deformations. 

Scalable for either performance or accuracy: In order to tackle broad 

range of applications, dynamic selection-based method allows the user to tinker with 

the parameter settings. These settings enable the application to be tuned either for 

high accuracy or high performance. Chapter 5 provides testing result of different 

parameter settings. 
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1.8 Summary of chapters 

 

 

This section presents a brief overview of the content of this report. 

Chapter II: An overview of previous works on deformation method, real-

time performance strategy and force propagation-based method.  

Chapter III: Implementation planning was outlined here. Acceleration 

strategies were described along with its justifications. Both hardware and software 

specification requirements are discussed here. 

Chapter IV: Detail discussions on implementation starting from building the 

data, algorithm loops and algorithm. 

Chapter V: Results and benchmarks of the research. It provides analytical 

performance results, discussion of various issues regarding the performance and 

quality of deformation behaviors of the proposed algorithm.  

Chapter VI: Summary of the report. It reflects on the objectives 

achievements, contributions and future work.  



 

 

 

CHAPTER II 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Overview 

 

 

In this chapter, elementary theories and techniques that are relevant in 

volumetric object deformation are discussed. Presented next are literatures for both 

non-physical-based modeling and physical-based modeling of deformable objects. 

Then, the discussion will cover previous work on real-time acceleration techniques.  

 

 

 

 

2.2 Introduction 

 

 

In engineering mechanics, deformation is a change in shape due to an applied 

force. This can be the result of tensile, compressive, shear, bending or torsion forces 

etc. Deformable materials can be distinguished by three states of matter; solid, liquid 

and gas. Some examples of deformable objects are sponge, water and smoke. Two 

major distinctions on deformable objects modeling are of animation applications and 

of editing applications. Animation applications usually deal with methods which 

animates the nature of deformation as a function of time. For example, cloth tools in 
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most 3D animation package where cloth deformations are simulated for scene 

environment throughout animation time. Often considered as physical-based 

deformations, the cloth tools tries to find the equilibrium state for the cloth based on 

interacting forces. For deformable objects editing, there will be a mechanism or 

method which facilitates the deformation of object deformations. For example, free 

form deformation tools available in most 3D animation packages where the objects 

are deformed to satisfy constraint that are manipulated by user.  Often considered as 

non-physical based deformation, the free form deformation method will displace 

primitives (with specific constraints) until it reached a new position which satisfies 

the constraints.  

 

 

Physical-based deformation for solid objects (non-liquid and non-gaseous 

matter), based on theory of elasticity, can be either be elastic or inelastic (plastic). 

Elastic objects are objects that return to their original states after removal of applied 

forces. Contrary to elastic objects, inelastic objects are objects that do not return to 

their original state after applied forces have been removed due to atomic plane 

dislocation in the real materials. Technically, all objects should be considered 

inelastic, due to the fact that every object can experience atomic plane dislocation. 

But due to performance reason, most objects that behave elastically during the 

simulation can be considered as elastic objects. Fundamental measurements of 

deformed object are by its dimension; length for one dimensional objects, surface 

area for two dimensional objects and volume/bulk for three dimensional objects. For 

three dimensional cases, deformable objects are represented with volumes that have 

both surface structure and internal structure.  There are three types of forces; 

concentrated loads, distributed loads over the body and distributed loads over the 

surface of on object. Concentrated loads are forces applied at discrete points. 

Example of concentrated loads is force exerted when a pencil tip is pressed onto a 

pillow. The second type of force is loads distributed over the body. Such is 

gravitational force. The final type of force is loads distributed over the surfaces of the 

object. Air pressure and water pressure is good example of loads distributed over the 

surfaces.  
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Volumetric deformable objects can be represented by geometric mesh, iso-surface, 

voxels, points etc. Geometric mesh-based rendering can be accelerated efficiently by 

3D hardware compared to other methods of rendering. 

 

 

 

Figure 2.1 Taxonomy of deformable objects for this research. 

 

 

 

 

2.3 Deformable objects modeling 

 

 

Deformable objects application varies in input data, degree of required 

accuracy, user interaction and material flexibility. Usually, to suit for specific 
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application requirements, the application traded off less important simulation 

features to provide the desired features more computational power.  

 

 

 

 

2.3.1 Input data 

 

 

Since current 3D hardware has matured enough to support geometric 

rendering, the focus of this research will be on techniques to acquire geometric data. 

Geometric data can be acquired by designing, 3D scanner, diagnostic radiology or 

from mathematical models. Modeling tools such as Autodesk® 3ds Max®, Autodesk® 

Maya®, NewTek Lightwave 3D®, Robert McNeel & Associates Rhinoceros® 

NURBS modeling allow designers to create, edit and analyze vertices, lines, curves, 

planes, surfaces and solids to produce the desired objects. These data can be saved as 

geometry, mathematical parameters or boundary elements (constructive solid 

geometry, boundary representations). To acquire data from real world object, one can 

use 3D scanners available from Cyberware, Northern Digital Inc. and Cognitens Ltd., 

to name a few. Data acquired using laser scanning, electromagnetic resonance or 

multiple sets of 2D images reconstruction, are highly accurate compared to artist 

impression of the objects. Diagnostic radiology enables one to get information of a 

particular object including both surface and its underlying structure. By analyzing 

reflection, penetration or emitted energy of transmitted light wave (x-ray), 

electromagnetic wave, sound wave (ultrasound) or nuclear energy, underlying 

structure can be constructed without the need to cut the physical objects. These 

methods of data acquisition are very useful in medical applications as no significant 

harm done to the patient to get the underlying structure image. Some example of x-

ray imaging equipment is computer tomography scan (CT scan), athrography and 

mammography. Hysterosonography use ultrasound waves to show structures in the 

human body. The sound waves reflect off internal organs and other anatomic 

structures to create images. Magnetic resonance imaging (MRI) is a method of 

producing extremely detailed pictures of body tissues and organs using 

electromagnetic energy. Electromagnetic energy that is released when exposing a 
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patient to radiofrequency waves in a strong magnetic field is measured and analyzed 

by a computer, which forms two- or three-dimensional images that may be viewed 

on a TV monitor. Nuclear medicine is a subspecialty within the field of radiology. It 

comprises diagnostic examinations that result in images of body anatomy and 

function. The images are developed based on the detection of energy emitted from a 

radioactive substance given to the patient, either intravenously or orally. Voxelman 

register together data from various sources (CT, MRI, X-ray) to create visualization 

of human skull anatomy. Data acquired using diagnostic radiology has to be 

reconstructed as geometric data before performing geometric deformation. 

Geometric data can also be generated by mathematical models using fractal, implicit 

method or by spline-based technique.  

 

 

 
Figure 2.2 Catheter Angiography : X-ray equipment is mounted on a C-shaped 

gantry with the x-ray tube itself beneath the table on which the patient lies. Above 

the patient is an image intensifier that receives the x-ray signals, amplifies them, and 

sends them to a TV monitor. 
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Figure 2.3 CTA scan equipment. 

 

 

 
Figure 2.4 MRI equipment. 
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Figure 2.5 Ultrasound (sonography) equipment. 

 

 

 
Figure 2.6 Voxelman showing registration of several data sources. 

 

 

To perform deformation, the object need to have some kind of deformation 

weight or coefficient. These material properties can either be manually defined or by 

analytical procedure. Kawabata Evaluation System (Kawabata, 1980) (House and 
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Breen, 2000) is a standard set of fabric measuring equipment that can measure the 

bending, shearing and tensile properties of cloth. The equipment measures force or 

moment that is required to deform a fabric sample of standard size and shape, and 

produces plots of force or moment as a function of measured geometric deformation. 

From physics literature (Yong and Nagappan, 2003) (Cutnell and Johnson, 1995), 

material properties can be divided into five phases; limit of proportionality, elastic 

limit, yield point, breaking stress and breaks (as illustrated in Figure 2.7).  

 

 

stress  
plastic deformation 

elastic deformation A = limit of proportioanlity 
B = elastic limit 
C = yield point 
D = breaking stress 
E = breaks 

strain 
O 

ABC          D   E 

 
Figure 2.7 Stress strain graph indicates elastic and plastic (inelastic) 

deformations. 
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stress stress

stress stress 

b) non-linear elasticity a) linear elasticity 

stress stress

 
Figure 2.8 Stress strain graph showing multiple type of relation for deformations.  

 

Table 2.1 Values for the Young’s modulus of multiple solid materials. (Cutnell 

and Johnson, 1995) 

Material Young’s Modulus Y (N/m2) 

Aluminium 6.9 x 1010

Bone Compression 9.4 x 109

Bone Tension 1.6 x 1010

Brass 9.0 x 1010

Brick 1.4 x 1010

Copper 1.1 x 1011

Mohair 2.9 x 109

Nylon 3.7 x 109

Pyrex glass 6.2 x 1010

Steel 2.0 x 1011

Teflon 3.7 x 108

Tungsten 3.6 x 1011

 

stress stress 

increasing  increasing  
stress stress 

decreasing  decreasing  
stress stress 

c) non-linear elasticity 
(rubber) 

d) non-linear inelasticity 
(polythene) 
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2.3.2 Data complexity 

 

 

Usually, in computer graphics term, complex polygonal object refers to 

object with large number of polygons. Since computers have limited total triangle fill 

rate per second, reducing the poly count is always a better choice, as long as the 

object maintains its original looks. For deformable object modeling, this is not 

usually the case. Object with low poly counts can still slows the system down. This is 

due to the cost of deformation calculation for every primitive element of the objects, 

which is expensive. Different algorithm varies in its computation cost, but at the end, 

the bottleneck is usually the CPU processing power, not the GPU processing power. 

Thus, for deformable object, it is recommended to reduce the geometry of 

deformable object representation as long as it can undergo deformation to the 

required extent with acceptable results.  

 

 

Another thing to consider is mathematical complexity of the deformation 

process. To achieve accurate results, one has to resort to use accurate computation 

techniques usually originated from mechanical dynamics in physics. These accurate 

techniques are suitable for highly risky simulation such as virtual surgery. But, a 

large number of computation tends to prevent the simulation to be performed in 

interactive manner. Mathematical complexity can be reduced by using simpler 

ordinary differential equation solver (Teschner et al. 2004), assuming fixed state 

(Matyka, 2003), pre-compute complex computation (D. L. James and Fatahalian, 

2003) etc..  

 

 

Different deformation techniques vary in its object representation memory 

consumption. Complex object requires enough memory to store its large geometric 

structure including internal geometric structure and its material properties. 

Additional memories are required to store its auxiliary data, such as pre-computed 

function, coherence cache and temporary variables. This large memory requirement 

poses challenges on memory storage and data access rate for real-time physical-

based simulation and interaction. 
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2.3.3 Accuracy 

 

 

Required accuracy varies between different types of applications. Depending 

on the application requirements and involved risk, end results can either be 

interactively manipulated, physically realistic or physically plausible. Deformation 

accuracy can be divided into three; geometric accuracy, mathematical accuracy and 

physical accuracy. To achieve high geometric accuracy, virtual object must closely 

resemble its real world counterpart. High mathematical accuracy can be achieved by 

using accurate computation technique. For example, there are multiple ordinary 

differential equation solvers, and most of them will accumulate precision error over 

time. Choosing the most precise technique will delay noticeable inaccuracies and 

maintain the system stability for a longer period of time. Simulating deformation true 

to the atom level is very expensive as even the smallest visible object contains large 

number of atoms. Even when the technologies are able to simulate deformation by 

displacing atoms, the visual difference is hardly noticeable and less required for 

mainstream applications. Approximating physical accuracy can be done in various 

ways such as neglecting small deformation factor, assuming the material is a 

anisotropic or non-heterogenous material and assuming linear elasticity deformation.  

 

 

 

 

2.3.4 Interactivity 

 

 

In computer graphics modeling, it is essential to have deformation tools that 

are robust and fast enough to be used interactively. Simple deformation technique 

like global deformation (Barr, 1984) is very limited in its deformation ability 

compared to free form deformation (Sederberg and Parry, 1986). Unlike non-

physical-based deformation, physical-based deformation does not really permit user 

interaction as the object responds to applied forces rather than constraint modifier. If 
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the interactions are known and limited, deformation can be pre-computed to enable 

user interaction. 

It is desirable to have user control (to some degree) over the deformable 

objects deformation motion instead of giving the dynamics formulation a total 

control. This is especially true for computer animation and cartoon animation as it 

can give animated characters unique behaviors.  

 

 

 

 

2.3.5 Flexibility 

 

 

Deformation robustness and flexibility are the ability of the deformation 

technique to support heterogeneous tissues, topological changes and material 

parameters changes. Human tissues consist of multi-layered, varied stiffness 

materials. Terzopoulos and Waters apply dynamic mass-spring system to facial 

modeling by constructing a three layer mass-spring mesh of dermal, fatty and muscle 

layer (Terzopoulos and Waters, 1990). Under certain conditions such as when 

elasticity limit are over stress, physically-based deformable objects experienced 

topological changes to its primitives representation which not only the object never 

retain the initial shape, but can be either ductile, fractured, tore, brittle or cut. 

Reconstructing geometry topologies pose a problem for real-time deformation 

especially for complex geometry. Elasticity coefficient for deformable object 

sometimes changes under different simulated environment. For example, it is easier 

to deform a hot plastic than a colder one due to additional energy vibrating the atom 

plates. Other examples of changing material parameters phenomena are mechanical 

wear, melting and hardening. 
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2.4 Non-physical based modeling 

 

 

3D designers require precise deformation tools which give them total 

deformation control. These tools usually come as purely geometric modification 

tools which do not include any physical justifications in its deformation process. The 

output relies on the skill of the designer and how much control the deformation 

technique provides. Three most popular non-physical based modeling techniques are 

discussed as follows; global deformation, parametric representation and free form 

deformation.   

 

 

 

 

2.4.1 Global deformation 

 

 

In 1984, Barr introduced global deformation technique by extending the 

classical linear transformation operation (Barr. 1984). The idea behind this method is 

to apply another transformation to existing transformation before it is applied to the 

object. The available deformations are tapering, twisting and bending. Given a 

function for the transformations:  

)(),(),( zFZyFYxFX zyx === ,  

where (x, y, z) are vertices in undeformed state, and  

(X, Y, Z) is the deformed vertex.  

 

Object is tapered by choosing a tapering axis and differentially scales the 

other two axis components, setting up a tapering function along tapering axis. For 

example of tapering an object along its z-axis, zZryYrxX === ,, , where 

is the tapering function either linear or non-linear. To globally twist the 

object, use differential rotation just as tapering is a differential scaling. To twist an 

object through an angle 

)(zfr =

θ  about the z-axis, we apply 

),cossin,sincos(),,( zyxyxZYX θθθθ +−=  
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By varying the amount of rotation as a function of z, the object will become twisted. 

This is done by setting )(zf=θ  where f(z) specifies the rate of twist per unit length 

along the z-axis. To bend an object along y-axis, the deformation transformation is 

given by 

xX =  
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where is the bending region, is the radius of curvature of 

the bend, the center of the bend is at 
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Baraff and Witkin (Baraff and Witkin, 1992), uses connected global 

deformation elements to create flexible object deformation systems.  

 

 

Global deformation can be easily implemented into existing application since 

the deformation transformation and classical transformation are similar in nature. 

