
VOT 74224

THE DEVELOPMENT OF DEFORMABLE BODIES COLLISION RESPONSE
ALGORITHM FOR INTERACTIVE VIRTUAL ENVIRONMENT

(PEMBANGUNAN TINDAK BALAS PELANGGARAN OBJEK BOLEH

CANGGA UNTUK PERSEKITARAN MAYA INTERAKTIF)

NORHAIDA MOHD SUAIB
ABDULLAH BADE

DAUT DAMAN
MOHD SHAHRIZAL SUNAR

PUSAT PENGURUSAN PENYELIDIKAN
UNIVERSITI TEKNOLOGI MALAYSIA

2007

 ii

 iii

ACKNOWLEDGEMENT

The researchers would like to express sincere gratitude to all parties and

individuals involved, whether directly and indirectly in making this project a success,

especially to the Ministry of Science, Technology and Innovation for providing funding

for this research, Universiti Teknologi Malaysia (UTM) particularly the Research

Management Centre, Faculty of Computer Science and Information System, fellow

researchers and colleagues at the Department of Computer Graphics & Multimedia and

all students involved. We are truly grateful for your support throughout this research.

Thank you.

 iv

ABSTRAK

 Kaedah percanggahan berasaskan fizik lazimnya menghadapi masalah kerana

memerlukan kos pemprosesan yang tinggi menyebabkan kaedah tersebut tidak sesuai

untuk digunakan secara praktikal di dalam aplikasi interaktif, walaupun jika

percanggahan hanya berlaku pada kawasan kecik objek boleh canggah. Tesis ini

mencadangkan kaedah percanggahan berasaskan pemilihan dinamik untuk objek yang

mengalami percanggahan pada kawasan kecil. Ia dilakukan untuk memastikan

interaktiviti dengan objek berisipadu yang mempunyai bilangan geometri yang banyak

dengan mengurangkan kawasan yang akan diproses untuk percanggahan. Kaedah ini

adalah satu bentuk algoritma pengoptimum yang akan memilih kawasan yang akan

diproses untuk percanggahan berdasarkan keadaan kestabilan kawasan tersebut. Dengan

menganggap tiada tenaga lain yang bertindak ke atas objek boleh canggah selain

daripada tenaga menumpu, algoritma pengoptimum ini berjaya mengurangkan pengiraan

percanggahan untuk sistem percanggahan berasaskan fizik. Kaedah ini sesuai digunakan

untuk aplikasi masa nyata seperti pembedahan maya.

 v

ABSTRACT

 Physical based deformation method usually suffers from high computation cost

which does not favors practical interactive applications, even if the deformation only

occurs in a small area of the deformable object. This thesis proposed a dynamic selection

based method for small area deformation to maintain interactivity with high geometric

complexity of volumetric mesh by reducing areas for deformation processing. It is an

optimization algorithm that selects small areas for deformation processing based on

equilibrium state. Assuming no external forces other than concentrated loads, the

optimization algorithm succeeded to reduce deformation computation for physical based

deformation systems. The method is suitable for real time application like virtual

surgery.

 vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRAK v

 ABSTRACT vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xii

 LIST OF FIGURES xiii

 LIST OF APPENDICES xix

CHAPTER ONE

INTRODUCTION

CHAPTER I INTRODUCTION

 1.1 Introduction

1.2 Background

1.3 Problem statement

 1

3

6

 vii

1.4 Objectives

1.5 Scopes

1.6 Dynamic selection based method

1.7 Results

1.8 Summary of chapters

8

8

9

10

11

CHAPTER TWO

LITERATURE REVIEW

CHAPTER II LITERATURE REVIEW

 2.1 Overview

2.2 Introduction

2.3 Deformable objects modeling

2.3.1 Input data

2.3.2 Data complexity

2.3.3 Accuracy

2.3.4 Interactivity

2.3.5 Flexibility

2.4 Non physical based modeling

2.4.1 Global deformation

2.4.2 Parametric representation

2.4.3 Free form deformation

2.4.4 Pros and Cons

2.5 Physical based modeling

2.5.1 Finite element method

2.5.2 Mass spring method

2.5.3 Gas pressure method

2.5.4 Mesh free method

 12

12

14

15

21

22

22

23

24

24

26

28

33

34

34

43

48

51

 viii

2.5.5 Pros and Cons

2.6 Real time modeling technique

58

58

CHAPTER THREE

METHODOLOGY

CHAPTER III METHODOLOGY

 3.1 Project planning

3.2 Theoretical framework

3.3 Software development

3.4 Testing methodologies

3.5 Software specifications

3.6 Hardware specifications

 67

67

70

74

74

75

CHAPTER FOUR

IMPLEMENTATION

CHAPTER IV IMPLEMENTATION

 4.1 Introduction

4.2 Preparing data

4.3 Building the framework

4.4 Performance issues

4.5 General strategy

4.6 Building algorithm template

4.7 Defining non-equilibrium state

 76

76

81

82

83

83

85

 ix

4.8 Relative distance from node to its

neighbor as equilibrium state

4.9 Distance from current node

position to previous node

position as equilibrium state

4.10 Node’s linear velocity as

equilibrium state

4.11 Algorithm

4.12 Data structure

4.13 Conclusion

87

89

91

94

95

96

CHAPTER FIVE

ANALYSIS

CHAPTER V ANALYSIS

 5.1 Introduction

5.2 Evaluation of algorithms

5.3 Results and benchmarks

5.3.1 Goals

5.3.2 Benchmarking method

5.3.3 Specifications

5.3.4 Input data

5.3.5 Benchmarks against other

method

5.3.6 Benchmarks against various

settings

5.4 Other issues

5.5 Conclusions

 97

98

99

100

100

101

102

104

111

116

120

 x

CHAPTER SIX

CONCLUSIONS

CHAPTER VI CONCLUSIONS

 6.1 Introductions

6.2 Summary

6.3 Contributions

6.4 Future work

 121

121

123

124

 xi

LIST OF TABLES

NO. TITLE PAGE

2.1 Values for the Young’s modulus of multiple solid materials. (Cutnell

and Johnson, 1995)

20

4.1 The cost for activation and deactivation test for best case scenario (1

node and 3 neighbors).

89

4.2 The cost for activation and deactivation test for best case scenario (1

node and 3 neighbors).

90

4.3 The cost for activation and deactivation test for best case scenario (1

node and 3 neighbors).

92

5.1 The cost of activation and deactivation test comparison for best case

scenario (1 node and 3 neighbors).

99

5.2 Details of input data. 103

5.3 Optimization algorithm settings. 111

 xii

LIST OF FIGURES

NO. TITLE PAGE

1.1 Example of dynamic selection based method. 9

2.1 Taxonomy of deformable objects for this thesis. 14

2.2 Catheter Angiography : X-ray equipment is mounted on a C-shaped

gantry with the x-ray tube itself beneath the table on which the patient

lies. Above the patient is an image intensifier that receives the x-ray

signals, amplifies them, and sends them to a TV monitor.

(http://www.radiologyinfo.org/content/diagnostic/diagnostic.htm)

16

2.3 CTA scan equipment.

(http://www.radiologyinfo.org/content/diagnostic/diagnostic.htm)

17

2.4 MRI equipment.

(http://www.radiologyinfo.org/content/diagnostic/diagnostic.htm)

17

2.5 Ultrasound (sonography) equipment.

(http://www.radiologyinfo.org/content/diagnostic/diagnostic.htm)

18

2.6 Voxelman showing registration of several data sources.

(http://biocomp.stanford.edu/3dreconstruction/software/voxelman.html)

18

2.7 Stress strain graph indicates elastic and plastic (inelastic) deformations. 19

2.8 Stress strain graph showing multiple type of relation for deformations. 20

2.9 Structures deforming global deformation example. Top, original cube

and Utah teapot followed by tapering, twisting and bending

deformations. (Watt and Watt, 1992)

26

2.10 Example of NURBS surface 27

2.11 Right, local free form deformation. Left, global free form deformation. 28

 xiii

(Sederberg et al., 1986)

2.12 Extended free form deformations (Coquilart, 1990). Top left, a sphere

deformed with a parallelepiped lattices. Top right, a sphere deformed

with a cylindrical lattice. Middle left and right, deformed lattice and the

deformed surface. Bottom left and right, resulting sand pie.

29

2.13 Hirota’s volume preserving method. Letf, original shape. Center, after

free form deformation is applied. Right, unconstrained lattices are

displaced to preserve original volume(Hirota et al, 1999)

31

2.14 Deformable teapot is animated using dynamic global free form

deformation. (Faloutsos et al., 1997)

32

2.15 Three type of geometry discretization using gmesh (Geuzaine and

Remacle, 2005).

37

2.16 Original happy buddha and its sliced tetraheralized version. Happy

buddha is discretized using tetgen application(Si, 2005)

37

2.17 Taxonomy for finite element method from mechanical physics view.

(http://caswww.colorado.edu/courses.d/AFEM.d/Home.html)

38

2.18 Top,the three standard solid element geometries: tetrahedron (left),

wedge (center) and brick (right). Only elements with corner nodes are

shown. Middle, regular 3D meshes can be built with cube-like

repeating mesh units. Meshes are built with bricks, wedges or

tetrahedra. Bottom, two nonstandard solid element geometries: pyramid

and wrick (w(edge)+(b)rick). Four faces meet at corners 5 and 7,

leading to a singular metric.

(http://caswww.colorado.edu/courses.d/AFEM.d/Home.html)

39

2.19 A simple finite element method deformable object in action. Image is

taken from project Xplodar

(http://nesnausk.org/nearaz/projXplodar.html). High contrast red

denotes high stress area while bright white denotes less stress area.

Even though the simulation is performed in real time manner, notice

that the deformable object is low in polygons.

41

2.20 An example of mass spring model. Connected spring exerted forces on 45

 xiv

neighboring points, displacing the points from its rest position. (Gibson

and Mirtich, 1997)

2.21 Example of gaseous pressure method for simple two dimensional

meshes. The mesh must be manifold, represented as wrapped cloth

which will have ideal gas pressure inside. (Matyka and Ollila, 2003)

49

2.22 Screen shot of of gas pressure method for three dimensional volumetric

deformable objects (Matyka and Ollila, 2003). The simulation is fast

enough to be performed in real time.

50

2.23 Rendering techniques for particle based surface; axes, discs, wireframe

triangularion and flat shaded triangulation (Tonnesen and Szeliski,

1992)

53

2.24 Left, deforming. Center, deforming and surface restructuring by adding

new points. Right, deforming and tearing. (Tonnesen and Szeliski,

1992)

53

2.25 Fusioning deformable objects (Tonnesen and Szeliski, 1992) 54

2.26 Deformable object are splitted and then fused together. (Desbrun and

Cani, 1996)

55

2.27 Target morph using point based method. (Keiser et al., 2004) 56

2.28 Debunne et al. uses local refinement of multiresolution models to

reduce computation time by reducing geometry for run time dynamics

processing. (Debunne et al., 2001)

60

2.29 Dynamic progressive meshes is used to refine local contact area to

enhance dynamics computation (Wu et al., 2001)

61

2.30 Vertices of the surface mesh are displaced according to the

displacement field of the tetrahedron in which they lay using

barycentric coordinate system (Muller and Gross, 2004).

58

2.31 Chen et al. mass spring systems lattice configurations adapted from

Provot cloth mass spring configurations (Chen et al., 1998).