The main setback for this method is that the deformation is limited to the three 

previously mentioned types of deformation. Also, small deformation cannot be 

performed using global deformation as they always deform the objects as a whole.  
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Figure 2.9 Structures deforming global deformation example. Top, original cube 

and Utah teapot followed by tapering, twisting and bending deformations. (Watt and 

Watt, 1992) 

 

 

2.4.2 Parametric representation 

 

 

By defining the object as parametric surfaces, users are given the ability to 

deform the surface by altering the functional description of the surface in the sense of 

displacing the control points. The first representational form or basis is due to Bézier, 

who was the originator of an early CAD system, UNISURF, used by Renault, a 

French car manufacturer. 
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Figure 2.10 Examples of NURBS surface. 

 

 

Given a set of n + 1 control points the corresponding Bézier 

curve (or Bernstein-Bézier curve) is given by  
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where  is a Bernstein polynomial and )(, tB ni ]1,0[∈t . These functions are scaled or 

weighted by , the network of control vertices, to form the surface patch. A cubic 

Bézier patch, an extension to the Bézier curve, is given by,  

iP

∑∑
==

=
3

0

3

0
)()(),(

j
jiij

i
vBuBPvuQ . 

Bézier patch always passes through the first and last control points and lies within 

the convex hull of the control points. Undesirable properties of Bézier patch are their 

numerical instability for large numbers of control points, and the fact that moving a 

single control point changes the global shape of the patch. The former is sometimes 

avoided by smoothly patching together low-order Bézier patch. The movements of 

the control points are constrained by continuity constraint between control points. 

These continuity constraints introduced two undesirable effects. First, undesirable 

plateau effect in the deformation is introduced if the deformation only displace the 

control points and not both control points and the continuity constraints. Second, it is 

impossible to achieve localize deformation since the continuity constraints may be 

propagated throughout the patch.  
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A generalization of the Bézier curve is the B-spline curve. As an 

improvement over the Bézier representation, B-spline are superior over the Bézier 

method within the context of deformation as B-Spline does not require continuity 

constraint and this gives the user the ability to perform localize deformation. Since 

the absence of continuity constraint, B-spline curve restricted the deformation by 

control points to only specific known region thus giving better control to the 

deformation made by the user. 

 

 

 

 

2.4.3 Free form deformation 

 

 

 
Figure 2.11 Right, local free form deformation. Left, global free form 

deformation. (Sederberg et al., 1986) 

 

 

In 1986, Sederberg developed a technique that is more flexible than global 

deformation known as free form deformation (Sederberg et al. 1986). This technique 

defines a free-form deformation of space by specifying a trivariate Bézier solid, 

which acts on a parallelpiped region of space. Instead of deforming the object 

directly, this technique embeds the object in a defined space that is then deformed. 

The object is deformed according to the deformation that the embedding space 
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undergoes. The embedding space called FFD block, are actually hyperpatches 

connected together to form a piecewise Bézier volume.  

 

 

         
Figure 2.12 Extended free form deformations (Coquilart, 1990). Top left, a sphere 

deformed with a parallelepiped lattices. Top right, a sphere deformed with a 

cylindrical lattice. Middle left and right, deformed lattice and the deformed surface. 

Bottom left and right, resulting sand pie. 

 

 

A single tricubic Bézier hyperpatch is defined as  
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where ,  and  are the Bernstein polynomials of degree 3. The 

undeformed FFD block consists of a rectangular lattices of control points arranged 

along three mutual perpendicular axes. The end result is a parallelepiped with lattices 

as control points attached. To deform an object using free form deformation method, 

we must first determine the positions of the vertices in the lattice space. Then deform 

the FFD block by displacing the control points from the undeform lattice positions. 

Finally, determine the deformed positions of the vertices by finding the relevant 

hyperpatch within which the vertex is located and convert to the local coordinate 

system of the hyperpatch.  

)(uBi )(vB j )(wBk

 

 

This method can be used to apply localized deformation or to deform the 

whole object. Multiple FFD block can be defined in piecewise manner to perform 

deformation that is not possible to be done by using just a single FFD. For modeling 

complex deformation and specific small region of deformation, careful placement of 

FFD block by the user is required. However, the large number of FFD blocks would 

be inefficient to render. 

 

 

Unlike free form deformation by Sederberg, Coquilart’s extended free form 

deformation does not define any specific FFD lattice space (Coquillart, 1990). 

Coquilart states that parallelepiped shaped FFD block puts constraints onto the shape 

of the deformation and introduced nonparallelepiped lattices as the EFFD lattice 

space. To construct the EFFD block, users are required to weld several elementary 

blocks, which is the classic FFD blocks, together. As with FFD, to perform 

deformation, EFFD lattices need to be displaced. The deformation processing is very 

similar to that of previously discussed FFD except that unlike FFD, in EFFD, we 

cannot assume simple connection between the two adjacent spaces because lattice 

space of EFFD does not aligned with EFFD object space. 
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Figure 2.13 Hirota’s volume preserving method. Letf, original shape. Center, after 

free form deformation is applied. Right, unconstrained lattices are displaced to 

preserve original volume (Hirota et al, 1999) 

 

 

To preserve the total volume of solids undergoing free form deformation, 

Hirota uses discrete level of detail representations (Hirota et al., 1999). Given the 

boundary representation of a solid and user-specified deformation, the algorithm 

computes the new node positions of the deformation lattice, while minimizing the 

elastic energy subject to the volume-preserving criterion. During iterations, a non-

linear optimizer computes the volume deviation and its derivatives based on a 

triangular approximation, which requires a finely tessellated mesh to achieve the 

desired accuracy.  To reduce the computational cost, Hirota exploit the multi-level 

representations of the boundary.  This technique also provides interactive response 

by progressively refining the solution. Furthermore, it is generally applicable to 

lattice-based free-form deformation and its variants. This method is capable of large 

deformation, efficiently.  It gives designers and engineers real-time visual feedback 

and an intuitive physical feel of free-form solids, during geometric design and shape 

modification. 

 

 

Exact shape and point placement is difficult to achieve with traditional free 

form deformations. This is due to the free form deformation interface which permits 

users to deform using only control points. Hsu et al. introduced a free form 

deformation method that allows user to control a free form deformation of an object 

by manipulating the object directly instead of using control points (Hsu et al., 1992). 

The method computes necessary alteration to the control points of the free form 

deformation spline using least square approach that will induce the point’s 

placements. 
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Figure 2.14 Deformable teapot is animated using dynamic global free form 

deformation. (Faloutsos et al., 1997) 

 

 

Faloutsos et al. extends the use of free form deformation to a dynamic setting 

by coupling physical dynamics with free form deformation (Faloutsos et al., 1997). 

The method is based on parameterized hierarchical FFDs augmented with 

Lagrangian dynamics, provides an efficient way to animate and control the simulated 

characters. Objects are assigned mass distributions and elastic deformation 

properties, which allow them to translate, rotate, and deform according to internal 

and external forces. First, the dynamics generalization of conventional geometric free 

form deformation is formulated. The formulation employs deformation modes which 

are tailored by the user and are expressed in terms of free form deformations. 

Second, the formulation accommodates a hierarchy of dynamic free form 
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deformations that can be used to model local as well as global deformations. Third, 

the deformation modes can be active, thereby producing locomotion. 

 

 

 

 

2.4.4 Pros and Cons 

 

 

The main strength in parametric representation-based surface deformation is 

the ability to maintain object smoothness under any deformation complexity. Users 

are given total deformation control up to the control point complexity level. Due to 

this feature, parametric-based surface deformation is widely used in computer-aided 

design and model editing application. 

 

 

Parametric-based surface deformation is not without its limitation. Since the 

object representations are defined as sets of parametric surfaces, the deformation 

detail level depends on the quantity of the control points. It is impossible to apply 

localized deformation in between control points. Re-meshing the parametric surfaces 

introduced aliasing that may not accurately reflect the intended deformation due to 

continuity of the constraints. It is difficult to represent object parametrically 

especially for objects possessing complicated topology. It is impossible to deform 

volumetric object while at the same time preserve its volume, since objects 

represented as parametric surfaces hold no volume information whatsoever. 

Eventually, simple deformation requires the adjustments of multiple control points or 

reconstructing the control points altogether which is very tedious. 

 

 

Global deformation, FFD and EFFD provide higher level control than 

deformation based on parametric surfaces. While global deformation only provides 

limited sets of deformations, FFD allows user to manipulate its deformation 

constraints anyway they like. However, FFD also has its setbacks.  The first two 

techniques are limited in permitting deformations as the techniques constraints the 
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deformation with its static deformation constraint but the latter provides a powerful 

tool as it gives the user the ability to construct the deformation constraint. 

 

 

 

 

2.5 Physical-based modeling 

 

 

Physical-based modeling uses physical principles to model realistic behavior 

of deformable models. This method uses more computational power than non-

physical based method but the result is more convincing compared to the non-

physical based method. Integration between physical principle and computer 

graphics for deformable object modeling was pioneered by Terzopoulos 

(Terzopoulos et al. 1987) (Terzopoulos et al. 1988) (Terzopoulos et al. 1989). Two 

most common and well known physical-based methods are finite element method 

and mass-spring method. On the other hand, two of the most recently proposed 

methods for physical-based modeling are known as mesh-free method and gas-based 

method. Here, basic physical-based method for deformable object will be discussed 

along with each method subsequent extension techniques.  

 

 

 

 

2.5.1 Finite element method 

 

 

The behavior of deforming objects is the topic of continuum mechanics, a 

branch of mathematics that tries to capture physical phenomena of continuous media 

in precise mathematical formulations. One branch of continuum mechanics, 

nonlinear elasticity, provides the mathematical description of how objects deform.  
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Continuum mechanics describes materials in terms of partial differential 

equations. The Finite Element Method (FEM) is a discretization method. It 

transforms a continuous, infinite-dimensional problem into systems of equations with 

a finite number of variables. For mechanical problems, the FEM discretizes the 

equations of motion; hence it delivers a system of ordinary differential equations, 

i.e., equations where time still has a role. There are two ways to deal with these 

systems: compute the evolution of the system, or try to find the final equilibrium 

solution directly. If the final state of the system is all that matters, a static method can 

be used. By assuming that velocity and acceleration are null, the system of 

differential equations is changed into a normal system of equations. For many 

mechanical problems, these equations can be stated in terms of finding minimum 

energy solutions. If transient effects do matter, then the evolution of the differential 

equations must be calculated using a time-integration method. Basically, the 

problems come from the simulation of soft tissue. Although simulating the full 

mechanical characteristics of soft tissue is not possible in an interactive setting, it is 

instructive to study exactly what kinds of characteristics are ignored in the 

simulations. It is not surprising when most implementation tends towards 

simplifications since the constraints of an interactive simulation do not allow for 

much sophistication.  

 

 

To sum it up, the finite element method finds an approximation for a 

continuous function that satisfies an equilibrium condition which follows from the 

variation or weak formulation of the problem. The discretization of the problem 

consists of decomposing its domain into a mesh of carefully selected elements, 

joined at discrete nodes. The solution of the variational equation is expanded as a 

weighted sum of finite element basis or shape function on each element. Continuity 

across element boundaries is achieved by sharing discrete nodes and thus finite 

element weights. As a next step, the contributions of each element are assembled into 

a global system of equations which then can be solved for the shape function 

weights. 
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To analyze the stress in various elastic bodies, calculate the strain energy of 

the body in terms of nodal displacements and then minimize the strain energy with 

respect to these parameters - a technique known as the Rayleigh-Ritz. In fact, this 

leads to the same algebraic equations as would be obtained by the Galerkin method 

but the physical assumptions made (in neglecting certain strain energy terms) are 

exposed more clearly in the Rayleigh-Ritz method.  

 

 

In all cases, the finite elements steps are: 

1. Evaluate the components of strain in terms of nodal displacements. 

2. Evaluate the components of stress from strain using the elastic material 

constants. 

3. Evaluate the strain energy for each element by integrating the products of 

stress and strain components over the element volume. 

4. Evaluate the potential energy from the sum of total strain energy for all 

elements together with the work done by applied boundary forces. 

5. Apply the boundary conditions, e.g., by fixing nodal displacements. 

6. Minimize the potential energy with respect to the unconstrained nodal 

displacements. 

7. Solve the resulting system of equations for the unconstrained nodal 

displacements. 

8. Evaluate the stresses and strains using the nodal displacements and element 

basis functions. 

9. Evaluate the boundary reaction forces (or moments) at the nodes where 

displacement is constrained. 
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Figure 2.15 Three type of geometry discretization using gmesh (Geuzaine and 

Remacle, 2005). 

 

 

 

 
Figure 2.16 ‘Happy Buddha’ and its sliced tetrahedral mesh version. The model is 

discretized using tetgen (Si, 2005) 
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Figure 2.17 Taxonomy for finite element method from mechanical physics view. 
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Figure 2.18 Top,the three standard solid element geometries: tetrahedron (left), 

wedge (center) and brick (right). Only elements with corner nodes are shown. 

Middle, regular 3D meshes can be built with cube-like repeating mesh units. Meshes 

are built with bricks, wedges or tetrahedra. Bottom, two nonstandard solid element 

geometries: pyramid and wrick (w(edge)+(b)rick). Four faces meet at corners 5 and 

7, leading to a singular metric. 

 

 

Solid elements are three-dimensional finite elements that can be used to 

model solid bodies and structures without any a priori geometric simplification. 

Finite element models of this type offer the advantage of directness. Geometric and 

constitutive assumptions required to produce dimensionality reduction, for example 

to planar or axisymmetric behavior, are avoided. Boundary conditions can be more 

realistically treated.  
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Another attractive feature is that the finite element mesh visually looks like 

the physical system. This directness does not come for free. It is paid in terms of 

modeling, mesh preparation, computing and post-processing effort. To keep these 

within reasonable limits it may be necessary to use coarser meshes than with two 

dimensional models, which in turn may degrade accuracy. Its use should be restricted 

to problems and analysis stages, such as verification, where the generality and 

flexibility of full 3D models is warranted.  

 

 

Two dimensional (2D) finite elements have two standard geometries: 

quadrilateral and triangle. All other geometric configurations, such as polygons with 

five or more sides, are classified as nonstandard or special. Three dimensional (3D) 

finite elements offer more variety. There are three standard geometries: the 

tetrahedron, the wedge, and the hexahedron or “brick”. These have 4, 6 and 8 

corners, respectively, with three faces meeting at each corner. These elements can be 

used to build topologically regular meshes. There are two nonstandard geometries 

that deserve consideration as they are occasionally useful to complete generated 3D 

meshes: the pyramid and the wrick. (The latter term is a contraction of “wedge” and 

“brick”) These have 5 and 7 corners, respectively. One of the corners is special in 

that four faces meet, which leads to a singular metric there. This singularity 

disqualifies these elements for use in stress analysis in highly stressed regions. 

However they may be acceptable away from such regions, and in vibration analysis. 

Both standard and nonstandard elements can be refined with additional mid side 

nodes. These refined elements are of interest for more accurate stress analysis. Of 

course, the mid side nodes may be moved away from the midpoints to fit curved 

geometries better. The best choices of elements and interpolation functions depend 

on the object shape, convergence requirements, degree of freedom, and trade-offs 

between accuracy and computational requirements. In general, using elements that 

have more nodes and more complex interpolation functions require fewer elements 

for the same degree of accuracy. 
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Consider isoparametric solid elements with three translational degrees of 

freedom (DOF) per node. Most of the development of such elements can be carried 

out assuming an arbitrary number of nodes n. In fact a general “template module” 

can be written to form the element stiffness matrix and mass matrix. Nodal quantities 

will be identified by the node subscript. Thus {xi , yi , zi } denote the node 

coordinates of the ith node, while {uxi , uyi , uzi } are the nodal displacement DOFs. 

The shape function for the ith node is denoted by Ni . These are expressed in term of 

natural coordinates which vary from element to element.  

 

 

 
Figure 2.19 A simple finite element method deformable object in action. Image is 

taken from project Xplodar (Pranckevicius). High contrast red denotes high stress 

area while bright white denotes less stress area. Even though the simulation is 

performed in real time manner, notice that the deformable object is low in polygons.  

 

 

Forces must be numerically integrated over volume or surface at each 

timestep, requiring a lot of computation. This limits the use of finite element method 

(FEM) for real time application despite the fact that FEM provides better 

deformation accuracy. Due to its complexity in nature, it is difficult to implement 

and optimize FEM. Discretizing the object is also quite difficult. Discretization 

methods chose for real time applications are based on the ability of the discretizer to 

maintain high geometrical accuracy with less internal elements using single simple 

element type (usually tetrahedron). Large deformation and topological changes 
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requires the system to recompute the large stiffness matrix. Finite element method 

requires less node points compared to mass-spring systems to achieve similar degree 

of deformation accuracy. This results to a smaller linear system which can be solved 

in less time.  

 

 

Terzopoulos used finite element modeling technique to discretize the 

deformable objects for its offline simulator (Terzopoulos et al. 1987).  The idea is to 

model deformable objects using differential equation analogous to the standard mass-

spring-damper equation. Dynamics are computed from the potential energy stored in 

the elastically deformed body using finite difference discretization method. Later on, 

Terzopoulos extends the work to include simulation of inelastic object behaviour 

such as plasticity, fracture (Terzopoulos et al. 1988), heating and melting 

(Terzopoulos et al. 1989). 

 

 

Neilson and Cotin achieved real time finite element method deformation by 

implementing preprocessing and equation systems condensation (Neilson and Cotin, 

1996). By solving a smaller linear system, the implemented systems achieved 20 

frames per second for models with 250 nodes on four Mips R4400 processor Silicon 

Graphics ONYX.  

 

 

Although fast finite element models have been developed for medical 

applications (Nielsen and Cotin, 1996)(Berkley et al., 2000), less attention has been 

paid to displaying time dependent deformations of large size finite elements models 

in real-time. (Basdogan, 2001) introduces two numerically fast techniques for real-

time simulation of dynamically deformable (i.e. time dependent deformations) 3D 

objects modeled by FEM; modal analysis and spectral Lanczos Decomposition. 

 

 

Existing techniques of deformable modeling for real time simulation have 

either used approximate methods that are not physically accurate or linear methods 

that do not produce reasonable global behavior. Nonlinear finite element methods 
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(FEM) are globally accurate, but conventional FEM is not real-time. (Wu et al., 

2001) apply nonlinear FEM using mass lumping to produce a diagonal mass matrix 

that allows real-time computation. They proposed a scheme for mesh adaptation 

based on an extension of the progressive mesh concept, called dynamic progressive 

meshes to minimize unnecessary computations. 

 

 

Krysl et al. uses adaptive local finite element mesh refinement using wavelet 

theory to accelerate finite element deformation (Krysl et al., 2003). The refined mesh 

is nested in the refinement hierarchy, which simplifies the incorporation of multi-grid 

solvers. The method exploits refinement of basis functions rather than refinement of 

elements. It is in spirit much closer to some recent developments in the design of 

meshless methods. It is suitable in any number of spatial dimensions, and for a much 

wider variety of finite element types than any standard mesh refinement algorithm. 

 

 

Finite elements method benefits from a solid background and established 

technique, books and vast literature. For computer applications, there are a variety of 

libraries for solving finite elements. Applications to discretize geometric object into 

sets of elements are also widely available. Compared to mass-spring method, 

integrating actual tissue properties are easier with finite element method. Solutions 

for large linear or non-linear systems using numerical techniques already exist. With 

constraint, some assumption and optimization, real-time computation is possible with 

current mainstream hardware. Finite element method allows parallel computing 

techniques for its simulation; enabling scalable simulations. 

 

 

Finite element method is not without its drawbacks. Simulation time is slow 

even for linear elasticity deformation. For non linear deformation, it is even slower. 

To permit real-time performance, multiple accelerating strategies should be 

implemented. For medical application, some real-time accelerating strategies are not 

applicable due to limited allowable deformations and inaccuracy introduced. Finite 

element system is very complex and it is not that easy to implement. 
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2.5.2 Mass-spring method 

 

 

Mass-spring method is one of the physical-based methods that have been 

extensively used in the field of real-time deformable object modeling. The surface or 

volume is discretized into a set of mass points. Each mass point is linked to its 

neighbors by one dimensional spring. Deformation is computed by finding 

equilibrium state between interconnected points after application of external force. 

The spring is often linear, but non-linear elasticity can be simulated by applying 

multi-varied stiffness springs. Mass-spring systems can also be modeled as either 

static or dynamic system (where time has influence). 

 

 

There are multiple ways to construct the mass-spring lattices. One can 

construct the springs manually or discretize the object into sets of tetrahedrons 

(Teschner et al., 2004) (Mollemans et al., 2003) or cubes. Acquired geometry 

topology (tetrahedrons or cubes) are represented as configuration of point masses 

connected by springs.  

 

 

Basically, as spring experiences external forces, the spring is either 

compresses or extends to the direction of the force and this creates a repulsive force 

to the opposite direction of the force. The created force is described mathematically 

by  

ic xxx
xkF

−=∆
∆−= *

 

where F is the resultant force, k is the spring coefficient, and x∆ is the distance 

between the two points (xc =  current distance, and xi = distance at the inertial 

position). Inertial position is the distance between two separated points. No force will 

be generated if the points are not displaced. If the spring is compressed, then will 

be negative, generating a positive force (expansion). If the spring is expanded, 

then will be positive, generating a negative force (compression). Elasticity 

coefficient is represented by k. Also known as Young’s modulus, one dimensional 

deformation coefficient weights the spring final force. Stiffer spring have bigger k as 

x∆

x∆
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it creates a larger force from its inertial state. Conversely, a spring with a smaller k is 

more flexible because it creates a smaller force from its inertial state.  

 

 

 
Figure 2.20 An example of mass-spring model. Connected spring exerted forces 

on neighboring points, displacing the points from its rest position. (Gibson and 

Mirtich, 1997) 

 

 

To compute the distance between two points, one can use Pythagoras’ 

theorem. Then, multiply with k coefficient and finally use the inverse of this value 

to compute the force. Spring force alone is not enough to produce realistic 

simulation. Other forces can be applied into the system such as damping force. This 

is to simulate the energy loss experience by the springs. This results into an extended 

equation 

x∆

bvkxF −−=  

where b is the coefficient of damping and v is the relative velocity between the two 

connected points. 

 

 

For a networked configuration of mass-spring lattices, when a spring is 

displaced, the resultant force propagates throughout the entire network. This results 

into deformable object behaviors. Based on this phenomenon, mass-spring was used 

in modeling string, cloth, jelly, face, human tissue and various other deformable 

objects. The difference between these applications is the initial spring configurations.  
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In a dynamic three dimensional deformable system, where time is integrated 

into the system, the mass mj at position at time t are governed by Newton’s 

second law of motion 

3ℜ∈ix

)()()()( int tftftxtxm ext
iiiiii −=++ &&& γ  

whereγ denotes a damping factor,  refers to the internal forces resulting from 

spring interconnection and  represents the sum of external forces applied by 

the user or due to gravity or collision. The equations of motion for the entire system 

result from assembling the equations of all masses m

)(int tfi

)(tf ext
i

i in the lattice. Writing the 

positions of all m masses component-wise into a position vector x of size 3n, we can 

state a matrix equation for the entire mass-spring system as 

fKxxDxM −=++ &&&  

where M, D, and K are 3n×3n matrices representing mass, damping and stiffness, 

respectively. Although possibly large, these matrices are very sparse. M and D are 

diagonal, where K in a regular lattice is banded according to adjacency between 

masses. The equation is reduced into two coupled systems of first order differential 

equations to numerically integrated through time as  

vx =&  

)(1 fKxDvMv −−−= −&  

 

 

The problem of solving large and complex networked configuration of mass- 

spring lattices calls for numerical integrators. There are many numerical integrator 

techniques available, but four most popular integrators are Euler, Midpoint, Runge-

Kutta and Verlet. These integrators vary in its accuracy and computational cost. The 

fastest one but with less accurate are Euler integrator and the most accurate integrator 

but slow to compute is Runge-Kutta. Verlet integrator, on the other hand, is both fast 

and accurate integrator compared to other integrators. Accuracy is important to 

maintain simulation robustness. Although all integrators accumulate errors at each 

time-step, the highest accuracy integrators will maintain the stability of the 
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simulation for a longer period of time. Inaccuracy also leads to instability, where the 

simulation will explode and turn to chaos.  

 

Chadwick et al. coupled multi layered mass-spring system with free form 

deformation for its computer animation system (Chadwick et al., 1989). The method 

allows for global and local deformation of articulated character. Teschner et al. 

approximate the object’s shape into uniform tetrahedral meshes of free form 

deformation constraint (Teschner et al., 2004). Physical based deformation is applied 

to the tetrahedral meshes using mass-spring techniques where the mass-spring 

system will deform the free form deformation control points. Deformed free form 

deformation control points will then deform the underlying vertices. To preserve 

volume undergoing deformation, volume and surface preserving coefficient is 

introduced to the mass-spring system. This two fold deformation method which 

coupled mass-spring system and free form deformation allows for high geometry 

deformation as the rendering geometry and deformation geometry are independent of 

each other. Other hybrid method of mass-spring systems is by Christensen et al 

(Christensen et al., 1995) where the deformable object is approximately wrapped 

with simple mass-spring lattice configuration. Then physical based deformation is 

applied to the mass-spring where the lattice configuration will act as free form 

deformation constraint to the actual object geometry. This method is used for 

animating characters in 3D animation. Cotin et al. combined finite element method 

and mass-spring system for virtual surgery application (Cotin et al., 2000). Finite 

element method is used to model tissue deformation using pre-computed 

deformations allowing large deformation. To enable volume cutting and topological 

changes to the tissue, a mass-spring model variant called tensor mass model is 

applied into the system. 

 

 

Baraff et al introduced implicit integration for its mass-spring cloth 

simulations (Baraff et al., 1998). By using implicit integration, the system is much 

more stable and independent from number of particles used. Fuhrmann et al. describe 

and algorithm which replaces the internal cloth forces by several constraints and 

therefore can easily take large time steps (Fuhrmann et al. 2003). Instability, 

inaccuracy and speed problem for numerical integration can be minimized by using 
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Verlet integrator. Jacobsen uses velocity less Verlet integration for its real time 

physic systems (Jacobsen, 2003). Teschner et al. have perform a little experiment on 

various integrators to find the fastest integrator and have proved that Verlet 

integrator is the best numerical integrator suitable for mass-spring systems period 

(Teschner et al. 2004).  

 

 

Mass-spring systems are easier to implement than finite element method. 

Computation cost for mass-spring systems are much lower compared to finite 

element method, therefore mass-spring systems have much wider appeal for real-

time applications. Non linear deformable object can also be modeled by mass-spring 

systems. In addition, mass-spring systems are suitable for parallel processing 

allowing a scalable simulation platform.  

 

 

Since mass-spring systems rely on numerical integrators, the systems are 

vulnerable to convergence and instability. The principle of mass-spring systems 

defined that force travels according to the spring’s links, not by continuum. This 

physical approximation is too coarse to be applicable for some critical applications. 

Certain applications requirement such as specific constraint and materials properties 

cannot be modeled with mass-spring systems. Behavior of incompressible materials 

and thin object are unpredictable if modeled using mass-spring systems. It is hard to 

model material stiffness by setting spring coefficient parameter. Sometime the 

deformation acts differently than desired behavior. Even after successfully tuning the 

spring coefficient, other coefficient, for example gravity, when changed, the spring 

coefficient have to be tuned all over again.  

 

 

 

 

2.5.3 Gas pressure method 
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Matyka and Ollila proposed a novel technique for modeling elastic soft body 

object (Matyka and Ollila, 2003). Soft body is described as three dimensional 

deformable meshes which always keep constant volume. The method is based on 

simple thermodynamics laws and uses the Lausius-Clapeyron state equation for 

pressure calculation. The pressure force is accumulated into a force accumulator of a 

3D mesh object by using mass-spring technique. Behavior of soft body is obtained 

after the integration of Newton’s second law of motion with fixed or non-fixed air 

pressure inside of it. Simply put, the idea is to create a closed mass-spring cloth 

represented as manifold mesh object and put air pressure inside it.  

 

 
Figure 2.21 Example of gaseous pressure method for simple two dimensional 

meshes. The mesh must be manifold, represented as wrapped cloth which will have 

ideal gas pressure inside. (Matyka and Ollila, 2003) 

 

 

To enable simple pressure formulation, Matyka uses ideal gas approximation 

which is defined as one in which all collisions between atoms or molecules are 

perfectly elastic and in which there are no intermolecular attractive forces. One can 

visualize it as a collection of perfectly hard spheres which collide but which 

otherwise do not interact with each other. In such a gas, all the internal energy is in 

the form of kinetic energy and any change in internal energy is accompanied by a 

change in temperature. 

 

 

Gaseous 
pressure 

Point mass

Spring 
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An ideal gas can be characterized by three state variables: absolute pressure 

P, volume V, and absolute temperature T. The relationship between them may be 

deduced from kinetic theory and represented by  

V
nRTP =  

where n is the number of moles and R is universal gas constant . To calculate 

pressure for the point of the shape, the expression used is 
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Figure 2.22 Screen shot of of gas pressure method for three dimensional 

volumetric deformable objects (Matyka and Ollila, 2003). The simulation is fast 

enough to be performed in real time. 

 

 

Next, the volume of the deformed body has to be recalculated to measure the 

gas pressure inside the object. Matyka uses simple bounding geometry such as 

sphere, box and ellipses to approximate the current volume. A better volume 

computation method is presented by Owen using Gauss’s Theorem. Gauss’s 
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Theorem relates the divergence of a vector field within a volume to the flux of a 

vector field through a closed surface by the following 

∫∫∫ ∫∫ •=•
v s

daFFdvdell  

where the surface s encloses the volume v. Detail theory and implementation are 

available at (Owen, 2005). 

 

 

Deformation based on ideal gas pressure method does proved to be fast(able 

to perform real time deformation with coupled thousand of vertices) (Matyka and 

Ollila, 2003). The method is simple to implement and requires no extensive 

geometry discretization preprocessing (unlike finite element method). Since its 

volume dynamic is represented as simple ideal gas equation, it does not exhibit 

complex internal volume structure like volumetric mass-spring method and finite 

element method to compute internal dynamics. Finite element method and 

volumetric mass-spring stored invisible internal geometry topology data for 

dynamics processing while gas pressure method only store visible surface geometry 

topology data which means less memory footprint. 