63

2.32 A low resolution tetrahedral mesh and a high resolution surface mesh

of a snake. Deformation is computed for low resolution tetrahedral

mesh using mass spring systems and high resolution mesh is used for

64

 xv

rendering.(Teschner et al, 2004).

2.33 Chainmail works by constraining distances between neighboring points

(Gibson 1997). Upper left image shows initial state of the chainmail

systems. Upper right image shows deformed chainmail systems. Lower

left image shows chainmail systems at its initial state. Lower middle

image shows maximally compress chainmail and lower right shows

maximally stretch chainmail.

65

3.1 Conceptual diagram of the deformable object systems. 68

4.1 Stereolithography file format requirements. 1. No open edge. 2. No

double face. 3. No spike. 4. No multiple edges. (Images from 3D Studio

Max 7.0 Reference Manual)

77

4.2 Example of tetrahedral with no quality enforcement. (Images from

Tetgen 1.3 Manual)

78

4.3 Example of tetrahedral with quality enforcement. (Images from Tetgen

1.3 Manual)

78

4.4 Some example of tetrahedral meshes viewed with Tetgen viewer. In

top-left to top right order, the data are Stanford bunny, Stanford bunny

internals, human stomach, human stomach internals, sphere and human

liver. All of them are freely available on the internet except for sphere

which is generated using discreet 3D Studio Max 7.0. Screenshots were

taken using Tetgen Viewer.

80

4.5 Conceptual flow of common physical simulation after inserting

optimization algorithm.

81

4.6 Example of activation systems in 2d. (1) Concentrated loads are applied

to a node. (2) When the node reaches its non-equilibrium state, it will

activate its neighbor. (3) The activation process continues until the

node reaches its equilibrium state. Inactive nodes will act as constraint.

Active nodes reaching equilibrium state will be deactivated.

84

4.7 Activation test. If (|sr(t1)-sn(t1)| > dcache*threshold || |sr(t1)-sn(t1)| <

dcache*threshold), activates its neighbor, sn(t1). In other words, if current

distance, dcurrent is more than dcache multiplied with threshold or current

88

 xvi

distance, dcurrent is less than dcache multiplied with threshold, activate

the neighbor, sn.

4.8 Deactivation test. If (|sr(t1)-sr(t0)| > threshold), deactivate itself, sr. In

other words, if current distance, dcurrent is less than threshold,

deactivate the actor sr.

88

4.9 Activation test. If (|sr(t1)-sr(t0)| > threshold). In other words, if current

distance, dcurrent is greater than threshold, activate all neighbors.

Deactivation test is exactly the same from previous method (see Figure

4.8).

90

4.10 Inconsistencies of using simple magnitude measuring by using per axis

test. v1 and v2 are linear velocities with the same magnitude, tx and ty

are axis threshold and x and y are axis. v2 passed the non equilibrium

test while v1 failed the non equilibrium test even when both share the

same magnitude.

92

4.11 Activation test. If (|sv(t1)| > threshold), activate all its neighbors. In other

words, if current node velocity, sv(t1) is greater than threshold, activate

all its neighbors.

92

4.12 Deactivation test. If (|sv(t1)| < threshold), deactivate itself, sr. In other

words, if current node velocity, sv(t1) is lesser than threshold, deactivate

itself, sr.

92

4.13 Example deformations of Stanford bunny data.(Top left image is the

undeform pose)

96

5.1 The statistic comparison of benchmark input data. 102

5.2 Input data for benchmark are bunny100 (top left), bunny500 (top right),

bunny1000 (bottom left) and icosa12 (bottom right).

103

5.3 Benchmark charts for bunny100. 106

5.4 Benchmark charts for bunny500. 108

5.5 Benchmark charts for bunny1000. 109

5.6 Frames per second benchmark result for icosa12. 112

5.7 Optimization cost benchmark result for icosa12. 113

5.8 Physic computation cost benchmark result for icosa12. 114

 xvii

5.9 Total active nodes benchmark result for icosa12. 115

5.10 The higher the number of active nodes, the lower the performance for

simulation systems with optimization algorithm.

117

5.11 The optimal threshold must suited for the node to be displaced to the

imaginary position which is the position where the node will be render

at adjacent pixel.

118

5.12 When node and its neighbor occupy the same pixel in the viewing

device, the optimal threshold must suit for the smallest distance from

node to neighbor between all neighbors.

118

 xviii

LIST OF APPENDICES

APPENDICES TITLE PAGE

CHAPTER I

INTRODUCTION

This chapter describes the context of the work, presents the research

statement, and provides an overview of the report.

1.1 Introduction

Real time deformation is an important aspect of interactive computer graphics

especially in computer animation and medical application. It has been extensively

studied since the introduction of global deformation by Barr in 1984 (Barr. 1984). In

general, the studies of deformable modeling focuses on diversity of deformable

object characterization, accurate material representation and gaining high simulation

performance. With the increasing power of 3D hardware, the deformable modeling

field has gain a new research direction. The input data for real time application can

now contain thousands of polygons ensuring more accurate shape representation than

ever before. Although the polygon rendering capacity increased, deforming large

number of polygons remains a problem in real time applications. This is due to the

high processing resources required by the deformable modeling method. In order to

balance the available resources between processing and rendering, recent studies

focuses more on deforming object with large number of polygons interactively.

 2

Achieving interactive deformation is a crucial part in computer animation and

medical applications. Deformable modeling can assist artist in modeling 3D content

for computer animation by enabling higher degree of controls for modeling tools.

These tools reduce artist workload and provide better results in less time compared to

traditional method without deformation tools. Another form of deformation

modeling, physical based deformation, used by computer animation to provide a

method to simulate the behaviour of real world materials. The results are visually

convincing in terms of realistic depiction of the real world compared to traditional

animation method. With physical based animation, artists are no longer required to

manually key framed the animation as the task has been shifted to the physical based

animation system.

Deformation modeling also has found its way to medical field. It is used

mainly to simulate the behavior of soft tissues of the human body. One example of

medical application is virtual surgery which allows trainee surgeons to feel and see

exactly what they would if they were operating on real patient. This may help

improve surgical skills of the surgeons as it would with pilot trained in flight

simulator. The use of virtual objects reduces the cost of obtaining real material for

surgical training and reduces the offensive nature of using real dead bodies for

training. With virtual surgery application, surgeons can plan ahead the surgical

procedures and perform surgical test without the risk of failure. However, the

complex nature of the human tissue and the demanding accuracy required by medical

application makes it a very challenging domain.

The field of deformable object modeling has seen many improvements

throughout the years. This will be discussed in Section 1.2 (background and

previous works that are related to this research). This is followed by the problem

statement in Section 1.3, Section 1.4 lists the research objectives, Section 1.5

describes the domain and scopes and Section 1.6 introduces dynamic selection based

method in brief. Results and findings are given in Section 1.7. The final section,

Section 1.8, gives a summary of each of the chapters in this research.

 3

1.2 Background

Computer graphics modeling had only been for rigid objects until Barr

introduced global deformation technique, more than two decades ago (Barr. 1984).

The idea behind this method is to apply another transformation to existing

transformation before transformation is applied to the objects. In order to allow more

deformation control over the objects, Sederberg introduced free form deformation

(Sederberg et al. 1986). The method models non solid object behaviour by changing

the object according to the changes experience by enclosing lattices. Both methods

have been used extensively in 3D modelling tools and CAD tools. However, both

deformation methods lack one crucial feature, and that is physical behaviour.

In order to allow physical behaviour to the deformable object, Terzopoulos

proposed an elastic physical based deformation method in 1987 for use in pre-

computed computer generated animations (Terzopoulos et al. 1987). Later, he

introduces inelastic physical behaviour such as viscoelasticity, plastic and fracture

(Terzopoulos and Fleischer, 1988). Then in 1989, he presents a method to model the

behaviour of fluid like molten objects (Terzopoulos et al. 1989). Generally,

Terzopoulos and his colleagues proposed methods that are based on simplification of

elasticity theory to model various physical behaviours for use in pre-computed

computer generated animations.

The behaviour of deforming objects is the topic of continuum mechanics, a

branch of mathematics that tries to capture physical phenomena of continuous media

in precise mathematical formulations. One branch of continuum mechanics,

nonlinear elasticity, provides the mathematical description of how objects deform.

Finite element method discretize infinite dimensional problem into systems of

equations with a finite number of variables, to accurately describe physical based

 4

deformation behaviour. However, due to the nature of the system and the complexity

of the method, the method cannot be applied directly to real time animation systems.

Thus, Bro-Nielsen proposed a fast finite element method for use in virtual

surgery environment (Neilson and Cotin, 1996). He uses condensation techniques to

reduce the complexity of the system equations and thereby achieve a considerable

speed-up compared to the volumetric models in (Cotin et al. 1996). The effect of

using condensation techniques is low generality of the simulations, i.e. no rapid

displacement, no great displacement. Based on the principle of superposition, Cotin

proposed a higher generality deformation system (Cotin et al. 1999). Although the

method experienced high frame rate, it was implemented on low resolution mesh.

Furthermore, pre computation method used does not permit topological changes to

the deformable objects.

By using high resolution mesh, the deformation behaviour can be modeled in

higher accuracy. The problem with high resolution mesh is that it costs more

computational resources. To reduce computational resources, several researchers

have opted to use multi-resolution method in the mesh domain. Debunne uses

automatic space and time adaptive object representation level of detail technique to

allow local refinement or simplification of the computation model based on local

error measurement (Debunne et al. 2001). Krysl uses adaptive local finite element

mesh refinement using wavelet theory to accelerate finite element deformation

(Krysl et al. 2003). Although both methods produce acceptable frame rates on high

resolution mesh, they still suffer from high computation required by finite element

method.

Another way to reduce deformation processing time is by using simpler

physics method, such as mass-spring systems. Mass-spring systems describe the

deformable object as nodes connected by springs. It is commonly used in cloth

simulation (Breen et al. 1994), (Volino and Thalmann. 1997), (Bridson et al. 2003),

(Baraff and Witkin, 1998), (Provot, 1995), (Choi and Ko, 2002) and (Baraff et al.

 5

2003). To model deformation for volumetric objects, the deformable object must first

be discretized as one would with finite element method. The prominent problem of

mass-spring systems is numerical instability under large time step (Baraff and

Witkin, 1998). For large number of mass-spring nodes, the simulation system

quickly converges error and became unstable. One solution to the stability problem is

Verlet integrator, which capable of maintaining stability even for large number of

nodes (Jacobsen 2003). Unfortunately, for deformable object with extremely large

number of nodes, mass spring system is still too slow to be used for interactive

systems.

By using simple mathematical approach for deformation processing, Gibson

proposed a fast deformation method for extremely large number of nodes (Gibson,

1997). The method known as ChainMail, perform deformation based on nodes

distance constraint. However, due to the used of simple distance constraints for

deformation instead of continuum-based physics, the resulting behaviors are not

physically convincing. Plus, it is hard to define real world materials. Nevertheless,

ChainMail contributed new approach in the field of deformable object modeling by

introducing force propagation method. Force propagation method works like sound

wave effect in the sense that areas near contact are first displaced and displacements

are propagated throughout the object.