 

 

Albeit all gas pressure method strengths, it’s not without weaknesses. It is 

very hard to define the deformation coefficient (Young’s modulus and pressure 

coefficient) to model desired material. Deformation behavior looks like a balloon 

filled with water placed underwater. From the available demo, it doesn’t look like a 

balloon filled with gas at all. Since it uses mass-spring technique which consist of 

numerical integration, gas pressure method inherit mass-spring drawback which is 

numerical integration accuracy and stability. The deformation is prone to explode if 

it undergoes huge deformations. 

 

 

 

 

2.5.4 Mesh free method 
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Numerical methods like Finite Elements, Finite Volumes and Finite 

Differences are already very well developed. However, there are limitations to these 

methods. First of all the time an engineer spends on solving a problem, goes mainly 

into the meshing of his solution domain. Secondly, the mesh is sensitive to large 

deformations, which can cause accuracy deterioration. To circumvent the meshing as 

a whole and make the problem more flexible, the so-called mesh free methods are 

invented. 

 

 

To give some applications of this method, first the differences between the 

mesh free methods and the other methods should be clear. Instead of using a pre-

defined mesh, mesh free methods only use node generation (giving the points 

without the need to prescribe the relationship between the nodes) and for each node a 

shape function is created. Since the mesh less method does not describe point 

topology explicitly, neighbor search is fundamental in finding the equilibrium state 

of the deformed object. The lack of topology structure and the ability of the system 

to self organize provides a system that is able to simulate a wider range of 

deformable material compared to commonly used deformation technique. The next 

step is to form a system of equations and solve this system. 

 

 

Common geometric representations approximate the body by a mesh of nodes 

of fixed topology which are not adapted to the animation of substances undergoing 

large inelastic deformations. In this case, the use of mesh less method for object 

representation and dynamic representation is more appropriate. These systems are 

unstructured in the sense that interactions between point masses do not depend on a 

specified graph of connections, but on distance. The need to simulate various 

complex deformation types such as melting, solidifying, splitting and fusion 

motivated the use of mesh less method in modeling deformable objects in the field of 

computer graphics. 
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To derive inter-point forces, Tonnesen used the pair-wise Lennard-Jones 

potential energy functions as a dynamics system solution (Tonnesen and Szeliski, 

1992). To enable stretching and growing, Tonnesen introduced orientation to the 

point’s properties. Under large deformation, Tonnesen proposed a kd-tree 

hierarchical data structuring approach to compute forces and torques at reduced 

number of points. By spatially subdivide the object space within some radius (natural 

inter-points spacing), all to be deform neighbor points can be efficiently found. To 

further reduce the computation, this operation is occasionally performed and cache 

list of neighbors were used for intermediate time steps. New points were added when 

neighboring points have large enough space between them and still under maximum 

number of allowable points between the ranges.  

 

 

 
Figure 2.23 Rendering techniques for particle based surface; axes, discs, 

wireframe triangularion and flat shaded triangulation (Tonnesen and Szeliski, 1992) 

 

 

   
Figure 2.24 Left, deforming. Center, deforming and surface restructuring by 

adding new points. Right, deforming and tearing. (Tonnesen and Szeliski, 1992) 

 

 

Each point is given state variables of position and mass for the system to 

interact with the dynamics. For more complex systems, additional state variables 
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combined with simple heuristics were formed to create application specific 

behaviors. The surface is rendered as iso surface which yield an implicit coating of 

the point which handles topological changes such as splitting and merging by 

construction. 

 

 

 

 
Figure 2.25 Fusioning deformable objects (Tonnesen and Szeliski, 1992) 

 

 

The Lennard-Jones potential is well known in molecular dynamics for 

modeling the interaction potential between pairs of atoms. It creates long-range 

attractive and short-range repulsive forces, yielding particles arranged into 

hexagonally ordered 2D layers in absence of external forces. Increasing the 

dissociation energy (magnitude of the potential energy) increases the stiffness of the 

model, while the width of the potential energy can be varied. Therefore, large 

dissociation energy and high potential energy exponents yield rigid and brittle 

material, while low dissociation energy and small potential energy exponents result 

in soft and elastic behavior of the object. This allows the modeling of a wide variety 

of physical properties ranging from stiff to fluid-like behavior. By coupling the 

dissociation energy with thermal energy such that the total system energy is 
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conserved, objects can be melted and frozen. Furthermore, thermal expansion and 

contraction can be simulated by adapting the equilibrium separation distance to the 

temperature.  

 

 

Desbrun and Cani (Desbrun and Cani, 1995) (Desbrun and Cani, 1996) 

(Desbrun and Cani, 1999) use smoothed particle hydrodynamics approach used by 

physicists for cosmological fluid simulation as its deformable dynamics basis. The 

Smoothed Particle Hydrodynamics (SPH) formalism was introduced by physicists 

for accurate simulation of fluid dynamics. Simulating a fluid consists in computing 

the variations of continuous functions such as mass density, speed, pressure, or 

temperature over space and time. Standard finite element techniques in 

hydrodynamics use an Eulerian approach: they consist of dividing space into a fixed 

grid of voxels, and then studying what flows in or out of each voxel. However, this 

kind of approach requires the division of huge empty volumes and is not intuitive for 

flows.  

 

 

SPH belongs to an alternative approach, called the Lagrangian approach that 

consists of following the evolution of selected fluid elements over space and time. 

The particles can be viewed either as matter elements or sample points scattered in a 

soft substance. Each of them represents a small volume of inelastic material that 

moves over time. In practice, smoothed particles are used to approximate the values 

and derivatives of continuous physical quantities, such as local mass density or 

pressure that need to be computed during the simulation. Smoothed particles ensure 

valid and stable simulation of a state equation describing the physical behaviors of 

the material. It is also used for deforming the surface of the substance in a coherent 

way using the level sets of the mass density function. To reduce computation time, 

adaptive time steps for integration is used according to a local stability criterion 

along with efficient data structure for neighbor search. Desbrun further the research 

for rendering the point particles using implicit surface rendering method (Desbrun 

and Cani, 1996). 
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Figure 2.26 Deformable object are splitted and then fused together. (Desbrun and 

Cani, 1996) 

 

 

Using mesh less method, dubbed point based method; Keiser et al. were able 

to simulate wide range of material properties such as stiff elastic to highly plastic 

using a single application framework (Keiser et al., 2004). By using points for both 

volume and surface representation, arbitrarily large deviations from the original 

shape can be simulated. In contrast to previous mesh less based elasticity in 

computer graphics, the physical model is derived from continuum mechanics, which 

allows the specification of common material properties such as Young’s Modulus 

and Poisson’s Ratio.  

 

 

In each step, spatial derivatives of the discrete displacement field were 

computer using a Moving Least Squares (MLS) procedure. It is from these 

derivatives that strains, stresses and elastic forces at each simulated points were 

obtain. Equations of motion for these forces were solved using both implicit and 

explicit integration. Point sampled surface were rendered dynamically adaptive for 

scalable and faster performance. Although material anisotropy can be simulated, only 

linear elasticity are implemented in the dynamic system. MLS only works if there are 

at least 3 neighboring points within non-degenerate locations. This makes it only 

suitable for volumetric objects, not two dimensional or one dimensional object. The 

nature of the system is close proximity points always interact with each other. This 

makes it difficult to model fracture and brittle materials. Even with stiff coefficient, 

hard edges are difficult to achieve. 
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Figure 2.27 Target morph using point based method. (Keiser et al., 2004) 

 

 

Deformable object ranging from stiff elastic to highly inelastic objects can be 

modeled efficiently using mesh less method due to its natural properties of not 

having topological properties explicitly. Surfaces are easy to shape, extend, fusion 

and split. Material properties such as stretching, bending or variation in curvature can 

be controlled by adjusting strength of various potential energy functions. Input model 

doesn’t have to be discretize into elements which is a requirement for finite element 

method.  

 

 

Mesh free method application in computer graphics deformable object 

simulation is quite new. The first idea implementation was seen in 1995(Desbrun and 

Cani, 1995). With this method, objects are easy to deform and new deformed shape 

are easy to construct for the purpose of rendering (no topology needed). Material 

stiffness and other properties such as resistance to stretching, bending can be 

controlled by adjusting strength of various potential energy functions.  

 

 

One problem of mesh free method is that the surface is not explicitly defined 

thus poses a problem rendering the points. The points cannot be rendered using 

trivial geometry rendering technique. It is harder to achieve exact control of the 

shape. Usually, sampled points are shape approximation of the original object shape. 

Hard edges are also hard to preserve during point sampling of the object. Accurate 

dynamic computation is expensive. To enable real time performance, implementation 

must include heavy optimization. The lack of precise control and shape degeneration 

due to point sampling makes it unsuitable for engineering purpose. 
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2.5.5 Pros and Cons 

 

 

Physically based deformable models have seen wide application in many 

fields of computer graphics. The ability to simulate real world various material 

behaviors does prove to be useful in the field of medical and engineering. Physical 

based model limits the direct user controls of the deformation process. Deformations 

are computed using approximations of physical dynamics. Sometimes deformation 

behavior is unpredictable due to gross approximation of dynamics. This can be seen 

when tuning mass-spring system spring stiffness for specific materials. Unlike most 

non-physical based deformation technique, deformation parameters for physical 

based technique are much more complicated to configure. With limited computing 

power, computing complex dynamics is very expensive. For finite element method, 

internal geometry structures are required for dynamics computation. Gas pressure 

method on the other hand, does not have this internal geometry structure for its 

dynamics computation thus making it less memory footprint requirements. Physical 

based method does not appeal to some computer graphics application especially in 

the field of object modeling and editing because of it gives user limited control of 

deformations.  

 

 

 

 

2.6 Real time modeling technique 

 

 

Physical based deformable object behavior simulation requires lots of 

complex dynamics computation. This phenomenon burdens the processor and it is 

very hard to achieve robust physically realistic behavior in real time. Earlier work on 

deformable object animation focuses on modeling deformable object on the 

computer platform (Terzopoulos et al., 1987) (Terzopoulos et al., 1988) 

(Terzopoulos et al., 1989) (Witkin and Baraff, 1997) (Baraff, 1996) (Baraff and 

Witkin, 1992) (Foster and Metaxes, 1996) (Szelinski and Tonnesen, 1992) (Stam, 

1993) (Tonnesen, 1991) (Tonnesen, 1992) (Breen et al., 1994). Most of them is too 
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complex and requires huge computation per frame thus not suitable for real time and 

interactive applications. This section will discussed techniques, idea and 

implementation from previous researcher to accelerate deformable object behavior 

simulations.  

 

 

For better performance, it is highly desirable to construct adaptive 

discretizations, allocating resources where they can be most profitably used. Usually 

this is constructed by adaptively refine either by object complexity or deformation 

complexity. Adaptively refine object complicity is perform by refining or coarsening 

the mesh resolution accordingly. Adaptively refine deformation complicity is 

perform by using either more complex or simpler deformation functions accordingly. 

 

 

Adaptive finite element computations rely on adjustments of the spatial 

resolution of the domain discretization to deliver higher accuracy where it is needed. 

When the domain is discretized into a finite element mesh, a possible option, albeit 

somewhat expensive and in some cases complex, is to create a new mesh with the 

desired resolution, known as remeshing. Another alternative is to adjust the density 

of the mesh by performing local refinement of the existing mesh so that in some 

regions finite elements are split to decrease their “size”, in other regions they are 

merged to reduce the resolution. Both remeshing and refinement have their 

advantages and disadvantages. For detail discussion on this topic, please refer to 

work by Grinspun et al (Grinspun et al., 2002).  

 

 

Debunne et al. uses automatic space and time adaptive object representation 

level of detail technique. It allows local refinement or simplification of the 

computational model based on local error measurement. (Debunne et al., 2001) 

(Debunne et al., 2000) (Debunne et al., 1999). Object is partitioned in a non-nested 

multi-resolution hierarchy of tetrahedral meshes (Debunne et al., 2001) (Debunne et 

al., 2000) or adaptively refined particle resolution (Debunne et al., 1999). At each 

deformation step, object sampling is refined to concentrate computation on region 

with the most deformation. Local contact area is deformed with highly detailed 
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object representation while further areas are computed with grossly approximate 

object representation. This method reduces computation time while at the same time 

preserve object and deformation complexity.  

 

 

 
Figure 2.28 Debunne et al. uses local refinement of multiresolution models to 

reduce computation time by reducing geometry for run time dynamics processing. 

(Debunne et al., 2001) 

 

 

Instead of adaptive refinement of object representation, Grinspun et al. 

prefers method based on adaptive refinement of finite element basis function 

(Grinspun et al., 2002) (Grinspun et al., 2003). Dubbed CHARMS(conforming, 

hierarchical, adaptive refinement methods), this method removes a number of 

implementation headaches associated with other approaches(geometry reconstruction 

and merging between multi resolution representation) and is a general technique 

independent of domain dimension (2D and 3D), element type (triangle, quad, 

tetrahedron, hexahedron), and basis function order (piecewise linear, higher order B-

splines, loop subdivision, etc).  

 

 

Wu et al. uses progressive meshes to simplify object surface geometry for his 

surface based nonlinear finite element simulations (Wu et al., 2001). Since it uses 
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Hoppe’s progressive meshes, mesh refinement hierarchy can be pre-computed and 

stored for online fetching. Integration of finite element solver and mesh hierarchy are 

described in detail in the paper. 

 

 

 
Figure 2.29 Dynamic progressive meshes is used to refine local contact area to 

enhance dynamics computation (Wu et al., 2001) 

 

 

 
Figure 2.30 Vertices of the surface mesh is displaced according to the 

displacement field of the tetrahedron in which they lay using barycentric coordinate 

system (Muller and Gross, 2004). 

 

 

Muller and Gross achieve interactive rates for its deformable simulator by 

using two different representations for the same deformable object. A low resolution 

volumetric mesh for the finite element method simulation and a high resolution 

surface mesh for rendering. To animate a surface mesh consistently with a 

volumetric mesh, Muller linked every vertex of the surface mesh to the closest 

tetrahedron in the volumetric mesh and store its barycentric coordinates with respect 
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to that tetrahedron. During the simulation, the position of each vertex of the surface 

mesh is interpolated from the positions of the linked tetrahedron using the stored 

barycentric coordinates (Muller and Gross, 2004).  

 

 

Another way to reduce computation for deformable object simulation is by 

pre-compute complex computation and stored in a database system for online data 

fetching. Or by performing possible displacement (usually under some sort of 

constraint) and stored the displacement data so that in real time simulation, 

displacement need not to be computed. James and Fatahalian pre-computed data 

driven models of interactive physically based deformable models (James and 

Fatahalian, 2003). The method pre-computes impulsive dynamics by driving the 

scenes with parameterized interactions. By using data driven tabulation of the 

system’s deterministic state space dynamics, and model reduction efficient low rank 

parameterizations of the deformed shapes are built. Storage spaces are constraint by 

projecting the state space models into very low dimensional spaces using least 

squares approximations motivated by modal analysis. Phase space dynamics are 

sampled using parameterized impulse response functions. Interactions are defined in 

discrete impulse palettes to constrain the range of user interactions.  

 

 

James and Pai implement a pre-computation method for its deformable object 

simulation for haptic devices (James and Pai, 2001). The method pre-computed 

Green’s functions and fast low rank updates based on Capacitance Matrix 

Algorithms. This method is from the fact that linear models allow many systems 

responses (Green’s function) to be pre-computed. Coupled with boundary element 

method, the deformable object simulation can achieve high frame rate (by pre-

computation) with high accuracy (by boundary element method which is sibling of 

the finite element method) (James and Pai, 1999).  
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Mass node 
Structural spring
Shear spring 
Flexion spring 

 
Figure 2.31 Chen et al. mass-spring systems lattice configurations adapted from 

Provot cloth mass-spring configurations (Chen et al., 1998). 

 

 

Finite element method is accurate but it does not favor the available 

computation resources. Another method to accelerate deformable object simulation is 

by using much simpler dynamics. Based on one dimension dynamics, mass-spring 

systems are used extensively in the field of deformable surface modeling. Some 

researchers have extended the use of this method for volumetric objects. Mollemans 

et al. developed a tetrahedral soft tissue model that can be used in surgery planning 

systems consisting of mass-spring systems (Mollemans et al., 2003). Object is 

discretize into sets of tetrahedral. Points are described as mass points and tetrahedral 

topology are described as springs connecting two points. Another variant of mass-

spring systems for volumetric object can be seen from the work of Chen et al. (Chen 

et al., 1998). The approach is a 3D extension of the discrete mass-spring meshes of 

Provot (Provot, 1995). Multiple types of springs are introduced namely structural 
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springs, shear springs and flexion springs. Not all springs stiffness are computed in 

each step. Under pure shear stress, only shear springs are constrained. Under pure 

compression, only structural springs are constrained. Under pure flexion stress, only 

flexion springs are constrained. 

 

 

Teschner et al. uses uniform tetrahedral volume discretization for its mass-

spring systems (Teschner et al, 2004). In contrast to Chen et al. method, Teschner et 

al. introduce six distance preserving forces between all pairs of points; four area 

preserving forces and two volume preserving forces. To even more accelerate the 

deformation simulation, spring configurations are much coarser than actual object 

geometry. To preserve geometry complexity, Teschner et al. embed actual geometry 

vertices into the tetrahedral using spline based free form deformation principles. 

Verlet integrations are used as numerical integration for its speed and stability.  

 

 

 
Figure 2.32 A low resolution uniform tetrahedral mesh and a high resolution 

surface mesh of a snake. Deformation is computed for low resolution tetrahedral 

mesh using mass-spring systems and high resolution mesh is used for 

rendering.(Teschner et al, 2004). 

 

 

Another hybrid method for deformable object simulation is by Cotin et al 

(Cotin et al., 2000). The method works two fold. First, pre-computation of finite 

element method deformations are used as base to deform large size meshes in real 

time. Although this method can perform faster deformation, it doesn’t permit 

topological changes to the deformable mesh. To combat this limitation, Cotin 

integrate another method to the deformable simulation system; a mass-spring model 

where topological changes can easily be made.  
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Gibson presented a deformation algorithm for object with high polygon count 

(Gibson, 1997). The idea is by using simple mathematical function for its dynamics 

and deformations are propagated from contact area. The systems works by finding 

distances between neighboring points and displace the points if it reached constraint 

limits. Using simple data structure, high speed deformation is achieved in regard to 

force propagations. Gibson extended the work to introduce anisotropy material in 

(Gibson et al., 1998). 

 

 

 
Figure 2.33 Chainmail works by constraining distances between neighboring 

points (Gibson, 1997). Upper left image shows initial state of the chainmail systems. 

Upper right image shows deformed chainmail systems. Lower left image shows 

chainmail systems at its initial state. Lower middle image shows maximally 

compress chainmail and lower right shows maximally stretch chainmail. 

 

 

Bro-Neilsen and Cotin compress the linear matrix systems resulting from the 

volumetric finite element model to a system with the same complexity as a finite 

element surface model of the same object (Bro-Neilsen and Cotin, 1996). By 

simulating only the visible surfaces nodes, they achieve speed increase compared to 

traditional volumetric based finite element method. The condensation method used 

allows volumetric deformation behavior despite the use of only surface finite element 

systems.  
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The process of breaking complex vibration into its component modes of 

vibration, very much like frequency domain analysis breaks vibration down to 

component frequencies is called modal analysis. For deformable objects, modal 

analysis is the process of taking the nonlinear description of a system, finding a good 

linear approximation, and then finding a coordinate system that digitalizes the linear 

approximation. This process transforms a complicated system of nonlinear equations 

into a simple set of decoupled linear equations that may be individually solved 

analytically. Hauser et al. developed a system that models deformable objects using 

hybrid formulation that combines rigid-body motion with deformation computed 

using modal analysis (Hauser et al., 2003). Modal decomposition is through the 

process diagonalizing general nonlinear physical equation. 

 

 

Faster real time deformable object simulations can be achieved by multiple 

types of acceleration techniques. The difference between each type of acceleration 

strategy differs in its results. Some are accurate, some are able to simulate anisotropy 

materials, some can simulate non-linear deformation, some are for limited or small 

deformations and some support topological changes. Whatever the results are, real 

time deformations are crucial for broad field of applications.  

 



 

 

 

CHAPTER III 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Project planning 

 

 

This chapter describes how the research was conducted. Firstly, theoretical 

framework for this project will be discussed. Descriptions of software development, 

testing methodologies, software specifications and hardware specification will 

follow.  

 

 

 

 

3.2 Theoretical framework 

 

 

Basically, the end application is a physical based deformation system. The 

system takes an object, performs deformation on the object and renders it on screen. 

Deformation is performed based on mass-spring system method. An additional 

algorithm is added before any deformation is performed in order to select nodes 

(vertices of the object) to be deformed. 
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The simulation system is divided into two main phases, preprocessing phase 

and run time processing phase.  

 

 

The objective of preprocessing phase is to provide a suitable data for the run 

time processing phase. In this context, suitable data is data that does not require any 

more data processing during run time. It consists of two modules. The first module, 

tetrahedral discretization, will discretize input data, in this case original geometry of 

deformable objects, into tetrahedral meshes. Geometric based representation is 

chosen over other representation such as voxels to enable full hardware support of 

polygons rendering. The second module will built a data structure for mass-spring 

system from the tetrahedral meshes provided by the first module.  

 

 

The second phase, run time processing phase, is the mass-spring system 

rendering loop. It consists of three main modules (standard mass-spring system) with 

one additional module. The three main modules are collision detection and response 

module, deformation processing module and rendering module. The first module will 

detect and solve collision for the deformable object based on applied concentrated 

loads. Based on the collision response, the simulation system will select area for 

deformation in the selection of nodes module. When the area for deformation is 

defined, the selection of nodes module will provide deformation processing module 

information of area to be deformed. This way, actual deformation is performed on 

smaller area compared to traditional method where deformation processing is 

performed on the whole object. Finally, rendering module will render the deformable 

object. The second phase will loop itself until terminated by the user. For this 

research, the focus is on the selection of nodes for deformation module. 
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Figure 3.1 Conceptual diagram of the deformable object systems. 

 

 

To achieve real time deformable object simulation, this project will follow 

some basic strategies described in previous chapter. Some interesting ideas are;- 

1. Adaptive geometry for dynamics computations 

2. Hybrid; mass-spring systems and volume embedding 
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3. Simple dynamics; either by dynamics simplification or use existing simple 

dynamics 

4. Force propagations 

5. Modal analysis or subdivide nonlinear elasticity systems into sets of linear 

elasticity 

6. Velocity-less numerical integrations (Verlet integrators); faster yet more 

stable 

 

 

The basic idea for nodes selection is based on force propagation idea. If force 

applied to a node of the object, the force will propagate throughout the object. By 

propagating deformation similar to force propagation nature, deformation processing 

time can be reduced as number of nodes for deformation is reduced. Conceptual idea 

of the systems is visualized in Figure 3.1.  

 

 

 

 

3.3 Software development 

 

 

Actual implementation will use structured C as its main programming 

language although some features available only to C++ implementation are not 

restricted to be used. C is a matured language and lots of freely available libraries 

can be use with the language. Microsoft Visual Studio .NET 2003 was chosen as the 

main Integrated Development Environment (IDE) for the project implementation. 

Included in the packages is Microsoft Visual C++ .NET 2003. It is a powerful tool 

for creating Microsoft Windows®-based and Microsoft .NET-connected 

applications, dynamic Web applications, and XML Web services using the C++ 

development language.  

 

 

The IDE provides a robust development environment comprises compilers 

that are conformant to the International Standards Organization (ISO), a Standard 
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Template Library (STL) implementation, industry-standard Active Template Library 

(ATL) and Microsoft Foundation Class (MFC) libraries, WinForm .Net libraries and 

powerful integrated development environment features enabling efficient editing and 

debugging of source code. The most important integrated library is STL which 

provide easy, robust, optimized way for managing dynamic data. The latest 

Microsoft STL implementations are fully compatible across various platforms such 

as Linux and SGI’s. 

 

 

User interface is designed visually using the provided tools and Windows 

Forms and components. It has a powerful debugger and advanced compilers, offering 

advanced options for code generation on 32- and 64-bit platforms. Other alternatives 

for user interfaces are Fast Light Tool Kit (http://www.fltk.org/), Fox toolkit 

(http://www.fox-toolkit.org/), QT toolkit 

(http://www.trolltech.com/products/qt/index.html) and wxWindows 

(http://www.wxwindows.org/) which are freely available and cross platform. 

 

 

Visual C++ .NET 2003 enables developers to build entirely unmanaged 

Windows-based applications and components. The compiler is enhanced with several 

new and improved optimizations and capabilities, including Whole Program 

Optimization, the ability to generate optimized code for recent processor 

technologies (including the Intel Pentium 4), and the ability to better optimize for 

processors with Streaming SIMD Extension (SSE and SSE2) support. The latest 

multi-threading features for both compiler and processor are a big plus as mass-

spring systems support parallel processing natively. 

 

 

The Visual C++ .NET 2003 compiler is conformant with the ISO C++ 

language definition, and can easily builds modern C++ code and library sources. 

Visual C++ .NET 2003 provides wide range of libraries, including a fully ISO-

compliant STL implementation (providing generic container classes and algorithms). 

This is very useful to our implementations as an efficient, error free data structure is 

highly required. 
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Fully integrated is the Visual Studio Debugger, an advanced tool that enables 

multi-language debugging, managed and unmanaged debugging, and remote 

debugging. Enhanced Edit and Continue features exist for unmanaged C++ code. 

The debugger also supports mini-dump technology, enabling developers to quickly 

identify and correct problems in deployed applications. 

 

 

OpenGL was chosen as the rendering application programming interface 

(API) technology for this project. It is the environment of choice for developing 

portable, multi-platform interactive 2D and 3D graphics applications. OpenGL 

incorporates a broad set of rendering, texture mapping, special effects, and other 

advance visualization functions. OpenGL is supported in wide variety of popular 

desktop and workstation platforms, ensuring wide application deployment. 

 

 

It is a matured technology with optimize driver supported by three 

dimensional hardware developers. With broad industry support, OpenGL is the only 

truly open, vendor-neutral, multiplatform graphics standard. OpenGL API-based 

applications can run on systems ranging from consumer electronics to PCs, 

workstations, and supercomputers. As a result, applications can scale to any class of 

machine that the developer chooses to target. 

 

 

OpenGL is well structured with an intuitive design and logical commands, 

similar concept to traditional structure programming paradigm (in this case, C 

language). Efficient OpenGL routines typically result in applications with fewer lines 

of code than those that make up programs generated using other graphics libraries or 

packages. In addition, OpenGL drivers encapsulate information about the underlying 

hardware, freeing the application developer from having to design for specific 

hardware features. Numerous books have been published about OpenGL, and a great 

deal of sample code is readily available, making information about OpenGL 

inexpensive and easy to obtain. 
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OpenGL does proved to be an invaluable rendering asset but it’s not without 

it weakness, or lack of actual basic implementation features. It lacks camera 

navigation systems, user interface, math function, geometric processing and tools for 

manipulating rendered objects. For this project’s cause, vertex picking, arcball 

rotation, dynamics computation and geometry discretization is required.  

 

 

There are many available libraries and tools filling the gaps of OpenGL 

implementations. Such are 3d engines, utility toolkits, physics library, math library 

and computational geometry tools. Some interesting 3d engine which provides the 

some of the required features are OGRE (Object Oriented Rendering Engines) 

(http://www.ogre3d.org/), Irrlicht engine (http://irrlicht.sourceforge.net/) and G3D 3d 

engine (http://g3d-cpp.sourceforge.net/). Each of them works as a graphics toolkits 

by providing camera systems, advanced rendering systems (shaders, LOD, etc), user 

interface, object management and others useful stuffs with extensive documentation 

and community support. Some of them go a long way to provide a useful framework 

for physical based simulation by integrating with physics library. Such 

implementation is can be seen from OGRE addons, named nogredex 

(http://www.ogre3d.org/index.php?option=com_content&task=view&id=17&Itemid

=70). Other toolkits worth mention is GLVU 

(http://www.cs.unc.edu/~walk/software/glvu/) which serves as a common platform 

for common graphical tasks. Novodex (http://www.ageia.com/novodex.html) and 

Meqon (http://www.meqon.com/) are two most impressive rigid body dynamics 

library that are available freely and heavily documented. Although these libraries 

doesn’t explicitly provide and support deformable object functions, these libraries 

have optimized numerical integration function that is useful for mass-spring systems. 

Useful computational geometry tools used for discretizing the geometric mesh are 

tetgen (http://tetgen.berlios.de/) and gmesh 

(http://www.elysiun.com/~theeth/gmesh/). Both provide an easy way to construct 

tetrahedral from geometry input of various forms and shapes. Boost 

(http://www.boost.org/) and Numerical Recipe (http://www.nr.com/) are two great 

math libraries that are very useful for this project. Both provide mathematical 
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function that can be used for mass-spring systems. For solving large sparse matrices, 

there is Matrix Template Library (http://www.osl.iu.edu/research/mtl/). It is freely 

available, fast, stable and accurate to use for solving large or very large sparse 

matrices. 

 

 

 

 

3.4 Testing methodologies 

 

 

The method must be fully tested before it can be used by other users. The 

software is planned to be tested based on its performance, total memory footprint, 

visual acceptance and functionality and the correctness of the results.  

 

 

Performance measurement is performed by recording the time used by 

specific task. Testing will be performed under various situations including higher 

geometry scenario. Processing time will be recorded for preprocessing geometry, 

selecting elements for deformations and performing deformation. For each task, 

memory usage is monitored. 

 

 

Deformation is justified by its visual acceptance and comparing the result 

between virtual and real counterpart. This evaluation is performed for various 

simulated materials to ensure algorithm robustness. 

 

 

For benchmarking purpose, testing is performed with different input data, 

different deformation method and different parameter settings. 

 



 

 

 

CHAPTER IV 

 

 

 

 

IMPLEMENTATION 

 

 

 

 

4.1 Introduction 

 

 

The simulation system was built using C/C++ languages in Windows 

platform using OpenGL. This chapter provides discussions including data 

preparation, various techniques implementations, algorithms and data structure. 