Since the introduction of ChainMail, there are many improvements on the

force propagation method made by various researchers. To introduce physical-based

deformation on ChainMail, Dusyak and Zhang presented an improvement method to

the ChainMail algorithm by combining the ChainMail algorithm with a modified

mass-spring system (Dusyak and Zhang, 2004). The result is a high speed simulation

of physical-based deformation but the author does not describe multiple contacts

handling, which apparently seems to be the problem. Another improvement to the

ChainMail is by the work from Grimm et al.; in which deformation behaviors for

surface deformations were improved by using dynamic length spring constraint

based on distance to the source of collision (Grimm et al. 2004). Like Dusyak and

Zhang, the author did not describe how to handle multiple contacts at all. Also, the

 6

algorithm was tested for surface deformation only. Choi et al. used static selection of

neighbouring nodes to handle deformation (Choi et al. 2002, Choi et al. 2003). One

critical problem of the algorithm is that the deformation area cannot be scaled as

needed. A special method is required to handle multiple contacts. Another

improvement to the ChainMail algorithm is made by Park et al. who extended

ChainMail algorithm by preserving original shape by keeping track of the direction

vector from current node position to the original node position (Park et al. 2002).

This research tries to find solutions to the above mentioned problems noted

by previous researchers.

1.3 Problem statement

The advent of hardware acceleration rendering support has made geometry a

popular choice for real time and interactive applications rendering. With increasing

complexity of 3D geometric data and growing demand for realistic deformation

functionality, significant effort is being devoted to the design of robust, fast, and

scalable algorithms for geometry deformation processing. The problem for

volumetric object lies within the fact that it consists of internal structure that requires

deformation processing. To achieve high degree of deformation accuracy, classical

physics based on continuum mechanics (for computing construction stress) are used

for deformation processing. Deformation processing usually consists of dynamics

formulation integration throughout the deformable objects. Deformation processing

usually involves up to millions of every internal volume elements for a complex

geometry object, thus sacrificing interactivity. Managing large sets of data for high

speed data transfer under limited available memory storage requires special attention

to ensure interactivity.

 7

For small deformation based on concentrated loads, the largest primitive

elements’ (vertices) displacements are on the area near applied concentrated loads.

The further the elements distance from the contact point centre, the lesser force

experienced by the elements. This is due to the damping forces conducted by every

passing element during force propagation. Similar phenomena can be observed by

softly touching a pillow. Notice that only small area near touched area are deformed.

Traditional deformation methods perform deformation processing throughout the

object even if the vertices did not experience noticeable deformation or if the vertices

did not experience any deformation at all. Based on this observation, this research

proposed a deformation method where deformation will be process on the areas that

are most likely to experience noticeable deformation for non critical interactive

applications. This way, the effect upon having high geometry deformable objects

seems transparent for total application performance as the system only process

deformation for a limited sets of elements.

This research addresses the deformation processing problem for small

deformation situations. The hypothesis is stated as:

The cost of deformation processing can be reduced by only deforming small

areas (or regions, nodes, vertices etc) that are most likely will undergo deformations.

 8

1.4 Objectives

It is desirable to put computation resources where it will be most beneficial.

To this effect, this research outlines the most critical objectives as follows:

1. To inquire into appropriate deformable objects representation.

2. To investigate, analyze and formulate an appropriate technique for collision

response encompassing deformable objects adequate for interactive

application.

3. To develop an algorithm of collision response for deformable body motion.

4. To design and develop a real-time simulation model based on objects

representation and handling of real-time collision response.

1.5 Scopes

The scopes of this project are as follows:-

• Deformable volumetric objects are represented geometrically.

• Objects are manifold and do not experience topological changes such as

cutting and fracture.

• Deformations are performed based on concentrated loads.

• Object deformations are fully elastic. Deformed objects should return to its

original state after removal of applied external forces.

• Interactions are described as single manipulator tool versus deformable object

vertex.

• No volume preservation.

• No frictional forces will be considered.

 9

1.6 Dynamic selection-based method

This research proposed an algorithm known as dynamic selection-based

method. In short, the algorithm reduces the cost of deformation processing by

dynamically select small areas for deformation. It is used with mass-spring system as

the main deformation system.

Figure 1.1 Example of dynamic selection-based method.

 10

Dynamic selection based method is highly inspired by force propagation

theory. Known as ChainMail, it was first introduced for deformable modeling by

Sarah F. Gibson (Gibson. 1997). Based on the reviews, ChainMail doesn’t seem to

include any physical based justification in its deformation. In depth discussion of this

topic are available in Chapter 4.

1.7 Results

The results from this research are summarized as follows:

Object representation: Deformable objects are represented using mass-

spring model.

Reduced area for deformation: For every frame, deformable object is

evaluated for deformation. The result from the evaluation is a small area of

deformable object that will be selected for deformation. Similar in nature to

ChainMail (Gibson 1997), this will reduce required deformation processing time as

only small areas are actually deformed per frame.

Dynamically enlarge or shrink deformation area: Unlike previous

deformation method inspired by force propagation, dynamic selection based method

can dynamically enlarge or shrink deformation areas. Previous works usually either

resort to static range of areas (Choi et al. 2003) or propagate over the deformable

object infinitely (Dusyak and Zhang. 2004). Other methods that can dynamically

enlarge or shrink deformation area do not have physical-based justifications in their

deformations.

Scalable for either performance or accuracy: In order to tackle broad

range of applications, dynamic selection-based method allows the user to tinker with

the parameter settings. These settings enable the application to be tuned either for

high accuracy or high performance. Chapter 5 provides testing result of different

parameter settings.

 11

1.8 Summary of chapters

This section presents a brief overview of the content of this report.

Chapter II: An overview of previous works on deformation method, real-

time performance strategy and force propagation-based method.

Chapter III: Implementation planning was outlined here. Acceleration

strategies were described along with its justifications. Both hardware and software

specification requirements are discussed here.

Chapter IV: Detail discussions on implementation starting from building the

data, algorithm loops and algorithm.

Chapter V: Results and benchmarks of the research. It provides analytical

performance results, discussion of various issues regarding the performance and

quality of deformation behaviors of the proposed algorithm.

Chapter VI: Summary of the report. It reflects on the objectives

achievements, contributions and future work.

CHAPTER II

LITERATURE REVIEW

2.1 Overview

In this chapter, elementary theories and techniques that are relevant in

volumetric object deformation are discussed. Presented next are literatures for both

non-physical-based modeling and physical-based modeling of deformable objects.

Then, the discussion will cover previous work on real-time acceleration techniques.

2.2 Introduction

In engineering mechanics, deformation is a change in shape due to an applied

force. This can be the result of tensile, compressive, shear, bending or torsion forces

etc. Deformable materials can be distinguished by three states of matter; solid, liquid

and gas. Some examples of deformable objects are sponge, water and smoke. Two

major distinctions on deformable objects modeling are of animation applications and

of editing applications. Animation applications usually deal with methods which

animates the nature of deformation as a function of time. For example, cloth tools in

 13

most 3D animation package where cloth deformations are simulated for scene

environment throughout animation time. Often considered as physical-based

deformations, the cloth tools tries to find the equilibrium state for the cloth based on

interacting forces. For deformable objects editing, there will be a mechanism or

method which facilitates the deformation of object deformations. For example, free

form deformation tools available in most 3D animation packages where the objects

are deformed to satisfy constraint that are manipulated by user. Often considered as

non-physical based deformation, the free form deformation method will displace

primitives (with specific constraints) until it reached a new position which satisfies

the constraints.

Physical-based deformation for solid objects (non-liquid and non-gaseous

matter), based on theory of elasticity, can be either be elastic or inelastic (plastic).

Elastic objects are objects that return to their original states after removal of applied

forces. Contrary to elastic objects, inelastic objects are objects that do not return to

their original state after applied forces have been removed due to atomic plane

dislocation in the real materials. Technically, all objects should be considered

inelastic, due to the fact that every object can experience atomic plane dislocation.

But due to performance reason, most objects that behave elastically during the

simulation can be considered as elastic objects. Fundamental measurements of

deformed object are by its dimension; length for one dimensional objects, surface

area for two dimensional objects and volume/bulk for three dimensional objects. For

three dimensional cases, deformable objects are represented with volumes that have

both surface structure and internal structure. There are three types of forces;

concentrated loads, distributed loads over the body and distributed loads over the

surface of on object. Concentrated loads are forces applied at discrete points.

Example of concentrated loads is force exerted when a pencil tip is pressed onto a

pillow. The second type of force is loads distributed over the body. Such is

gravitational force. The final type of force is loads distributed over the surfaces of the

object. Air pressure and water pressure is good example of loads distributed over the

surfaces.

 14

Volumetric deformable objects can be represented by geometric mesh, iso-surface,

voxels, points etc. Geometric mesh-based rendering can be accelerated efficiently by

3D hardware compared to other methods of rendering.

Figure 2.1 Taxonomy of deformable objects for this research.

2.3 Deformable objects modeling

Deformable objects application varies in input data, degree of required

accuracy, user interaction and material flexibility. Usually, to suit for specific

 15

application requirements, the application traded off less important simulation

features to provide the desired features more computational power.

2.3.1 Input data

Since current 3D hardware has matured enough to support geometric

rendering, the focus of this research will be on techniques to acquire geometric data.

Geometric data can be acquired by designing, 3D scanner, diagnostic radiology or

from mathematical models. Modeling tools such as Autodesk® 3ds Max®, Autodesk®

Maya®, NewTek Lightwave 3D®, Robert McNeel & Associates Rhinoceros®

NURBS modeling allow designers to create, edit and analyze vertices, lines, curves,

planes, surfaces and solids to produce the desired objects. These data can be saved as

geometry, mathematical parameters or boundary elements (constructive solid

geometry, boundary representations). To acquire data from real world object, one can

use 3D scanners available from Cyberware, Northern Digital Inc. and Cognitens Ltd.,

to name a few. Data acquired using laser scanning, electromagnetic resonance or

multiple sets of 2D images reconstruction, are highly accurate compared to artist

impression of the objects. Diagnostic radiology enables one to get information of a

particular object including both surface and its underlying structure. By analyzing

reflection, penetration or emitted energy of transmitted light wave (x-ray),

electromagnetic wave, sound wave (ultrasound) or nuclear energy, underlying

structure can be constructed without the need to cut the physical objects. These

methods of data acquisition are very useful in medical applications as no significant

harm done to the patient to get the underlying structure image. Some example of x-

ray imaging equipment is computer tomography scan (CT scan), athrography and

mammography. Hysterosonography use ultrasound waves to show structures in the

human body. The sound waves reflect off internal organs and other anatomic

structures to create images. Magnetic resonance imaging (MRI) is a method of

producing extremely detailed pictures of body tissues and organs using

electromagnetic energy. Electromagnetic energy that is released when exposing a

 16

patient to radiofrequency waves in a strong magnetic field is measured and analyzed

by a computer, which forms two- or three-dimensional images that may be viewed

on a TV monitor. Nuclear medicine is a subspecialty within the field of radiology. It

comprises diagnostic examinations that result in images of body anatomy and

function. The images are developed based on the detection of energy emitted from a

radioactive substance given to the patient, either intravenously or orally. Voxelman

register together data from various sources (CT, MRI, X-ray) to create visualization

of human skull anatomy. Data acquired using diagnostic radiology has to be

reconstructed as geometric data before performing geometric deformation.

Geometric data can also be generated by mathematical models using fractal, implicit

method or by spline-based technique.

Figure 2.2 Catheter Angiography : X-ray equipment is mounted on a C-shaped

gantry with the x-ray tube itself beneath the table on which the patient lies. Above

the patient is an image intensifier that receives the x-ray signals, amplifies them, and

sends them to a TV monitor.

 17

Figure 2.3 CTA scan equipment.

Figure 2.4 MRI equipment.

 18

Figure 2.5 Ultrasound (sonography) equipment.

Figure 2.6 Voxelman showing registration of several data sources.