 

 

 

 

4.2 Preparing data 

 

 

The goal of data preparation is to have a tetrahedral mesh data, suitable for 

mass-spring system based deformable object simulation. The basic steps are 

preparing geometry data for tetrahedral mesh generation, generate tetrahedral mesh 

from the geometric data using tetrahedral mesh generation library, and preprocess the 

tetrahedral mesh data for simulation specific needs.  
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Figure 4.1 Stereolithography file format requirements. 1. No open edge. 2. No 

double face. 3. No spike. 4. No multiple edges. (Images from 3D Studio Max 7.0 

Reference Manual) 

 

 

There are two freely available tetrahedral generators that seem very suitable 

for the simulation systems needs, Tetgen (available at 

http://tetgen.berlios.de/index.html) and NETGEN (available at 

http://www.hpfem.jku.at/netgen/). Provided as low level library, Tetgen was chosen 

due to its good documentation, ease of use and the ability to refine the generated 

tetrahedral mesh. 

 

 

Geometric data preparation is no trivial task. The geometry must have met 

various geometric criteria before tetrahedral mesh can be generated. The inability of 

Tetgen to automatically fix the geometry requires the use of third party tools to fix 

the geometry.  

 

 

The geometric data must have these criteria (some of them are 

stereolithography format requirements):- 

1. no open edge 
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2. no double face 

3. no spike 

4. no multiple edge 

5. no orphan vertex 

6. no collided face 

7. consistent normals 

 

 
Figure 4.2 Example of tetrahedral with no quality enforcement. (Images from 

Tetgen 1.3 Manual) 

 

 
Figure 4.3 Example of tetrahedral with quality enforcement. (Images from Tetgen 

1.3 Manual) 

 

For geometry that didn’t have these requirements, third party tools such as 

Floating Point Solution’s MeshWorks 1.0, Okino Computer Graphics’s PolyTrans 

for Max and NuGraf, Right Hemisphere’s Deep Exploration CADTools plugins and 

discreet 3ds Max 7 can be used for fix these problems. Most of the problems can be 

fixed with 3D Studio Max 7.0 using its modifier tools such as STL check, cap holes, 

data exporters and vertex weld or by manual vertex fix.  
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When the geometric data is ready, the tetrahedral meshes are generated using 

Tetgen. Tetgen provides various settings to tweak the desired tetrahedral output. One 

of them is a tetrahedral quality constraint setting which is used to ensure radius-edge 

ratio greater than 2.0. Enforcing quality constraint will increase the number of 

vertices and tetrahedral immensely. Since most of sample geometric objects 

composed of high number of vertices, quality constraint is of no practical use as of 

current hardware processing power limitation. Thus, all sample geometric objects are 

created using no quality constraints.  

 

 

Sample geometric objects are either freely downloaded from the internet or 

built using discreet 3D Studio Max 7.0. The objects are classified as simplified range 

scan, human organ, primitive objects, concave data, extreme data (extreme length, 

flat object, etc) and contains hole. 
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Figure 4.4 Some example of tetrahedral meshes viewed with Tetgen viewer. In top-

left to top right order, the data are Stanford bunny, Stanford bunny internals, human 

stomach, human stomach internals, sphere and human liver. All of them are freely 

available on the internet except for sphere which is generated using discreet 3D 

Studio Max 7.0. Screenshots were taken using Tetgen Viewer. 
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4.3 Building the framework 

 

 

Building an optimal data management system for simulation comprises of 

high number of vertices poses a big performance problem. The same goes for simple 

mass-spring solver, which poses visual artifact problem and stability problem. 

Instead, physics library is used for its mass-spring simulation solver and its data 

management system. This makes implementation easier and multiple experiments 

can be performed quickly. Other features of physics library such as visualization 

tools, profiling and collision detection makes it very interesting to use. Since this 

research’s main interest is an additional algorithm to reduce deformation processing 

time and not building a complete mass-spring systems, using physics library allows 

the comparison of classical mass-spring deformation with or without the additional 

algorithm in a very fair and unbiased way. Also, using closed source library proved 

that the algorithm is general enough that it can be used in physics library with little 

knowledge of underlying library structure. The new algorithm, denoted as 

optimization algorithm, main purpose is to select small sets of nodes to be solve by 

physics library. The optimization algorithm takes input from collision response and 

provides small sets of nodes to be deformed by simulation system.  

 

 
Figure 4.5 Conceptual flow of common physical simulation after inserting 

optimization algorithm. 

 

 

There are various physics library that is suitable for this cause ranging from open 

source, closed source, commercial and non-commercial. The physics libraries that 

are freely available for non-commercial use are: 

1. Open Dynamics Engine 

2. Newton dynamics 

3. Tokamak physics library 
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4. True Axis physic library 

5. Meqon Dynamics 

6. Ageia Physx 

 

 

Ageia Physx was chosen due to multiple reasons. Comparisons are loosely 

based on technology demo provided by each physics library. In terms of number of 

nodes per simulation scene, Physx are able to sustain the highest number of frame 

rate for scene with high number of nodes. Couple with a physic processing unit 

(PPU) card, the simulation performance would be much higher. As of current 

writing, PPU is exclusively supported by Ageia Physx. Other great aspect of Physx is 

that it has good documentations, technical support, active community and matured 

code.  

 

 

 

 

4.4 Performance issues 

 

 

Each simulation frame consists of collision detection and response, 

deformation processing, and rendering. For least acceptable visuals, simulations must 

run at least 24 frames per second. This frame rate leaves 42 milliseconds to prepare 

for each simulation frame. For best possible visuals, simulations must run more than 

75 frames per seconds. This requires 13 milliseconds or less per simulation frame 

preparation. Under these constraints and depending on the application requirements, 

deformation processing may contain 50% or less processing time for each frame. For 

the optimization algorithm to be effective, it must use very small processing time. 

This includes iterations, caching, searching and mathematical operations. 
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4.5 General strategy 

 

 

For large number of nodes, the deformation systems usually suffer even with 

large memory. Assuming a processing system with 1 GB of RAM, the deformation 

processing remains a bottleneck while the system RAM utilizations are no where 

near maximum capacity. The same goes for rendering capacity. Current graphic 

cards have huge rendering pipeline. It would be beneficial to utilize this feature by 

featuring full geometry complexity. Elastic deformable object which does not change 

topology, gives advantage in terms of data structure and geometric reconstruction 

compared to non-elastic deformable objects. Fast static data structure and 

preprocessed search result can increase run time performance. Since simulation of 

deformable objects requires heavy computations, it would be wise to use cheap 

computation for its optimizations in order to bring more room for deformation 

processing. Computation cost can be reduce by using simple mathematical function, 

reuse computed data, preprocess, putting a computation or time cap for each frame or 

using smaller sized variables. Using some mathematical function known to have high 

computation cost includes division and square roots should be avoided if possible. 

 

 

 

 

4.6 Building algorithm template 

 

 

Algorithm template is a general algorithm that will be the basis of algorithm 

refinement and testing. The algorithm output will be small sets of active nodes which 

will be process for deformation. The algorithm strategy would be: 

1. Activate nodes that are near the area where concentrated loads are applied. 

2. Simulate spring physics for every active node. 

3. Deactivate nodes that reach its equilibrium state. 

4. Inactive node with active node neighbor will act as spring constraint between 

the two. 
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Figure 4.6 Example of activation systems in 2D. (1) Concentrated loads are applied 

to a node. (2) When the node reaches its non-equilibrium state, it will activate its 

neighbor. (3) The activation process continues until the node reaches its equilibrium 

state. Inactive nodes will act as constraint. Active nodes reaching equilibrium state 

will be deactivated. 
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4.7 Defining non-equilibrium state 

 

 

An object is in equilibrium if the resultant of the system of forces acting on it 

has zero magnitude. In other words, the object is at rest. In mass-spring systems, the 

equilibrium state is a state where total accumulated forces on node have zero 

magnitude. If total accumulated forces on node have non-zero magnitude, the node is 

considered in non-equilibrium state. Total accumulated forces are the sum of all 

forces acting on the node. Forces acting on node can be either internal forces or 

external forces. Internal forces are forces from springs acting on the node. External 

forces are forces derived from collision response or manually applied forces. Other 

forces can be additional forces for preserving surface and volume. It is safe to say 

that nodes will be displaced when its total accumulated forces are non-zero (F ≠ 0). 

Based on equilibrium state, the updated algorithm would be: 

1. Deactivate nodes with zero total accumulated forces 

2. Activate collided and selected nodes 

3. Activate active node’s neighbor with non-zero total accumulated forces 

4. Start simulation 

 

 

Testing accumulated forces against certain threshold would be better as the 

node would be easier to deactivate, harder to activate and threshold provides a means 

of simulation scaling. The algorithm with accumulated forces threshold would be: 

1. Deactivate nodes if total accumulated forces are less than threshold 

2. Activate collided and selected nodes 

3. Activate active node’s neighbor if total accumulated forces are less than 

threshold 

4. Start simulation 

 

 

Based on Figure 4.5, optimization algorithm takes input from collision 

response. There are three types of collision response. Constraint based collision 

response modifies the position of the interpenetrated object directly by giving new 

projected position. Impulse based collision response use instantaneous impulses or 
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changes in velocity to prevent objects from interpenetrating by modifying the first 

derivative of the positions (i.e. velocities). Penalty based collision response uses 

spring to pull the object out of collision state by modifying the second derivative of 

the positions (i.e. accelerations). In other words, constraint based collision response 

provides a new position, s, impulse based method provides a new velocity, v and 

penalty based collision response provides a new acceleration, a. Instead of 

computing total accumulated forces for collided object to query the equilibrium 

status, it would be better to use values from collision response. But first, the relation 

between forces and collision response output must be defined. In other words, are 

there any physical quantities that can reflect changes to F? 

 

From physics text book, 

F = ma 

Where F is force, m is mass and a is acceleration. Above equation proved that a 

change in a will change F as long as m not changing. To find velocity relationship, 

F = m(dv/dt) 

dv = v1 – v0 

v = ds/dt 

Where dv is delta velocity, dt is delta time and ds is delta position. A change in 

velocity, v  will change F.  For position s,  

ds = s1 – s0

Thus, equilibrium state can be defined from value provided by collision response. In 

other words, equilibrium state can be defined as changes in position, velocity or 

acceleration. 

 

The easiest way to define a non equilibrium state is by using position, s. 
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4.8 Relative distance from node to its neighbor as equilibrium state 

 

 

Activation test is performed by finding whether the node is in non 

equilibrium state. Non equilibrium state is defined as a change in distance between 

current node and its neighbor.  Given sr as node position, sn as neighbor position and 

dcache as previous frame distance between node position and neighbor position. A 

node will be in non equilibrium state if current distance from node to its neighbor, 

|sr-sn|, is not equal to previous distance from node to the neighbor, dcache. If the node 

is in non equilibrium state, activate its neighbor. This activation test is performed for 

every neighbor. Adding threshold would modify the non equilibrium test to if current 

distance from node to its neighbor, |sr-sn|, is more than or less than previous distance 

from node to the neighbor, dcache, multiplied with threshold.  

 

Deactivation test is performed by determining whether the node is in 

equilibrium state. Since deactivation does not relate to neighbors (deactivation 

deactivates nodes, not its neighbors), equilibrium state is define as distance from 

current node position to previous node position. Given sr as current node position, 

scache as previous node position, the test would be, if distance from current node 

position, sr, to previous node position, scache, equals to zero, the node is deactivated. 

After adding threshold, the test would be, if distance from current node position, sr, 

to previous node position, scache, less than threshold, the node is deactivated. 

 

 

For activation test, each neighbor requires 1 distance cache from node to 

neighbor, totaling 3 distance caches for 3 neighbors. For deactivation test, previous 

node position is cached. This method is evaluated using best case scenario where 

activation and deactivation occurs in a tetrahedral (one active node with three 

neighbors).  The cost for activation test for a single neighbor is 2 additions, 3 

subtractions, 5 multiplications, 2 relational and 1 square roots. For 3 neighbors, the 

total cost is 6 additions, 9 subtractions, 15 multiplications, 6 relational and 3 square 

roots. Due to threshold multiplications, square root operation cannot be simplified by 

using squared value. For node deactivation test, the cost for single node deactivation 

is 2 additions, 3 subtractions, 3 multiplications, 1 relational and 1 square root. Square 
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root can be eliminated by using squared value since it is used only in relational 

operation.   

 

 
Figure 4.7 Activation test. If (|sr(t1)-sn(t1)| > dcache*threshold || |sr(t1)-sn(t1)| < 

dcache*threshold), activates its neighbor, sn(t1). In other words, if current distance, 

dcurrent is more than dcache multiplied with threshold or current distance, dcurrent is less 

than dcache multiplied with threshold, activate the neighbor, sn. 

 

 
Figure 4.8 Deactivation test. If (|sr(t1)-sr(t0)| > threshold), deactivate itself, sr. In other 

words, if current distance, dcurrent is less than threshold, deactivate sr. 
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Table 4.1 The cost for activation and deactivation test for best case scenario (1 

node and 3 neighbors).  

 Activation Deactivation Total 

Addition 6 2 8 

Subtraction 9 3 12 

Multiplication 15 3 18 

Relational 6 1 7 

Square root 3 0 3 

Cache 3 1 4 

 

 

From the best case scenario, the optimization algorithm is quite fast to be 

practically used using current hardware. With 3 square roots and 4 data caches being 

the most expensive, it would be better if both of that can be reduce or eliminated. 

 

 

 

 

4.9 Distance from current node position to previous node position as 

equilibrium state 

 

 

Non equilibrium state is defined as the distance from current node position to 

previous node position is not zero. Given sr(t1) as current node position, sr(t0) as 

previous node position, the node is in non equilibrium state if distance from sr(t0) to 

sr(t1) is greater than zero. Since the test is performed per node with no relation to its 

neighbor as compared to previous method, non equilibrium node will activate its 

entire neighbor. Adding threshold would modify the non equilibrium test to if 

distance from sr(t0) to sr(t1) is greater than threshold. Deactivation test is exactly the 

same from previous method (see Figure 4.8). 
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Figure 4.9 Activation test. If (|sr(t1)-sr(t0)| > threshold). In other words, if current 

distance, dcurrent is greater than threshold, activate all neighbors. Deactivation test is 

exactly the same from previous method (see Figure 4.8). 

 

 

Cache of previous node position is used for both activation test and 

deactivation test. One distance calculation is needed for each activation test and 

deactivation test. The cost of both activation and deactivation test for best case 

scenario is 2 additions, 3 subtractions, 3 multiplications, 1 relational and 1 square 

root.  Since square root value is used in relational operations, it is possible to use 

squared value instead. Thus the total cost for both activation and deactivation test is 4 

additions, 6 subtractions, 3 multiplications and 1 relational. 

 

 

Table 4.2 The cost for activation and deactivation test for best case scenario (1 

node and 3 neighbors).  

 Activation Deactivation Total 

Addition 2 2 4 

Subtraction 3 3 6 

Multiplication 3 3 6 

Relational 1 1 2 

Square root 0 0 0 

Cache 1 1(shared) 1 

 

 

 

 



 91

4.10 Node’s linear velocity as equilibrium state 

 

 

Instead of using positions as basis, the third method defines the non 

equilibrium state as non-zero linear velocity. Given sr(t1) as current node position, 

sr(t0) as previous node position, the node is in non equilibrium state if current node 

linear velocity is not zero. If current node is in non-equilibrium state, activates its 

entire neighbor. Adding threshold would modify the non equilibrium test to if current 

node linear velocity greater than or less than threshold. To simplify this relational 

operation, magnitude of linear velocities is used instead of vector of linear velocities. 