To perform deformation, the object need to have some kind of deformation

weight or coefficient. These material properties can either be manually defined or by

analytical procedure. Kawabata Evaluation System (Kawabata, 1980) (House and

 19

Breen, 2000) is a standard set of fabric measuring equipment that can measure the

bending, shearing and tensile properties of cloth. The equipment measures force or

moment that is required to deform a fabric sample of standard size and shape, and

produces plots of force or moment as a function of measured geometric deformation.

From physics literature (Yong and Nagappan, 2003) (Cutnell and Johnson, 1995),

material properties can be divided into five phases; limit of proportionality, elastic

limit, yield point, breaking stress and breaks (as illustrated in Figure 2.7).

stress
plastic deformation

elastic deformation A = limit of proportioanlity
B = elastic limit
C = yield point
D = breaking stress
E = breaks

strain
O

ABC D E

Figure 2.7 Stress strain graph indicates elastic and plastic (inelastic)

deformations.

 20

stress stress

stress stress

b) non-linear elasticity a) linear elasticity

stress stress

Figure 2.8 Stress strain graph showing multiple type of relation for deformations.

Table 2.1 Values for the Young’s modulus of multiple solid materials. (Cutnell

and Johnson, 1995)

Material Young’s Modulus Y (N/m2)

Aluminium 6.9 x 1010

Bone Compression 9.4 x 109

Bone Tension 1.6 x 1010

Brass 9.0 x 1010

Brick 1.4 x 1010

Copper 1.1 x 1011

Mohair 2.9 x 109

Nylon 3.7 x 109

Pyrex glass 6.2 x 1010

Steel 2.0 x 1011

Teflon 3.7 x 108

Tungsten 3.6 x 1011

stress stress

increasing increasing
stress stress

decreasing decreasing
stress stress

c) non-linear elasticity
(rubber)

d) non-linear inelasticity
(polythene)

 21

2.3.2 Data complexity

Usually, in computer graphics term, complex polygonal object refers to

object with large number of polygons. Since computers have limited total triangle fill

rate per second, reducing the poly count is always a better choice, as long as the

object maintains its original looks. For deformable object modeling, this is not

usually the case. Object with low poly counts can still slows the system down. This is

due to the cost of deformation calculation for every primitive element of the objects,

which is expensive. Different algorithm varies in its computation cost, but at the end,

the bottleneck is usually the CPU processing power, not the GPU processing power.

Thus, for deformable object, it is recommended to reduce the geometry of

deformable object representation as long as it can undergo deformation to the

required extent with acceptable results.

Another thing to consider is mathematical complexity of the deformation

process. To achieve accurate results, one has to resort to use accurate computation

techniques usually originated from mechanical dynamics in physics. These accurate

techniques are suitable for highly risky simulation such as virtual surgery. But, a

large number of computation tends to prevent the simulation to be performed in

interactive manner. Mathematical complexity can be reduced by using simpler

ordinary differential equation solver (Teschner et al. 2004), assuming fixed state

(Matyka, 2003), pre-compute complex computation (D. L. James and Fatahalian,

2003) etc..

Different deformation techniques vary in its object representation memory

consumption. Complex object requires enough memory to store its large geometric

structure including internal geometric structure and its material properties.

Additional memories are required to store its auxiliary data, such as pre-computed

function, coherence cache and temporary variables. This large memory requirement

poses challenges on memory storage and data access rate for real-time physical-

based simulation and interaction.

 22

2.3.3 Accuracy

Required accuracy varies between different types of applications. Depending

on the application requirements and involved risk, end results can either be

interactively manipulated, physically realistic or physically plausible. Deformation

accuracy can be divided into three; geometric accuracy, mathematical accuracy and

physical accuracy. To achieve high geometric accuracy, virtual object must closely

resemble its real world counterpart. High mathematical accuracy can be achieved by

using accurate computation technique. For example, there are multiple ordinary

differential equation solvers, and most of them will accumulate precision error over

time. Choosing the most precise technique will delay noticeable inaccuracies and

maintain the system stability for a longer period of time. Simulating deformation true

to the atom level is very expensive as even the smallest visible object contains large

number of atoms. Even when the technologies are able to simulate deformation by

displacing atoms, the visual difference is hardly noticeable and less required for

mainstream applications. Approximating physical accuracy can be done in various

ways such as neglecting small deformation factor, assuming the material is a

anisotropic or non-heterogenous material and assuming linear elasticity deformation.

2.3.4 Interactivity

In computer graphics modeling, it is essential to have deformation tools that

are robust and fast enough to be used interactively. Simple deformation technique

like global deformation (Barr, 1984) is very limited in its deformation ability

compared to free form deformation (Sederberg and Parry, 1986). Unlike non-

physical-based deformation, physical-based deformation does not really permit user

interaction as the object responds to applied forces rather than constraint modifier. If

 23

the interactions are known and limited, deformation can be pre-computed to enable

user interaction.

It is desirable to have user control (to some degree) over the deformable

objects deformation motion instead of giving the dynamics formulation a total

control. This is especially true for computer animation and cartoon animation as it

can give animated characters unique behaviors.

2.3.5 Flexibility

Deformation robustness and flexibility are the ability of the deformation

technique to support heterogeneous tissues, topological changes and material

parameters changes. Human tissues consist of multi-layered, varied stiffness

materials. Terzopoulos and Waters apply dynamic mass-spring system to facial

modeling by constructing a three layer mass-spring mesh of dermal, fatty and muscle

layer (Terzopoulos and Waters, 1990). Under certain conditions such as when

elasticity limit are over stress, physically-based deformable objects experienced

topological changes to its primitives representation which not only the object never

retain the initial shape, but can be either ductile, fractured, tore, brittle or cut.

Reconstructing geometry topologies pose a problem for real-time deformation

especially for complex geometry. Elasticity coefficient for deformable object

sometimes changes under different simulated environment. For example, it is easier

to deform a hot plastic than a colder one due to additional energy vibrating the atom

plates. Other examples of changing material parameters phenomena are mechanical

wear, melting and hardening.

 24

2.4 Non-physical based modeling

3D designers require precise deformation tools which give them total

deformation control. These tools usually come as purely geometric modification

tools which do not include any physical justifications in its deformation process. The

output relies on the skill of the designer and how much control the deformation

technique provides. Three most popular non-physical based modeling techniques are

discussed as follows; global deformation, parametric representation and free form

deformation.

2.4.1 Global deformation

In 1984, Barr introduced global deformation technique by extending the

classical linear transformation operation (Barr. 1984). The idea behind this method is

to apply another transformation to existing transformation before it is applied to the

object. The available deformations are tapering, twisting and bending. Given a

function for the transformations:

)(),(),(zFZyFYxFX zyx === ,

where (x, y, z) are vertices in undeformed state, and

(X, Y, Z) is the deformed vertex.

Object is tapered by choosing a tapering axis and differentially scales the

other two axis components, setting up a tapering function along tapering axis. For

example of tapering an object along its z-axis, zZryYrxX === ,, , where

is the tapering function either linear or non-linear. To globally twist the

object, use differential rotation just as tapering is a differential scaling. To twist an

object through an angle

)(zfr =

θ about the z-axis, we apply

),cossin,sincos(),,(zyxyxZYX θθθθ +−=

 25

By varying the amount of rotation as a function of z, the object will become twisted.

This is done by setting)(zf=θ where f(z) specifies the rate of twist per unit length

along the z-axis. To bend an object along y-axis, the deformation transformation is

given by

xX =

⎪
⎩

⎪
⎨

⎧

>−++−−
<−++−−

≤≤+−−
=

−

−

−

maxmax0
1

minmin0
1

maxmin0
1

)(cos)(sin
)(cos)(sin

)(sin

yyyyykz
yyyyykz

yyyykz
Y

θθ
θθ

θ

⎪
⎩

⎪
⎨

⎧

>−++−
<−++−

≤≤+−
=

−−

−−

−−

maxmax
11

minmin
11

maxmin
11

)(sin)(cos
)(sin)(cos

)(cos

yyyykkz
yyyykkz

yyykkz
Z

θθ
θθ

θ

where is the bending region, is the radius of curvature of

the bend, the center of the bend is at

maxmin yyy ≤≤ 1−k

0yy = , the bending angle is)'(0yyk −=θ and

⎪
⎩

⎪
⎨

⎧

≥
<<

≤
=

maxmax

maxmin

minmin

'
yyy

yyyy
yyy

y

Baraff and Witkin (Baraff and Witkin, 1992), uses connected global

deformation elements to create flexible object deformation systems.

Global deformation can be easily implemented into existing application since

the deformation transformation and classical transformation are similar in nature.

The main setback for this method is that the deformation is limited to the three

previously mentioned types of deformation. Also, small deformation cannot be

performed using global deformation as they always deform the objects as a whole.

 26

Figure 2.9 Structures deforming global deformation example. Top, original cube

and Utah teapot followed by tapering, twisting and bending deformations. (Watt and

Watt, 1992)

2.4.2 Parametric representation

By defining the object as parametric surfaces, users are given the ability to

deform the surface by altering the functional description of the surface in the sense of

displacing the control points. The first representational form or basis is due to Bézier,

who was the originator of an early CAD system, UNISURF, used by Renault, a

French car manufacturer.

 27

Figure 2.10 Examples of NURBS surface.

Given a set of n + 1 control points the corresponding Bézier

curve (or Bernstein-Bézier curve) is given by

,,...,, 10 nPPP

∑
=

=
n

i
nii tBPtC

0
,),()(

where is a Bernstein polynomial and)(, tB ni]1,0[∈t . These functions are scaled or

weighted by , the network of control vertices, to form the surface patch. A cubic

Bézier patch, an extension to the Bézier curve, is given by,

iP

∑∑
==

=
3

0

3

0
)()(),(

j
jiij

i
vBuBPvuQ .

Bézier patch always passes through the first and last control points and lies within

the convex hull of the control points. Undesirable properties of Bézier patch are their

numerical instability for large numbers of control points, and the fact that moving a

single control point changes the global shape of the patch. The former is sometimes

avoided by smoothly patching together low-order Bézier patch. The movements of

the control points are constrained by continuity constraint between control points.

These continuity constraints introduced two undesirable effects. First, undesirable

plateau effect in the deformation is introduced if the deformation only displace the

control points and not both control points and the continuity constraints. Second, it is

impossible to achieve localize deformation since the continuity constraints may be

propagated throughout the patch.

 28

A generalization of the Bézier curve is the B-spline curve. As an

improvement over the Bézier representation, B-spline are superior over the Bézier

method within the context of deformation as B-Spline does not require continuity

constraint and this gives the user the ability to perform localize deformation. Since

the absence of continuity constraint, B-spline curve restricted the deformation by

control points to only specific known region thus giving better control to the

deformation made by the user.

2.4.3 Free form deformation

Figure 2.11 Right, local free form deformation. Left, global free form

deformation. (Sederberg et al., 1986)

In 1986, Sederberg developed a technique that is more flexible than global

deformation known as free form deformation (Sederberg et al. 1986). This technique

defines a free-form deformation of space by specifying a trivariate Bézier solid,

which acts on a parallelpiped region of space. Instead of deforming the object

directly, this technique embeds the object in a defined space that is then deformed.

The object is deformed according to the deformation that the embedding space

 29

undergoes. The embedding space called FFD block, are actually hyperpatches

connected together to form a piecewise Bézier volume.

Figure 2.12 Extended free form deformations (Coquilart, 1990). Top left, a sphere

deformed with a parallelepiped lattices. Top right, a sphere deformed with a

cylindrical lattice. Middle left and right, deformed lattice and the deformed surface.

Bottom left and right, resulting sand pie.

A single tricubic Bézier hyperpatch is defined as

∑∑∑
===

=
3

0

3

0

3

0
)()()(),,(

k
kjiijk

ji
wBvBuBpwvuq ,

 30

where , and are the Bernstein polynomials of degree 3. The

undeformed FFD block consists of a rectangular lattices of control points arranged

along three mutual perpendicular axes. The end result is a parallelepiped with lattices

as control points attached. To deform an object using free form deformation method,

we must first determine the positions of the vertices in the lattice space. Then deform

the FFD block by displacing the control points from the undeform lattice positions.

Finally, determine the deformed positions of the vertices by finding the relevant

hyperpatch within which the vertex is located and convert to the local coordinate

system of the hyperpatch.

)(uBi)(vB j)(wBk

This method can be used to apply localized deformation or to deform the

whole object. Multiple FFD block can be defined in piecewise manner to perform

deformation that is not possible to be done by using just a single FFD. For modeling

complex deformation and specific small region of deformation, careful placement of

FFD block by the user is required. However, the large number of FFD blocks would

be inefficient to render.

Unlike free form deformation by Sederberg, Coquilart’s extended free form

deformation does not define any specific FFD lattice space (Coquillart, 1990).

Coquilart states that parallelepiped shaped FFD block puts constraints onto the shape

of the deformation and introduced nonparallelepiped lattices as the EFFD lattice

space. To construct the EFFD block, users are required to weld several elementary

blocks, which is the classic FFD blocks, together. As with FFD, to perform

deformation, EFFD lattices need to be displaced. The deformation processing is very

similar to that of previously discussed FFD except that unlike FFD, in EFFD, we

cannot assume simple connection between the two adjacent spaces because lattice

space of EFFD does not aligned with EFFD object space.

 31

Figure 2.13 Hirota’s volume preserving method. Letf, original shape. Center, after

free form deformation is applied. Right, unconstrained lattices are displaced to

preserve original volume (Hirota et al, 1999)

To preserve the total volume of solids undergoing free form deformation,

Hirota uses discrete level of detail representations (Hirota et al., 1999). Given the

boundary representation of a solid and user-specified deformation, the algorithm

computes the new node positions of the deformation lattice, while minimizing the

elastic energy subject to the volume-preserving criterion. During iterations, a non-

linear optimizer computes the volume deviation and its derivatives based on a

triangular approximation, which requires a finely tessellated mesh to achieve the

desired accuracy. To reduce the computational cost, Hirota exploit the multi-level

representations of the boundary. This technique also provides interactive response

by progressively refining the solution. Furthermore, it is generally applicable to

lattice-based free-form deformation and its variants. This method is capable of large

deformation, efficiently. It gives designers and engineers real-time visual feedback

and an intuitive physical feel of free-form solids, during geometric design and shape

modification.

Exact shape and point placement is difficult to achieve with traditional free

form deformations. This is due to the free form deformation interface which permits

users to deform using only control points. Hsu et al. introduced a free form

deformation method that allows user to control a free form deformation of an object

by manipulating the object directly instead of using control points (Hsu et al., 1992).

The method computes necessary alteration to the control points of the free form

deformation spline using least square approach that will induce the point’s

placements.

 32

Figure 2.14 Deformable teapot is animated using dynamic global free form

deformation. (Faloutsos et al., 1997)

Faloutsos et al. extends the use of free form deformation to a dynamic setting

by coupling physical dynamics with free form deformation (Faloutsos et al., 1997).

The method is based on parameterized hierarchical FFDs augmented with

Lagrangian dynamics, provides an efficient way to animate and control the simulated

characters. Objects are assigned mass distributions and elastic deformation

properties, which allow them to translate, rotate, and deform according to internal

and external forces. First, the dynamics generalization of conventional geometric free

form deformation is formulated. The formulation employs deformation modes which

are tailored by the user and are expressed in terms of free form deformations.

Second, the formulation accommodates a hierarchy of dynamic free form

 33

deformations that can be used to model local as well as global deformations. Third,

the deformation modes can be active, thereby producing locomotion.

2.4.4 Pros and Cons

The main strength in parametric representation-based surface deformation is

the ability to maintain object smoothness under any deformation complexity. Users

are given total deformation control up to the control point complexity level. Due to

this feature, parametric-based surface deformation is widely used in computer-aided

design and model editing application.

Parametric-based surface deformation is not without its limitation. Since the

object representations are defined as sets of parametric surfaces, the deformation

detail level depends on the quantity of the control points. It is impossible to apply

localized deformation in between control points. Re-meshing the parametric surfaces

introduced aliasing that may not accurately reflect the intended deformation due to

continuity of the constraints. It is difficult to represent object parametrically

especially for objects possessing complicated topology. It is impossible to deform

volumetric object while at the same time preserve its volume, since objects

represented as parametric surfaces hold no volume information whatsoever.

Eventually, simple deformation requires the adjustments of multiple control points or

reconstructing the control points altogether which is very tedious.

Global deformation, FFD and EFFD provide higher level control than

deformation based on parametric surfaces. While global deformation only provides

limited sets of deformations, FFD allows user to manipulate its deformation

constraints anyway they like. However, FFD also has its setbacks. The first two

techniques are limited in permitting deformations as the techniques constraints the

 34

deformation with its static deformation constraint but the latter provides a powerful

tool as it gives the user the ability to construct the deformation constraint.

2.5 Physical-based modeling

Physical-based modeling uses physical principles to model realistic behavior

of deformable models. This method uses more computational power than non-

physical based method but the result is more convincing compared to the non-

physical based method. Integration between physical principle and computer

graphics for deformable object modeling was pioneered by Terzopoulos

(Terzopoulos et al. 1987) (Terzopoulos et al. 1988) (Terzopoulos et al. 1989). Two

most common and well known physical-based methods are finite element method

and mass-spring method. On the other hand, two of the most recently proposed

methods for physical-based modeling are known as mesh-free method and gas-based

method. Here, basic physical-based method for deformable object will be discussed

along with each method subsequent extension techniques.

2.5.1 Finite element method

The behavior of deforming objects is the topic of continuum mechanics, a

branch of mathematics that tries to capture physical phenomena of continuous media

in precise mathematical formulations. One branch of continuum mechanics,

nonlinear elasticity, provides the mathematical description of how objects deform.

 35

Continuum mechanics describes materials in terms of partial differential

equations. The Finite Element Method (FEM) is a discretization method. It

transforms a continuous, infinite-dimensional problem into systems of equations with

a finite number of variables. For mechanical problems, the FEM discretizes the

equations of motion; hence it delivers a system of ordinary differential equations,

i.e., equations where time still has a role. There are two ways to deal with these

systems: compute the evolution of the system, or try to find the final equilibrium

solution directly. If the final state of the system is all that matters, a static method can

be used. By assuming that velocity and acceleration are null, the system of

differential equations is changed into a normal system of equations. For many

mechanical problems, these equations can be stated in terms of finding minimum

energy solutions. If transient effects do matter, then the evolution of the differential

equations must be calculated using a time-integration method. Basically, the

problems come from the simulation of soft tissue. Although simulating the full

mechanical characteristics of soft tissue is not possible in an interactive setting, it is

instructive to study exactly what kinds of characteristics are ignored in the

simulations. It is not surprising when most implementation tends towards

simplifications since the constraints of an interactive simulation do not allow for

much sophistication.

To sum it up, the finite element method finds an approximation for a

continuous function that satisfies an equilibrium condition which follows from the

variation or weak formulation of the problem. The discretization of the problem

consists of decomposing its domain into a mesh of carefully selected elements,

joined at discrete nodes. The solution of the variational equation is expanded as a

weighted sum of finite element basis or shape function on each element. Continuity

across element boundaries is achieved by sharing discrete nodes and thus finite

element weights. As a next step, the contributions of each element are assembled into

a global system of equations which then can be solved for the shape function

weights.

 36

To analyze the stress in various elastic bodies, calculate the strain energy of

the body in terms of nodal displacements and then minimize the strain energy with

respect to these parameters - a technique known as the Rayleigh-Ritz. In fact, this

leads to the same algebraic equations as would be obtained by the Galerkin method

but the physical assumptions made (in neglecting certain strain energy terms) are

exposed more clearly in the Rayleigh-Ritz method.

In all cases, the finite elements steps are:

1. Evaluate the components of strain in terms of nodal displacements.

2. Evaluate the components of stress from strain using the elastic material

constants.

3. Evaluate the strain energy for each element by integrating the products of

stress and strain components over the element volume.

4. Evaluate the potential energy from the sum of total strain energy for all

elements together with the work done by applied boundary forces.

5. Apply the boundary conditions, e.g., by fixing nodal displacements.

6. Minimize the potential energy with respect to the unconstrained nodal

displacements.

7. Solve the resulting system of equations for the unconstrained nodal

displacements.

8. Evaluate the stresses and strains using the nodal displacements and element

basis functions.

9. Evaluate the boundary reaction forces (or moments) at the nodes where

displacement is constrained.

 37

Figure 2.15 Three type of geometry discretization using gmesh (Geuzaine and

Remacle, 2005).

Figure 2.16 ‘Happy Buddha’ and its sliced tetrahedral mesh version. The model is

discretized using tetgen (Si, 2005)

 38

Figure 2.17 Taxonomy for finite element method from mechanical physics view.

 39

Figure 2.18 Top,the three standard solid element geometries: tetrahedron (left),

wedge (center) and brick (right). Only elements with corner nodes are shown.

Middle, regular 3D meshes can be built with cube-like repeating mesh units. Meshes

are built with bricks, wedges or tetrahedra. Bottom, two nonstandard solid element

geometries: pyramid and wrick (w(edge)+(b)rick). Four faces meet at corners 5 and

7, leading to a singular metric.

Solid elements are three-dimensional finite elements that can be used to

model solid bodies and structures without any a priori geometric simplification.

Finite element models of this type offer the advantage of directness. Geometric and

constitutive assumptions required to produce dimensionality reduction, for example

to planar or axisymmetric behavior, are avoided. Boundary conditions can be more

realistically treated.

 40

Another attractive feature is that the finite element mesh visually looks like

the physical system. This directness does not come for free. It is paid in terms of

modeling, mesh preparation, computing and post-processing effort. To keep these

within reasonable limits it may be necessary to use coarser meshes than with two

dimensional models, which in turn may degrade accuracy. Its use should be restricted

to problems and analysis stages, such as verification, where the generality and

flexibility of full 3D models is warranted.

Two dimensional (2D) finite elements have two standard geometries:

quadrilateral and triangle. All other geometric configurations, such as polygons with

five or more sides, are classified as nonstandard or special. Three dimensional (3D)

finite elements offer more variety. There are three standard geometries: the

tetrahedron, the wedge, and the hexahedron or “brick”. These have 4, 6 and 8

corners, respectively, with three faces meeting at each corner. These elements can be

used to build topologically regular meshes. There are two nonstandard geometries

that deserve consideration as they are occasionally useful to complete generated 3D

meshes: the pyramid and the wrick. (The latter term is a contraction of “wedge” and

“brick”) These have 5 and 7 corners, respectively. One of the corners is special in

that four faces meet, which leads to a singular metric there. This singularity

disqualifies these elements for use in stress analysis in highly stressed regions.

However they may be acceptable away from such regions, and in vibration analysis.