This would modify the non equilibrium test to if current node linear velocity 

magnitude greater than threshold. Computing accurate magnitude requires square 

root operations. A more simple method would be to measure the magnitude per axis. 

The problem with this simple method is that the same magnitude does not always 

pass the non equilibrium test when the node experiences multiple velocities from 

different axis. An example is shown in Figure 4.10. Common method for finding 

magnitude requires one square root operation. But, since the magnitude is used in 

relational operation only, it is safe to use squared value. The deactivation test using 

linear velocity magnitude would be if current node linear velocity magnitude lesser 

than threshold, deactivate itself. Apart from the difference in relational operator used, 

both activation test and deactivation test are perfectly the same.  

 

 

For best case scenario, activation test and deactivation test requires 2 

additions, 3 multiplications and 1 relational operation. Thus, the total cost for both 

activation and deactivation test is 4 additions, 6 multiplications and 2 relational 

operations. Successful activation test will result in activation of all current node 

neighbors. Note that using linear velocity results is no cache and square roots in its 

testing procedure unlike 2 previous methods.  
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Figure 4.10 Inconsistencies of using simple magnitude measuring by using per axis 

test. v1 and v2 are linear velocities with the same magnitude, tx and ty are axis 

threshold and x and y are axis. v2 passed the non equilibrium test while v1 failed the 

non equilibrium test even when both share the same magnitude.   

 

 

 
Figure 4.11 Activation test. If (|sv(t1)| > threshold), activate all its neighbors. In 

other words, if current node velocity, sv(t1) is greater than threshold, activate all its 

neighbors. 

 

 

 
Figure 4.12 Deactivation test. If (|sv(t1)| < threshold), deactivate itself, sr. In other 

words, if current node velocity, sv(t1) is lesser than threshold, deactivate itself, sr. 
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Table 4.3 The cost for activation and deactivation test for best case scenario (1 

node and 3 neighbors).  

 Activation Deactivation Total 

Addition 2 2 4 

Subtraction 0 0 0 

Multiplication 3 3 6 

Relational 1 1 2 

Square root 0 0 0 

Cache 0 0 0 
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4.11 Algorithm  

 

 

The final optimization algorithm in simplest form using velocity as non 

equilibrium definition would be: 
inline void optimizeDeformation(pointer to softbody, pointer to list 
of collided nodes) 
{ 
//deactivation 
for all activated nodes 
{ 
 if current time - activation time > active time threshold 
 { 
  if squared linear velocity magnitude < squared linear velocity 
magnitude threshold 
  { 
   deactivate node 
  } 
 } 
} 
 
//activation from collision 
activate all collided nodes 
activation time = current time 
 
//n igh
for all activated nodes 

e bor activation 

{ 
 if current time - neighbor activation time > neighbor activation 
time threshold 
 { 
  if squared linear velocity magnitude > squared linear velocity 
magnitude threshold 
  { 
   neighbor activation time = current time 
   for all neighbors 
   { 
    activate nodes 
    activation time = current time 
   } 
  } 
 } 
} 

} 
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4.12 Data structure 

 

 

To achieve full performance, it is essential to prepare the required data for 

run time efficiency. The deformable object does not experience topological changes 

which make it suitable to prepare static lists of neighbors or other required data in pre 

processing. Additional node data is linked with node in the physics systems.  

 

The additional node data consist of: 

1. List of neighbors 

2. Activation status(active, inactive, constraint) 

3. Activation time 

4. Neighbor activation time 

 

Other data includes 

1. List of faces (for vertex normals computation) 

 

A dynamic data structure is needed to keep track of the activated nodes by 

storing list of pointers to activated nodes. Dynamic data structure is used to minimize 

the time to traverse active nodes. Other required values are squared linear velocity 

magnitude threshold, active time threshold and neighbor activation time threshold. 
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4.13 Conclusion 

 

 

This chapter provides details on the making of the optimization algorithm and 

its justifications.  

 

 

  

  
Figure 4.13 Example deformations of Stanford bunny data.(Top left image is the 

undeform pose) 

 

 

The next chapter will provide results, analysis and discussion of the 

optimization algorithm. 

 



 

 

 

CHAPTER V 

 

 

 

 

ANALYSIS 

 

 

 

 

To better understand the optimization algorithm benefits and pitfalls, series of 

benchmarks are performed.  

 

 

 

 

5.1 Introduction 

 

 

This chapter performs series of benchmarks to analytically evaluate the 

performance of optimization algorithms. First, comparison of arithmetic operation 

for various methods of activation and deactivation are presented. Then, benchmark 

methodology and discussions followed. After that, discussions continue to various 

issues concerning the optimization algorithms.  
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5.2 Evaluations of algorithms 

 

 

The first optimization algorithm uses distance as its basis and its activation 

test relies on each neighbor position. This would make the computation cost increase 

with increasing number of neighbors for each node. Its advantages though are the 

number of active node is maintained at minimum for each step due to activation test 

will only activate single node per successful activation test. For best case scenario, 

the first optimization algorithm requires three square roots and for every node, the 

total required cache is the total number of neighbors.  

 

 

The second optimization algorithm requires less computation cost than the 

first optimization algorithm. It also doesn’t require any square roots computations. 

Since the second optimization algorithm doesn’t rely on its neighbors, the total cache 

per node is only one. The drawback of the second optimization algorithm is that once 

the activation test succeeded, it will activate all neighbors of current node. Although 

this doesn’t be a problem if the application requires more accurate behavior, it does 

requires more physics computation compared to the first optimization algorithm. The 

first and second optimization algorithm operates optimally with constraint based 

collision response (where it provides new position) coupled with Taylor series based 

integrator (position based integrator) due to the algorithm reliance of position. 

Otherwise, for every activation and deactivation testing, data must be converted. 

 

 

The third optimization algorithm has the lowest computation cost compared 

to the two previous optimization algorithms. Like the second optimization algorithm, 

the third optimization algorithm doesn’t require any square root. Unlike both 

previous optimization algorithms, the third optimization algorithm doesn’t require 

any cache. Successful activation test will activate all neighbor of current node 

allowing better physical behavior at the cost of more node activated. Unlike previous 

two optimization algorithm, this optimization algorithm will operate optimally for 

impulse based collision response (where it provides new velocities) couple with 

Verlet based integrator (velocity based integrator). Current simulation system uses 
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Physx library which employ an impulse based collision response and Verlet 

integrator system. Other method for defining the non equilibrium state using 

acceleration is not tested due to the requirement of data conversion.  

  

 

Table 5.1 The cost of activation and deactivation test comparison for best case 

scenario (1 node and 3 neighbors).  

 Relative distance 

from node to its 

neighbor as 

equilibrium state 

Distance from 

current node 

position to 

previous node 

position as 

equilibrium state 

Node’s linear 

velocity as 

equilibrium state 

Addition 8 4 4 

Subtraction 12 6 0 

Multiplication 18 6 6 

Relational 7 2 2 

Square root 3 0 0 

Cache 4 1 0 

 

 

 

5.3 Results and benchmarks 

 

 

To further evaluate the algorithm, a series of benchmark is performed. First, 

the goals of benchmark are outline. Then, each method of benchmark is detailed. 

After that, hardware, software and domain specifications are given. The details of 

input data follow after that.  

 

There are two types of benchmark. The first benchmark compares the 

optimization algorithm with other algorithm. The second benchmark deals with 

different optimization algorithm settings.  
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5.3.1 Goals 

 

 

The benchmarks are performed based on these goals: 

1. To prove that the optimization algorithm can reduce the deformation 

processing cost especially for high polygonal object. 

2. To analyze the effect upon having higher resolution data from low 

resolution data performance wise.  

3. To prove that the optimization overhead cost is very low. 

4. To prove that the optimizations algorithm as a highly scalable method. 

5. To prove that the optimization algorithm can dynamically scale the 

deformation area as required. 

 

 

 

 

5.3.2 Benchmarking method 

 

 

To perform the benchmarking process, series of data is captured during 

application execution for prefix set of time. Captured data are frames per second, 

optimization overhead cost, physic library computation cost and total number of 

active nodes. Multiple input data are used the benchmarking procedure ranging from 

different resolution of Stanford bunny and perfectly symmetrical icosahedrons 

sphere. For every object, the same simulation is performed during 30 seconds of real 

time execution. In the first 10 seconds, no external force is applied to the deformable 

objects to evaluate the result of best case scenario of the deformable object. The next 

20 seconds apply large external force to the deformable object in order to simulated 

real world usage. The force is constantly applied but the direction is changing for 

every 1 second. During these 30 seconds, total number of frames rendered per second 
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is captured in 1 second interval. To eliminate bias and inaccuracy, optimization 

overhead cost, physic library computation cost and total number of active nodes are 

captured using other means of timing. Instead of using real time duration, simulation 

time with duration that is incremented based on fixed time-step per every frame is 

used. For every one second of simulation time, data is captured for other 

benchmarking data except fps. Simulation time step is 0.02 seconds (50 time step for 

1 second). 

 

 

The application is customized so that it will not jeopardize the accuracy of 

captured data. Multi threading feature is disabled, no collision detection is 

performed, fixed simulation time-step, simple flat surface rendering with hardware 

normalization and no special optimization method from the physic library is used.  

 

 

 

 

5.3.3 Specifications 

 

 

The simulation was performed on Intel based PC with 3.0 GHz processor and 

NVIDIA GeForce FX 5200 3d accelerator with 1gig 400 MHz DDR2 RAM. Display 

driver version 91.47 is used. The prototype was implemented in C++, uses OpenGL 

for rendering and uses Ageia PhysX’s mass spring system for deformation 

processing. At current time of writing, the latest available version of Ageia PhysX is 

2.5.1. 
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5.3.4 Input data 

 

 

There are two main data used in the benchmarking procedure; different 

resolution of Stanford bunny and perfectly symmetrical icosahedrons sphere. 

Stanford bunny is chosen not because it’s a popular geometric mesh used in 

computer graphics research, but because it provide various necessary features in a 

single package. It is non-convex and have uniform distribution of vertices, two long 

thin ears, complex creased area near front leg and smooth surfaces in the spine area. 

The Stanford bunny is reconstructed into various different resolutions to measure the 

performance hit going from low resolution data to high resolution data. The three 

resolutions Stanford bunnies are named as bunny100, bunny500 and bunny1000. The 

other input data is a sphere. A sphere provides different properties compared to 

Stanford bunny. An icosahedrons sphere is nearly perfect symmetry, convex and all 

edges have nearly similar length. The primary purpose of the sphere is to evaluate the 

effect of different optimization algorithm settings. The sphere data is named as 

icosa12. 

 

 

Statistics of input data for benchmark 
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Figure 5.1 The statistic comparison of benchmark input data. 
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Table 5.2 Details of input data. 

 bunny100 bunny500 bunny1000 icosa12 
Vertex 159 929 1729 1442 
Surface 314 1854 3454 2880 
Tetrahedra 441 3100 5818 4098 
Edge 756 4955 9273 6979 

 

 

The algorithm were also tested against a wide range of geometric mesh 

having properties such as convex, non-convex, thin object, long object, uniform 

object, non-uniform object and object containing hole. The main purposes of these 

data are to detect odd behavior, artifacts and bug tracking. Since the evaluation is 

purely subjective, no discrete result and conclusion are made based on these results.  

 

 

  

  
Figure 5.2 Input data for benchmark are bunny100 (top left), bunny500 (top 

right), bunny1000 (bottom left) and icosa12 (bottom right). 
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5.3.5 Benchmarks against other method 

 

 

The first series of benchmarks are performed to compare performance and 

computation cost of three different deformation methods for three different 

resolutions of input data. The first method is the classical mass spring method. It is 

the standard no optimization mass spring systems. The second method is Ageia 

PhysX optimized method. Although Ageia PhysX was originally engineered for rigid 

body simulation, it provides various features that can be use in deformable 

simulation in order to gain more performance. Since the underlying method of Ageia 

PhysX optimization is a trade secret, it will not be discuss further. Only default 

settings for Ageia PhysX are used. The final method is the optimization method.  

 

 

The default optimization algorithm settings are: 

1. Squared linear velocity magnitude threshold = 10 unit 

2. Active time threshold = 2000 ms 

3. Neighbor activation time threshold = 2000 ms 

 

 

There’s no real unit in the simulation system. But to give a sense of 

proportional, deformable object is scaled to fit in a cube with 800*800*800 

simulation unit.  

 

 

For each benchmarking process, 4 types of information are captured; frames 

per second, physic computation cost, optimization cost (optimization method only) 

and total number of active nodes (optimization method only). The first benchmark is 

captured using bunny100 input data. 
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Bunny100 frames per second
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Figure 5.3 Benchmark charts for bunny100. 

 

 

From Figure 5.3, deformable simulation using optimization method gain 

more frames per second compared to the other 2 methods. The second chart shows 

that optimization method does reduce physic computation cost especially during the 

first 10 second of simulation time where no external force is applied to the 

deformable object. Since the number of nodes is particularly low, the third chart 

shows that for around 150 nodes, the worst case scenario (where all nodes are 

activated), the maximum cost for optimization method is 6 ms. Meanwhile, for best 

case scenario simulated in the first 10 simulation seconds is less than 1 ms. The final 

chart shows that almost all nodes are active during benchmarking time. Overall, the 

bunny100 input data is too forgiving. With 300 frames per seconds averaged, it is 

unclear where the bottleneck actually is.  
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Bunny500 frames per second
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Bunny500 physic computation cost

0
50

100
150
200
250
300
350
400

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Simulation time in sec

Ph
ys

ic
 c

os
t i

n 
m

s 
- l

ow
er

 
is

 b
et

te
r Classic

PhysX
Optimized

 

Bunny500 optimization cost

0
2
4
6
8

10
12
14

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Simulation time in sec

O
pt

 c
os

t i
n 

m
s 

- l
ow

er
 is

 
be

tte
r

 



 108

Bunny500 total active nodes
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Figure 5.4 Benchmark charts for bunny500. 

 

 

Figure 5.4 shows the benchmark data captured using medium resolution data, 

bunny500. Again, the fps is higher by large margin if using optimization method as 

showed in the first chart. In the second chart, total physic computation time is lower 

compared to other method of deformation. The maximum optimization method cost 

is 12 ms, twice higher than bunny100 worst case scenario optimization cost. 

Considering the number of vertices for bunny500 is almost six times higher than 

bunny100, the optimization cost is still very low. The final chart shows irregular 

spikes in total number of actives nodes. This indicates that, with default settings, the 

worst case scenario is hard to achieve. The optimization algorithm successfully 

maintains lower nodes for physics computations.  
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Bunny1000 frames per second
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Bunny1000 total active nodes
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Figure 5.5 Benchmark charts for bunny1000. 

 

 

The last benchmark shown in Figure 5.5 performed using bunny1000, the 

highest resolution data used in this benchmark. Like previous input data, the 

benchmark reported higher fps with optimization method. The physic computation 

cost also lower than the other two methods. The highest optimization cost reported is 

19 ms, which is 7 ms higher compared to bunny500 input data. This is because, the 

optimization algorithm with current default setting implicitly does not permit node 

activation more than 1000 nodes as shown in the forth chart. 