Both standard and nonstandard elements can be refined with additional mid side

nodes. These refined elements are of interest for more accurate stress analysis. Of

course, the mid side nodes may be moved away from the midpoints to fit curved

geometries better. The best choices of elements and interpolation functions depend

on the object shape, convergence requirements, degree of freedom, and trade-offs

between accuracy and computational requirements. In general, using elements that

have more nodes and more complex interpolation functions require fewer elements

for the same degree of accuracy.

 41

Consider isoparametric solid elements with three translational degrees of

freedom (DOF) per node. Most of the development of such elements can be carried

out assuming an arbitrary number of nodes n. In fact a general “template module”

can be written to form the element stiffness matrix and mass matrix. Nodal quantities

will be identified by the node subscript. Thus {xi , yi , zi } denote the node

coordinates of the ith node, while {uxi , uyi , uzi } are the nodal displacement DOFs.

The shape function for the ith node is denoted by Ni . These are expressed in term of

natural coordinates which vary from element to element.

Figure 2.19 A simple finite element method deformable object in action. Image is

taken from project Xplodar (Pranckevicius). High contrast red denotes high stress

area while bright white denotes less stress area. Even though the simulation is

performed in real time manner, notice that the deformable object is low in polygons.

Forces must be numerically integrated over volume or surface at each

timestep, requiring a lot of computation. This limits the use of finite element method

(FEM) for real time application despite the fact that FEM provides better

deformation accuracy. Due to its complexity in nature, it is difficult to implement

and optimize FEM. Discretizing the object is also quite difficult. Discretization

methods chose for real time applications are based on the ability of the discretizer to

maintain high geometrical accuracy with less internal elements using single simple

element type (usually tetrahedron). Large deformation and topological changes

 42

requires the system to recompute the large stiffness matrix. Finite element method

requires less node points compared to mass-spring systems to achieve similar degree

of deformation accuracy. This results to a smaller linear system which can be solved

in less time.

Terzopoulos used finite element modeling technique to discretize the

deformable objects for its offline simulator (Terzopoulos et al. 1987). The idea is to

model deformable objects using differential equation analogous to the standard mass-

spring-damper equation. Dynamics are computed from the potential energy stored in

the elastically deformed body using finite difference discretization method. Later on,

Terzopoulos extends the work to include simulation of inelastic object behaviour

such as plasticity, fracture (Terzopoulos et al. 1988), heating and melting

(Terzopoulos et al. 1989).

Neilson and Cotin achieved real time finite element method deformation by

implementing preprocessing and equation systems condensation (Neilson and Cotin,

1996). By solving a smaller linear system, the implemented systems achieved 20

frames per second for models with 250 nodes on four Mips R4400 processor Silicon

Graphics ONYX.

Although fast finite element models have been developed for medical

applications (Nielsen and Cotin, 1996)(Berkley et al., 2000), less attention has been

paid to displaying time dependent deformations of large size finite elements models

in real-time. (Basdogan, 2001) introduces two numerically fast techniques for real-

time simulation of dynamically deformable (i.e. time dependent deformations) 3D

objects modeled by FEM; modal analysis and spectral Lanczos Decomposition.

Existing techniques of deformable modeling for real time simulation have

either used approximate methods that are not physically accurate or linear methods

that do not produce reasonable global behavior. Nonlinear finite element methods

 43

(FEM) are globally accurate, but conventional FEM is not real-time. (Wu et al.,

2001) apply nonlinear FEM using mass lumping to produce a diagonal mass matrix

that allows real-time computation. They proposed a scheme for mesh adaptation

based on an extension of the progressive mesh concept, called dynamic progressive

meshes to minimize unnecessary computations.

Krysl et al. uses adaptive local finite element mesh refinement using wavelet

theory to accelerate finite element deformation (Krysl et al., 2003). The refined mesh

is nested in the refinement hierarchy, which simplifies the incorporation of multi-grid

solvers. The method exploits refinement of basis functions rather than refinement of

elements. It is in spirit much closer to some recent developments in the design of

meshless methods. It is suitable in any number of spatial dimensions, and for a much

wider variety of finite element types than any standard mesh refinement algorithm.

Finite elements method benefits from a solid background and established

technique, books and vast literature. For computer applications, there are a variety of

libraries for solving finite elements. Applications to discretize geometric object into

sets of elements are also widely available. Compared to mass-spring method,

integrating actual tissue properties are easier with finite element method. Solutions

for large linear or non-linear systems using numerical techniques already exist. With

constraint, some assumption and optimization, real-time computation is possible with

current mainstream hardware. Finite element method allows parallel computing

techniques for its simulation; enabling scalable simulations.

Finite element method is not without its drawbacks. Simulation time is slow

even for linear elasticity deformation. For non linear deformation, it is even slower.

To permit real-time performance, multiple accelerating strategies should be

implemented. For medical application, some real-time accelerating strategies are not

applicable due to limited allowable deformations and inaccuracy introduced. Finite

element system is very complex and it is not that easy to implement.

 44

2.5.2 Mass-spring method

Mass-spring method is one of the physical-based methods that have been

extensively used in the field of real-time deformable object modeling. The surface or

volume is discretized into a set of mass points. Each mass point is linked to its

neighbors by one dimensional spring. Deformation is computed by finding

equilibrium state between interconnected points after application of external force.

The spring is often linear, but non-linear elasticity can be simulated by applying

multi-varied stiffness springs. Mass-spring systems can also be modeled as either

static or dynamic system (where time has influence).

There are multiple ways to construct the mass-spring lattices. One can

construct the springs manually or discretize the object into sets of tetrahedrons

(Teschner et al., 2004) (Mollemans et al., 2003) or cubes. Acquired geometry

topology (tetrahedrons or cubes) are represented as configuration of point masses

connected by springs.

Basically, as spring experiences external forces, the spring is either

compresses or extends to the direction of the force and this creates a repulsive force

to the opposite direction of the force. The created force is described mathematically

by

ic xxx
xkF

−=∆
∆−= *

where F is the resultant force, k is the spring coefficient, and x∆ is the distance

between the two points (xc = current distance, and xi = distance at the inertial

position). Inertial position is the distance between two separated points. No force will

be generated if the points are not displaced. If the spring is compressed, then will

be negative, generating a positive force (expansion). If the spring is expanded,

then will be positive, generating a negative force (compression). Elasticity

coefficient is represented by k. Also known as Young’s modulus, one dimensional

deformation coefficient weights the spring final force. Stiffer spring have bigger k as

x∆

x∆

 45

it creates a larger force from its inertial state. Conversely, a spring with a smaller k is

more flexible because it creates a smaller force from its inertial state.

Figure 2.20 An example of mass-spring model. Connected spring exerted forces

on neighboring points, displacing the points from its rest position. (Gibson and

Mirtich, 1997)

To compute the distance between two points, one can use Pythagoras’

theorem. Then, multiply with k coefficient and finally use the inverse of this value

to compute the force. Spring force alone is not enough to produce realistic

simulation. Other forces can be applied into the system such as damping force. This

is to simulate the energy loss experience by the springs. This results into an extended

equation

x∆

bvkxF −−=

where b is the coefficient of damping and v is the relative velocity between the two

connected points.

For a networked configuration of mass-spring lattices, when a spring is

displaced, the resultant force propagates throughout the entire network. This results

into deformable object behaviors. Based on this phenomenon, mass-spring was used

in modeling string, cloth, jelly, face, human tissue and various other deformable

objects. The difference between these applications is the initial spring configurations.

 46

In a dynamic three dimensional deformable system, where time is integrated

into the system, the mass mj at position at time t are governed by Newton’s

second law of motion

3ℜ∈ix

)()()()(int tftftxtxm ext
iiiiii −=++ &&& γ

whereγ denotes a damping factor, refers to the internal forces resulting from

spring interconnection and represents the sum of external forces applied by

the user or due to gravity or collision. The equations of motion for the entire system

result from assembling the equations of all masses m

)(int tfi

)(tf ext
i

i in the lattice. Writing the

positions of all m masses component-wise into a position vector x of size 3n, we can

state a matrix equation for the entire mass-spring system as

fKxxDxM −=++ &&&

where M, D, and K are 3n×3n matrices representing mass, damping and stiffness,

respectively. Although possibly large, these matrices are very sparse. M and D are

diagonal, where K in a regular lattice is banded according to adjacency between

masses. The equation is reduced into two coupled systems of first order differential

equations to numerically integrated through time as

vx =&

)(1 fKxDvMv −−−= −&

The problem of solving large and complex networked configuration of mass-

spring lattices calls for numerical integrators. There are many numerical integrator

techniques available, but four most popular integrators are Euler, Midpoint, Runge-

Kutta and Verlet. These integrators vary in its accuracy and computational cost. The

fastest one but with less accurate are Euler integrator and the most accurate integrator

but slow to compute is Runge-Kutta. Verlet integrator, on the other hand, is both fast

and accurate integrator compared to other integrators. Accuracy is important to

maintain simulation robustness. Although all integrators accumulate errors at each

time-step, the highest accuracy integrators will maintain the stability of the

 47

simulation for a longer period of time. Inaccuracy also leads to instability, where the

simulation will explode and turn to chaos.

Chadwick et al. coupled multi layered mass-spring system with free form

deformation for its computer animation system (Chadwick et al., 1989). The method

allows for global and local deformation of articulated character. Teschner et al.

approximate the object’s shape into uniform tetrahedral meshes of free form

deformation constraint (Teschner et al., 2004). Physical based deformation is applied

to the tetrahedral meshes using mass-spring techniques where the mass-spring

system will deform the free form deformation control points. Deformed free form

deformation control points will then deform the underlying vertices. To preserve

volume undergoing deformation, volume and surface preserving coefficient is

introduced to the mass-spring system. This two fold deformation method which

coupled mass-spring system and free form deformation allows for high geometry

deformation as the rendering geometry and deformation geometry are independent of

each other. Other hybrid method of mass-spring systems is by Christensen et al

(Christensen et al., 1995) where the deformable object is approximately wrapped

with simple mass-spring lattice configuration. Then physical based deformation is

applied to the mass-spring where the lattice configuration will act as free form

deformation constraint to the actual object geometry. This method is used for

animating characters in 3D animation. Cotin et al. combined finite element method

and mass-spring system for virtual surgery application (Cotin et al., 2000). Finite

element method is used to model tissue deformation using pre-computed

deformations allowing large deformation. To enable volume cutting and topological

changes to the tissue, a mass-spring model variant called tensor mass model is

applied into the system.

Baraff et al introduced implicit integration for its mass-spring cloth

simulations (Baraff et al., 1998). By using implicit integration, the system is much

more stable and independent from number of particles used. Fuhrmann et al. describe

and algorithm which replaces the internal cloth forces by several constraints and

therefore can easily take large time steps (Fuhrmann et al. 2003). Instability,

inaccuracy and speed problem for numerical integration can be minimized by using

 48

Verlet integrator. Jacobsen uses velocity less Verlet integration for its real time

physic systems (Jacobsen, 2003). Teschner et al. have perform a little experiment on

various integrators to find the fastest integrator and have proved that Verlet

integrator is the best numerical integrator suitable for mass-spring systems period

(Teschner et al. 2004).

Mass-spring systems are easier to implement than finite element method.

Computation cost for mass-spring systems are much lower compared to finite

element method, therefore mass-spring systems have much wider appeal for real-

time applications. Non linear deformable object can also be modeled by mass-spring

systems. In addition, mass-spring systems are suitable for parallel processing

allowing a scalable simulation platform.

Since mass-spring systems rely on numerical integrators, the systems are

vulnerable to convergence and instability. The principle of mass-spring systems

defined that force travels according to the spring’s links, not by continuum. This

physical approximation is too coarse to be applicable for some critical applications.

Certain applications requirement such as specific constraint and materials properties

cannot be modeled with mass-spring systems. Behavior of incompressible materials

and thin object are unpredictable if modeled using mass-spring systems. It is hard to

model material stiffness by setting spring coefficient parameter. Sometime the

deformation acts differently than desired behavior. Even after successfully tuning the

spring coefficient, other coefficient, for example gravity, when changed, the spring

coefficient have to be tuned all over again.

2.5.3 Gas pressure method

 49

Matyka and Ollila proposed a novel technique for modeling elastic soft body

object (Matyka and Ollila, 2003). Soft body is described as three dimensional

deformable meshes which always keep constant volume. The method is based on

simple thermodynamics laws and uses the Lausius-Clapeyron state equation for

pressure calculation. The pressure force is accumulated into a force accumulator of a

3D mesh object by using mass-spring technique. Behavior of soft body is obtained

after the integration of Newton’s second law of motion with fixed or non-fixed air

pressure inside of it. Simply put, the idea is to create a closed mass-spring cloth

represented as manifold mesh object and put air pressure inside it.

Figure 2.21 Example of gaseous pressure method for simple two dimensional

meshes. The mesh must be manifold, represented as wrapped cloth which will have

ideal gas pressure inside. (Matyka and Ollila, 2003)

To enable simple pressure formulation, Matyka uses ideal gas approximation

which is defined as one in which all collisions between atoms or molecules are

perfectly elastic and in which there are no intermolecular attractive forces. One can

visualize it as a collection of perfectly hard spheres which collide but which

otherwise do not interact with each other. In such a gas, all the internal energy is in

the form of kinetic energy and any change in internal energy is accompanied by a

change in temperature.

Gaseous
pressure

Point mass

Spring

 50

An ideal gas can be characterized by three state variables: absolute pressure

P, volume V, and absolute temperature T. The relationship between them may be

deduced from kinetic theory and represented by

V
nRTP =

where n is the number of moles and R is universal gas constant . To calculate

pressure for the point of the shape, the expression used is

⎥⎦
⎤

⎢⎣
⎡⋅= 2

ˆ
m
NnPP

r

Figure 2.22 Screen shot of of gas pressure method for three dimensional

volumetric deformable objects (Matyka and Ollila, 2003). The simulation is fast

enough to be performed in real time.

Next, the volume of the deformed body has to be recalculated to measure the

gas pressure inside the object. Matyka uses simple bounding geometry such as

sphere, box and ellipses to approximate the current volume. A better volume

computation method is presented by Owen using Gauss’s Theorem. Gauss’s

 51

Theorem relates the divergence of a vector field within a volume to the flux of a

vector field through a closed surface by the following

∫∫∫ ∫∫ •=•
v s

daFFdvdell

where the surface s encloses the volume v. Detail theory and implementation are

available at (Owen, 2005).

Deformation based on ideal gas pressure method does proved to be fast(able

to perform real time deformation with coupled thousand of vertices) (Matyka and

Ollila, 2003). The method is simple to implement and requires no extensive

geometry discretization preprocessing (unlike finite element method). Since its

volume dynamic is represented as simple ideal gas equation, it does not exhibit

complex internal volume structure like volumetric mass-spring method and finite

element method to compute internal dynamics. Finite element method and

volumetric mass-spring stored invisible internal geometry topology data for

dynamics processing while gas pressure method only store visible surface geometry

topology data which means less memory footprint.

Albeit all gas pressure method strengths, it’s not without weaknesses. It is

very hard to define the deformation coefficient (Young’s modulus and pressure

coefficient) to model desired material. Deformation behavior looks like a balloon

filled with water placed underwater. From the available demo, it doesn’t look like a

balloon filled with gas at all. Since it uses mass-spring technique which consist of

numerical integration, gas pressure method inherit mass-spring drawback which is

numerical integration accuracy and stability. The deformation is prone to explode if

it undergoes huge deformations.

2.5.4 Mesh free method

 52

Numerical methods like Finite Elements, Finite Volumes and Finite

Differences are already very well developed. However, there are limitations to these

methods. First of all the time an engineer spends on solving a problem, goes mainly

into the meshing of his solution domain. Secondly, the mesh is sensitive to large

deformations, which can cause accuracy deterioration. To circumvent the meshing as

a whole and make the problem more flexible, the so-called mesh free methods are

invented.

To give some applications of this method, first the differences between the

mesh free methods and the other methods should be clear. Instead of using a pre-

defined mesh, mesh free methods only use node generation (giving the points

without the need to prescribe the relationship between the nodes) and for each node a

shape function is created. Since the mesh less method does not describe point

topology explicitly, neighbor search is fundamental in finding the equilibrium state

of the deformed object. The lack of topology structure and the ability of the system

to self organize provides a system that is able to simulate a wider range of

deformable material compared to commonly used deformation technique. The next

step is to form a system of equations and solve this system.

Common geometric representations approximate the body by a mesh of nodes

of fixed topology which are not adapted to the animation of substances undergoing

large inelastic deformations. In this case, the use of mesh less method for object

representation and dynamic representation is more appropriate. These systems are

unstructured in the sense that interactions between point masses do not depend on a

specified graph of connections, but on distance. The need to simulate various

complex deformation types such as melting, solidifying, splitting and fusion

motivated the use of mesh less method in modeling deformable objects in the field of

computer graphics.

 53

To derive inter-point forces, Tonnesen used the pair-wise Lennard-Jones

potential energy functions as a dynamics system solution (Tonnesen and Szeliski,

1992). To enable stretching and growing, Tonnesen introduced orientation to the

point’s properties. Under large deformation, Tonnesen proposed a kd-tree

hierarchical data structuring approach to compute forces and torques at reduced

number of points. By spatially subdivide the object space within some radius (natural

inter-points spacing), all to be deform neighbor points can be efficiently found. To

further reduce the computation, this operation is occasionally performed and cache

list of neighbors were used for intermediate time steps. New points were added when

neighboring points have large enough space between them and still under maximum

number of allowable points between the ranges.

Figure 2.23 Rendering techniques for particle based surface; axes, discs,

wireframe triangularion and flat shaded triangulation (Tonnesen and Szeliski, 1992)

Figure 2.24 Left, deforming. Center, deforming and surface restructuring by

adding new points. Right, deforming and tearing. (Tonnesen and Szeliski, 1992)

Each point is given state variables of position and mass for the system to

interact with the dynamics. For more complex systems, additional state variables

 54

combined with simple heuristics were formed to create application specific

behaviors. The surface is rendered as iso surface which yield an implicit coating of

the point which handles topological changes such as splitting and merging by

construction.

Figure 2.25 Fusioning deformable objects (Tonnesen and Szeliski, 1992)

The Lennard-Jones potential is well known in molecular dynamics for

modeling the interaction potential between pairs of atoms. It creates long-range

attractive and short-range repulsive forces, yielding particles arranged into

hexagonally ordered 2D layers in absence of external forces. Increasing the

dissociation energy (magnitude of the potential energy) increases the stiffness of the

model, while the width of the potential energy can be varied. Therefore, large

dissociation energy and high potential energy exponents yield rigid and brittle

material, while low dissociation energy and small potential energy exponents result

in soft and elastic behavior of the object. This allows the modeling of a wide variety

of physical properties ranging from stiff to fluid-like behavior. By coupling the

dissociation energy with thermal energy such that the total system energy is

 55

conserved, objects can be melted and frozen. Furthermore, thermal expansion and

contraction can be simulated by adapting the equilibrium separation distance to the

temperature.

Desbrun and Cani (Desbrun and Cani, 1995) (Desbrun and Cani, 1996)

(Desbrun and Cani, 1999) use smoothed particle hydrodynamics approach used by

physicists for cosmological fluid simulation as its deformable dynamics basis. The

Smoothed Particle Hydrodynamics (SPH) formalism was introduced by physicists

for accurate simulation of fluid dynamics. Simulating a fluid consists in computing

the variations of continuous functions such as mass density, speed, pressure, or

temperature over space and time. Standard finite element techniques in

hydrodynamics use an Eulerian approach: they consist of dividing space into a fixed

grid of voxels, and then studying what flows in or out of each voxel. However, this

kind of approach requires the division of huge empty volumes and is not intuitive for

flows.

SPH belongs to an alternative approach, called the Lagrangian approach that

consists of following the evolution of selected fluid elements over space and time.

The particles can be viewed either as matter elements or sample points scattered in a

soft substance. Each of them represents a small volume of inelastic material that

moves over time. In practice, smoothed particles are used to approximate the values

and derivatives of continuous physical quantities, such as local mass density or

pressure that need to be computed during the simulation. Smoothed particles ensure

valid and stable simulation of a state equation describing the physical behaviors of

the material. It is also used for deforming the surface of the substance in a coherent

way using the level sets of the mass density function. To reduce computation time,

adaptive time steps for integration is used according to a local stability criterion

along with efficient data structure for neighbor search. Desbrun further the research

for rendering the point particles using implicit surface rendering method (Desbrun

and Cani, 1996).

 56

Figure 2.26 Deformable object are splitted and then fused together. (Desbrun and

Cani, 1996)

Using mesh less method, dubbed point based method; Keiser et al. were able

to simulate wide range of material properties such as stiff elastic to highly plastic

using a single application framework (Keiser et al., 2004). By using points for both

volume and surface representation, arbitrarily large deviations from the original

shape can be simulated. In contrast to previous mesh less based elasticity in

computer graphics, the physical model is derived from continuum mechanics, which

allows the specification of common material properties such as Young’s Modulus

and Poisson’s Ratio.

In each step, spatial derivatives of the discrete displacement field were

computer using a Moving Least Squares (MLS) procedure. It is from these

derivatives that strains, stresses and elastic forces at each simulated points were

obtain. Equations of motion for these forces were solved using both implicit and

explicit integration. Point sampled surface were rendered dynamically adaptive for

scalable and faster performance. Although material anisotropy can be simulated, only

linear elasticity are implemented in the dynamic system. MLS only works if there are

at least 3 neighboring points within non-degenerate locations. This makes it only

suitable for volumetric objects, not two dimensional or one dimensional object. The

nature of the system is close proximity points always interact with each other. This

makes it difficult to model fracture and brittle materials. Even with stiff coefficient,

hard edges are difficult to achieve.

 57

Figure 2.27 Target morph using point based method. (Keiser et al., 2004)

Deformable object ranging from stiff elastic to highly inelastic objects can be

modeled efficiently using mesh less method due to its natural properties of not

having topological properties explicitly. Surfaces are easy to shape, extend, fusion

and split. Material properties such as stretching, bending or variation in curvature can

be controlled by adjusting strength of various potential energy functions. Input model

doesn’t have to be discretize into elements which is a requirement for finite element

method.

Mesh free method application in computer graphics deformable object

simulation is quite new. The first idea implementation was seen in 1995(Desbrun and

Cani, 1995). With this method, objects are easy to deform and new deformed shape

are easy to construct for the purpose of rendering (no topology needed). Material

stiffness and other properties such as resistance to stretching, bending can be

controlled by adjusting strength of various potential energy functions.

One problem of mesh free method is that the surface is not explicitly defined

thus poses a problem rendering the points. The points cannot be rendered using

trivial geometry rendering technique. It is harder to achieve exact control of the

shape. Usually, sampled points are shape approximation of the original object shape.