 

 

The results from this benchmark clearly indicated that the optimization 

algorithm can reduce deformation processing. Based on the benchmark performed on 

different resolution of input data, the optimization algorithm works efficiently better 

with high polygonal objects. The optimization overhead cost reported in all 

benchmark is very low with maximum of 19 ms. The next benchmark focuses of 

different settings of optimization algorithm. 
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5.3.6 Benchmarks against various settings 

 

 

To better see the usage of various optimization algorithm settings, the next 

benchmark will perform a series of benchmark using icosa12 input data with 

different optimization algorithm settings. Detail of the setting are given in Table 5.3 

 

 

Table 5.3 Optimization algorithm settings. 

 Default Setting 1 Setting 2 Setting 3 All low All high All medium
Active time 
threshold, ms 2000 1 2000 2000 1 4000 1000
Squared linear 
velocity 
magnitude 
threshold 10 10 1 10 1 20 10
Neighbor 
activation time 
threshold, ms 2000 2000 2000 1 1 4000 1000

 

 

There are seven optimization algorithm configurations. The default setting is 

the medium level, all purpose setting. Setting 1 through 3 are default settings with 

one of the parameters set to the lowest. The purpose of these configurations is to 

evaluate the impact of setting very low individual threshold parameter. The other 

three configurations set all the value to extreme. The All low setting sets all value to 

extreme low. The All low setting can also be considered as no threshold settings. The 

All high settings set the value to the highest suitable value. The All medium setting 

sets the value in between the All low and All high settings. 

 

 

There are three threshold parameters available. Active time is the duration of 

how long the activated node remains active before it will be checked for 

deactivation. Velocity thresh is squared linear velocity magnitude threshold used in 

activation and deactivation procedure. Active nodes with squared linear velocity 

magnitude lower than Velocity thresh will be considered for deactivation. Active 

nodes with squared linear velocity magnitude higher than Velocity thresh will 

activated all its neighbors. Activate neighbor time is neighbor activation time 
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threshold. Nodes that have activated all its neighbor will only considered to re-

activate all its neighbor again if the period of neighbor activation is more than 

activate neighbor time.  
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Figure 5.6 Frames per second benchmark result for icosa12. 

 

 

The first chart from Figure 5.6 shows that, setting the active time very low 

yield better fps results. Setting the other two parameters to very low values will bring 

the performance down quite a bit. The second chart shows that setting all parameter 

to very low will yield very low performance.  
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Figure 5.7 Optimization cost benchmark result for icosa12. 

 

 

In Figure 5.7, the first chart shows that by setting neighbor activation time 

threshold to a very low value will result in higher optimization cost, which is bad. 

For best performance, active time threshold must be set to low. The second chart 

shows that setting all parameter values to low values will result in higher 

optimization cost. This is due to excessive node activation and deactivation for every 

time step. 
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Figure 5.8 Physic computation cost benchmark result for icosa12. 

 

 

Figure 5.8 show the benchmark result of physics computation cost. For 

lowest physic computation cost, active time threshold must be set to low. Setting 

squared linear velocity magnitude threshold to low will result in lower performance, 

as showed in the first chart. The second chart indicates that setting all values to very 

low values results in higher physics computation cost. The all high setting yield 

lowest physic computation cost. 
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icosa12 total active nodes with extreme setting
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Figure 5.9 Total active nodes benchmark result for icosa12. 

 

 

In Figure 5.9, the first chart shows that setting active time threshold to a very 

low values will results in lowest number active nodes. The second chart shows that 

the All high settings results in lowest number of activated nodes while the All low 

setting results in higher number of activated nodes.  

 

 

The second series of benchmark tries to find the effect of different parameter 

setting. Based on the results, Active time threshold have the biggest performance 

impact. It must be set to low to achieve better performance. Setting it low will make 



 116

activated nodes easily deactivated. The other two parameters are better left at high 

values for better performance.  

 

 

High performance comes at a cost of simulation accuracy. Sometimes the 

inaccuracy is evident visually. Since the visual perception is a subjective topic, it will 

not be discuss further. Nevertheless, the result from the benchmark should provide a 

good guidance on finding the best combination and parameter settings for any 

simulation requirements. 

 

 

 

 

5.4 Other issues 

 

 

The optimization algorithm contributes extra cost to the simulation systems. 

For small deformations where the total number of active nodes is small, the cost for 

optimization algorithm is very small. As the number of active nodes reaches the total 

number of nodes, running time performance may drop due to extra optimization 

overhead cost. For worst case scenario where all nodes were activated, the 

optimization algorithm is inefficient and will render the simulation system slower 

than classical simulation systems. Thus, the optimization algorithm is best use for 

small deformation (as shown in Figure 5.12). 
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Figure 5.10 The higher the number of active nodes, the lower the performance for 

simulation systems with optimization algorithm.  

 

 

The threshold, used as a mean of scaling the simulation system, can produce 

undesired behavior if used improperly. For best performance, active time threshold 

must be set to low, squared linear velocity magnitude threshold must be set to high 

and neighbor activation time must be set to high. This will make the nodes harder to 

activate and very easy to deactivate. On the contrary, for best behavior, all settings 

must be set to low. This will results in easier nodes activation and faster nodes 

deactivation. The downfalls of this setting are the overhead cost of the optimization 

algorithm will rise quickly as more nodes are activated. With this setting, most of the 

time, large numbers of node are activated. This will defeat the purpose of this 

optimization algorithm where it would be best if only small portion of nodes active 

most of the time. Choosing the right threshold would be the matter of whether the 

simulation accuracy or speed is needed. For optimal solution, the settings must be 

suited around the distance for the node needs to be displaced 1 pixel in a single time 

step on the viewing device (see Figure 5.11). If, for example, the node is currently far 

away or the deformable object is highly complex where multiple nodes shares single 

pixel in the viewing device, the setting must be, at most, suited around the smallest 

distance between adjacent nodes (see Figure 5.12). To express the distance in other 

form such as velocity, the conversion would be how much velocity needed for the 

node to travel the distance in a single time step. Thus the optimal threshold for a 

node using distance as non equilibrium state definition would be the distance for the 
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node to be displaced to the next pixel in the viewing device or if the node shares 

single pixel in the viewing device with other nodes, the threshold would be the 

smallest distance of all neighbor distances. Choosing different threshold for every 

node at runtime using this method is expensive. One way to reduce the computation 

is to compute the threshold for a single node which has smallest node to neighbor 

distance. Since the deformation is small, it’s easy to track the node which has the 

smallest node to neighbor distance. In reality, current hardware computation power is 

not enough for a real time simulation where the nodes is so dense it occupy single 

pixel with multiple nodes in the viewing device. Thus, the optimal setting method is 

not implemented. 

 

 

 
Figure 5.11 The optimal threshold must suited for the node to be displaced to the 

imaginary position which is the position where the node will be render at adjacent 

pixel. 

 

 

Optimal threshold

Current node

Pixels in the viewing device Neighbor

A pixel shares 2 nodes Neighbor
 

Figure 5.12 When node and its neighbor occupy the same pixel in the viewing 

device, the optimal threshold must suit for the smallest distance from node to 

neighbor between all neighbors. 
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The concentrated loads applied must be very high to ensure node activation. 

If the concentrated loads applied are very small, while the thresholds are set very 

high, the deformable object would remain undeform. 

 

 

For very small concentrated loads, the node tends to deactivate real fast due 

to deactivation test being executed at every frame. This will result in unintended 

behavior where the deformable object looks very hard or harder to deform, especially 

when very small concentrated loads is applied. One way to eliminate this is by only 

deactivates node that has been active for a pre defined period of time. This will 

ensure that active node will always remain active after being activated for a period of 

time. Active nodes have the tendency to activate its neighbor due to its vulnerability 

to deform. Setting the time too high will result in more nodes active for a longer 

period, which is expensive.  

 

 

Rendering time can be reduced by using vertex buffer object instead of 

immediate mode. This method stores vertex buffers in graphic card’s high speed 

memory instead of system memory to improve rendering performance by minimizing 

data copying. However, this method is best use with static object. Although it is 

possible to use it with deformable object (by GPU based physics, etc.), it is not 

tested.  

 

 

For deformable object, normals have to be computed every time the object 

deformed. Since the deformed vertices are active nodes, it is naturally easy to query 

which vertices or faces that require normals computations. Exploitation is cheap as 

the systems already have the list of active nodes and its list of neighbors. Flat 

shading is implemented for that it provides better visual cues on actual surfaces and 

it is much faster compared to Gouraud shading due to multiple normal averaging per 

vertex in each frame. 
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5.5 Conclusions 

 

 

The main goal of optimization algorithm is to reduce the cost of deformation 

processing. The benchmark results showed that for deformable objects interacting 

with only concentrated loads, the optimization algorithm successfully reduce the 

deformation processing especially for objects with high polygons as shown in the 

first chart of Figure 5.5.  

 

Charts in Figure 5.3 through Figure 5.5 shows that, the effect having upon 

large number of nodes will reduce the simulation performance due to large number 

of nodes to be process. However, the cost of optimization algorithm is still very 

small with maximum of 19 ms per time step. The second series of benchmark clearly 

shows that the optimization algorithm can be configured for either performance or 

best deformation behavior. Various combination of setting and its implication on 

performance are shown in Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9. Different 

total frames per second captured from the first series of benchmark shows that the 

optimization algorithm successfully scales the deformation area as required. This is 

very evident in Figure 5.5 where when there are no deformation, the fps would go 

around 50 fps and when there are lots of deformation, the fps would go around 40 

fps.  

 

 

The next chapter will discuss the achievement of the optimization algorithm 

based on research objectives. 



 

 

 

CHAPTER VI 

 

 

 

 

CONCLUSIONS 

 

 

 

 

6.1 Introductions 

 

 

This chapter reviews the research objectives and research findings. First, the 

objectives are reviewed along with it’s prove of achievement. Next is a list of 

contributions from the research. Finally, outlines of possible future work.  

 

 

 

 

6.2 Summary 

 

 

In short, all four objectives as outline in Chapter 1 are achieved.  Deformable 

objects are represented using mass-spring model, which we find most appropriate.  Our 

method called the dynamic selection based method is able to reduce the computation for 

deforming an object and this is demonstrated in a real-time simulation.  The emphasis of 

this research is on three most critical concerns, which are summarized below.  
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1. To reduce deformation processing cost by reducing areas (total number 

of nodes) for deformation. 

a. The benchmark result from the first charts in Figure 5.3, Figure 5.4 

and Figure 5.5 (first series of benchmarks) shows that overall, the 

optimization algorithm successfully reduce the processing cost of the 

simulation.  

b. The second charts from the Figure 5.3, Figure 5.4 and Figure 5.5 

shows the deformation processing cost. The optimization algorithm 

successfully reduces total deformation processing cost throughout the 

simulation.  

c. The third chart from Figure 5.3, Figure 5.4 and Figure 5.5 shows that 

the extra cost for optimization algorithm does influence overall 

performance. However, the cost is extremely low. Simulation with 

optimization algorithm is still superior compared to other tested 

method thus making the extra computation cost of optimization 

algorithm worth it. 

2. To construct a dynamic method that can enlarge or shrink deformation 

areas. 

a. The forth charts from Figure 5.3, Figure 5.4 and Figure 5.5 shows total 

number of nodes that are being processed for deformation for current 

time step. Total numbers of active nodes vary according to the 

simulation needs. This proves the optimization algorithm succeeded in 

enlarging or shrinking the deformation areas as required.  

b. Evidence of the optimization method can enlarge or shrink 

deformation areas as required can be seen from the first and second 

charts of Figure 5.3, Figure 5.4 and Figure 5.5. These figures show 

that during the first 10 seconds of simulation time, when there is no 

deformation, the simulation performances are at its best. After that, 

external forces are applied to the deformable object to make it deform. 

This makes the performance drop quite a bit due to deformation 

processing. 
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3. To develop a deformation system that can be scaled to either higher 

performance or higher accuracy. 

a. The second series of benchmark (Figure 5.6, Figure 5.7, Figure 5.8 and 

Figure 5.9) evaluates the influence of each optimization algorithm 

parameter settings. The results indicate that the configuration settings 

can be tune to provide either best performance or best accuracy.  

 

 

 

 

6.3 Contributions 

 

 

Listed here are contributions made in this research and its comparison to other 

similar method.  

1. Reduced area for deformation:  For every frame, deformable object is evaluated 

for deformation. The result from the evaluation is a small area of deformable 

object that will be selected for deformation. Similar in nature to ChainMail 

(Gibson 1997), this will reduce required deformation processing time as only 

small areas are actually deformed per frame. 

2. Dynamically enlarge or shrink deformation area: Unlike previous deformation 

method inspired by force propagation, dynamic selection based method can 

dynamically enlarge or shrink deformation areas. Previous works usually either 

resort to static range of areas (Choi et al. 2003) or propagate over the deformable 

object infinitely (Dusyak and Zhang. 2004). Other method that can dynamically 

enlarge or shrink deformation area doesn’t have physical based justifications in its 

deformations. 

3. Scalable for performance or accuracy: In order to tackle broad range of 

applications, dynamic selection based method allows the user to tinker with the 

parameter settings. These settings enable the application to be tuned for high 
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accuracy or high performance. Chapter 5 provides testing result of different 

parameter settings. 

4. Low cost definition of equilibrium state: Definition of equilibrium state is a 

requirement in order to effectively select areas that should be deformed. This 

research provides an efficient method to define equilibrium state based on physics 

justifications. Different methods of equilibrium state complete with its 

comparison analysis of computation cost are provided.  

5. Independent of deformation method: The algorithm is successfully 

implemented in existing physical based deformation method. Generally, the 

algorithm is a selection algorithm. There should be no major problem to 

implement this algorithm in other physical based deformation method. 

6. Robust algorithm: There are situations which needs special care in previous 

works. Different number of neighbours between inside node and surface nodes 

poses a problem for ChainMail (Gibson 1997). (Choi et al. 2003) and Dragnet 

(Grimm et al. 2004) experiences problem for multiple contact situation and 

special care had to be taken. Due to high generality of the proposed algorithm(no 

neighbour assumptions), this research shows that using the single provided 

algorithm, no special care is needed to handle above mentioned situations.  

7. Works for both structured and unstructured mesh: Unlike certain algorithm 

(Gibson, 1997), this optimization algorithm works for both structured and 

unstructured mesh. This is because the algorithm does not assume and does not 

restrict the number of springs per each node. 

 

 

 

 

6.4 Future work 

 

 

This report presented an optimization technique to existing popular method. The 

results are better in some areas compared to other similar method in the same domain. 
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However, there is always a room for future research. Listed here are some suggestions, 

improvements and open problems based on research findings.  

1. The biggest problem with the optimization algorithm is the node activation 

algorithm. For node activation, the algorithm will activate all neighboring 

node, even if the node is already activated. This results in wasted resources. 

The wasted resources are too high as can be seen in the second chart of Figure 

5.7 (the All low settings). Although this problem can be counter by applying 

multiple thresholds, the excessive use of thresholds leads to other problem 

(bad deformation behavior) 

2. Currently, there are two separated loops that read the active node data 

structure for every time step, one for activation and one for deactivation. If 

both activation and deactivation can be performed in a single loop, it will 

surely boost overall simulation performance. 

3. Currently, there are no ‘one size fits all’ for optimization algorithm settings. 

Choosing the right threshold is very tricky, unless the environment is 

restricted.  

4. The nature of the system changes the behavior of the original materials 

because of the delay from the force propagation. 
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