Hard edges are also hard to preserve during point sampling of the object. Accurate

dynamic computation is expensive. To enable real time performance, implementation

must include heavy optimization. The lack of precise control and shape degeneration

due to point sampling makes it unsuitable for engineering purpose.

 58

2.5.5 Pros and Cons

Physically based deformable models have seen wide application in many

fields of computer graphics. The ability to simulate real world various material

behaviors does prove to be useful in the field of medical and engineering. Physical

based model limits the direct user controls of the deformation process. Deformations

are computed using approximations of physical dynamics. Sometimes deformation

behavior is unpredictable due to gross approximation of dynamics. This can be seen

when tuning mass-spring system spring stiffness for specific materials. Unlike most

non-physical based deformation technique, deformation parameters for physical

based technique are much more complicated to configure. With limited computing

power, computing complex dynamics is very expensive. For finite element method,

internal geometry structures are required for dynamics computation. Gas pressure

method on the other hand, does not have this internal geometry structure for its

dynamics computation thus making it less memory footprint requirements. Physical

based method does not appeal to some computer graphics application especially in

the field of object modeling and editing because of it gives user limited control of

deformations.

2.6 Real time modeling technique

Physical based deformable object behavior simulation requires lots of

complex dynamics computation. This phenomenon burdens the processor and it is

very hard to achieve robust physically realistic behavior in real time. Earlier work on

deformable object animation focuses on modeling deformable object on the

computer platform (Terzopoulos et al., 1987) (Terzopoulos et al., 1988)

(Terzopoulos et al., 1989) (Witkin and Baraff, 1997) (Baraff, 1996) (Baraff and

Witkin, 1992) (Foster and Metaxes, 1996) (Szelinski and Tonnesen, 1992) (Stam,

1993) (Tonnesen, 1991) (Tonnesen, 1992) (Breen et al., 1994). Most of them is too

 59

complex and requires huge computation per frame thus not suitable for real time and

interactive applications. This section will discussed techniques, idea and

implementation from previous researcher to accelerate deformable object behavior

simulations.

For better performance, it is highly desirable to construct adaptive

discretizations, allocating resources where they can be most profitably used. Usually

this is constructed by adaptively refine either by object complexity or deformation

complexity. Adaptively refine object complicity is perform by refining or coarsening

the mesh resolution accordingly. Adaptively refine deformation complicity is

perform by using either more complex or simpler deformation functions accordingly.

Adaptive finite element computations rely on adjustments of the spatial

resolution of the domain discretization to deliver higher accuracy where it is needed.

When the domain is discretized into a finite element mesh, a possible option, albeit

somewhat expensive and in some cases complex, is to create a new mesh with the

desired resolution, known as remeshing. Another alternative is to adjust the density

of the mesh by performing local refinement of the existing mesh so that in some

regions finite elements are split to decrease their “size”, in other regions they are

merged to reduce the resolution. Both remeshing and refinement have their

advantages and disadvantages. For detail discussion on this topic, please refer to

work by Grinspun et al (Grinspun et al., 2002).

Debunne et al. uses automatic space and time adaptive object representation

level of detail technique. It allows local refinement or simplification of the

computational model based on local error measurement. (Debunne et al., 2001)

(Debunne et al., 2000) (Debunne et al., 1999). Object is partitioned in a non-nested

multi-resolution hierarchy of tetrahedral meshes (Debunne et al., 2001) (Debunne et

al., 2000) or adaptively refined particle resolution (Debunne et al., 1999). At each

deformation step, object sampling is refined to concentrate computation on region

with the most deformation. Local contact area is deformed with highly detailed

 60

object representation while further areas are computed with grossly approximate

object representation. This method reduces computation time while at the same time

preserve object and deformation complexity.

Figure 2.28 Debunne et al. uses local refinement of multiresolution models to

reduce computation time by reducing geometry for run time dynamics processing.

(Debunne et al., 2001)

Instead of adaptive refinement of object representation, Grinspun et al.

prefers method based on adaptive refinement of finite element basis function

(Grinspun et al., 2002) (Grinspun et al., 2003). Dubbed CHARMS(conforming,

hierarchical, adaptive refinement methods), this method removes a number of

implementation headaches associated with other approaches(geometry reconstruction

and merging between multi resolution representation) and is a general technique

independent of domain dimension (2D and 3D), element type (triangle, quad,

tetrahedron, hexahedron), and basis function order (piecewise linear, higher order B-

splines, loop subdivision, etc).

Wu et al. uses progressive meshes to simplify object surface geometry for his

surface based nonlinear finite element simulations (Wu et al., 2001). Since it uses

 61

Hoppe’s progressive meshes, mesh refinement hierarchy can be pre-computed and

stored for online fetching. Integration of finite element solver and mesh hierarchy are

described in detail in the paper.

Figure 2.29 Dynamic progressive meshes is used to refine local contact area to

enhance dynamics computation (Wu et al., 2001)

Figure 2.30 Vertices of the surface mesh is displaced according to the

displacement field of the tetrahedron in which they lay using barycentric coordinate

system (Muller and Gross, 2004).

Muller and Gross achieve interactive rates for its deformable simulator by

using two different representations for the same deformable object. A low resolution

volumetric mesh for the finite element method simulation and a high resolution

surface mesh for rendering. To animate a surface mesh consistently with a

volumetric mesh, Muller linked every vertex of the surface mesh to the closest

tetrahedron in the volumetric mesh and store its barycentric coordinates with respect

 62

to that tetrahedron. During the simulation, the position of each vertex of the surface

mesh is interpolated from the positions of the linked tetrahedron using the stored

barycentric coordinates (Muller and Gross, 2004).

Another way to reduce computation for deformable object simulation is by

pre-compute complex computation and stored in a database system for online data

fetching. Or by performing possible displacement (usually under some sort of

constraint) and stored the displacement data so that in real time simulation,

displacement need not to be computed. James and Fatahalian pre-computed data

driven models of interactive physically based deformable models (James and

Fatahalian, 2003). The method pre-computes impulsive dynamics by driving the

scenes with parameterized interactions. By using data driven tabulation of the

system’s deterministic state space dynamics, and model reduction efficient low rank

parameterizations of the deformed shapes are built. Storage spaces are constraint by

projecting the state space models into very low dimensional spaces using least

squares approximations motivated by modal analysis. Phase space dynamics are

sampled using parameterized impulse response functions. Interactions are defined in

discrete impulse palettes to constrain the range of user interactions.

James and Pai implement a pre-computation method for its deformable object

simulation for haptic devices (James and Pai, 2001). The method pre-computed

Green’s functions and fast low rank updates based on Capacitance Matrix

Algorithms. This method is from the fact that linear models allow many systems

responses (Green’s function) to be pre-computed. Coupled with boundary element

method, the deformable object simulation can achieve high frame rate (by pre-

computation) with high accuracy (by boundary element method which is sibling of

the finite element method) (James and Pai, 1999).

 63

Mass node
Structural spring
Shear spring
Flexion spring

Figure 2.31 Chen et al. mass-spring systems lattice configurations adapted from

Provot cloth mass-spring configurations (Chen et al., 1998).

Finite element method is accurate but it does not favor the available

computation resources. Another method to accelerate deformable object simulation is

by using much simpler dynamics. Based on one dimension dynamics, mass-spring

systems are used extensively in the field of deformable surface modeling. Some

researchers have extended the use of this method for volumetric objects. Mollemans

et al. developed a tetrahedral soft tissue model that can be used in surgery planning

systems consisting of mass-spring systems (Mollemans et al., 2003). Object is

discretize into sets of tetrahedral. Points are described as mass points and tetrahedral

topology are described as springs connecting two points. Another variant of mass-

spring systems for volumetric object can be seen from the work of Chen et al. (Chen

et al., 1998). The approach is a 3D extension of the discrete mass-spring meshes of

Provot (Provot, 1995). Multiple types of springs are introduced namely structural

 64

springs, shear springs and flexion springs. Not all springs stiffness are computed in

each step. Under pure shear stress, only shear springs are constrained. Under pure

compression, only structural springs are constrained. Under pure flexion stress, only

flexion springs are constrained.

Teschner et al. uses uniform tetrahedral volume discretization for its mass-

spring systems (Teschner et al, 2004). In contrast to Chen et al. method, Teschner et

al. introduce six distance preserving forces between all pairs of points; four area

preserving forces and two volume preserving forces. To even more accelerate the

deformation simulation, spring configurations are much coarser than actual object

geometry. To preserve geometry complexity, Teschner et al. embed actual geometry

vertices into the tetrahedral using spline based free form deformation principles.

Verlet integrations are used as numerical integration for its speed and stability.

Figure 2.32 A low resolution uniform tetrahedral mesh and a high resolution

surface mesh of a snake. Deformation is computed for low resolution tetrahedral

mesh using mass-spring systems and high resolution mesh is used for

rendering.(Teschner et al, 2004).

Another hybrid method for deformable object simulation is by Cotin et al

(Cotin et al., 2000). The method works two fold. First, pre-computation of finite

element method deformations are used as base to deform large size meshes in real

time. Although this method can perform faster deformation, it doesn’t permit

topological changes to the deformable mesh. To combat this limitation, Cotin

integrate another method to the deformable simulation system; a mass-spring model

where topological changes can easily be made.

 65

Gibson presented a deformation algorithm for object with high polygon count

(Gibson, 1997). The idea is by using simple mathematical function for its dynamics

and deformations are propagated from contact area. The systems works by finding

distances between neighboring points and displace the points if it reached constraint

limits. Using simple data structure, high speed deformation is achieved in regard to

force propagations. Gibson extended the work to introduce anisotropy material in

(Gibson et al., 1998).

Figure 2.33 Chainmail works by constraining distances between neighboring

points (Gibson, 1997). Upper left image shows initial state of the chainmail systems.

Upper right image shows deformed chainmail systems. Lower left image shows

chainmail systems at its initial state. Lower middle image shows maximally

compress chainmail and lower right shows maximally stretch chainmail.

Bro-Neilsen and Cotin compress the linear matrix systems resulting from the

volumetric finite element model to a system with the same complexity as a finite

element surface model of the same object (Bro-Neilsen and Cotin, 1996). By

simulating only the visible surfaces nodes, they achieve speed increase compared to

traditional volumetric based finite element method. The condensation method used

allows volumetric deformation behavior despite the use of only surface finite element

systems.

 66

The process of breaking complex vibration into its component modes of

vibration, very much like frequency domain analysis breaks vibration down to

component frequencies is called modal analysis. For deformable objects, modal

analysis is the process of taking the nonlinear description of a system, finding a good

linear approximation, and then finding a coordinate system that digitalizes the linear

approximation. This process transforms a complicated system of nonlinear equations

into a simple set of decoupled linear equations that may be individually solved

analytically. Hauser et al. developed a system that models deformable objects using

hybrid formulation that combines rigid-body motion with deformation computed

using modal analysis (Hauser et al., 2003). Modal decomposition is through the

process diagonalizing general nonlinear physical equation.

Faster real time deformable object simulations can be achieved by multiple

types of acceleration techniques. The difference between each type of acceleration

strategy differs in its results. Some are accurate, some are able to simulate anisotropy

materials, some can simulate non-linear deformation, some are for limited or small

deformations and some support topological changes. Whatever the results are, real

time deformations are crucial for broad field of applications.

CHAPTER III

METHODOLOGY

3.1 Project planning

This chapter describes how the research was conducted. Firstly, theoretical

framework for this project will be discussed. Descriptions of software development,

testing methodologies, software specifications and hardware specification will

follow.

3.2 Theoretical framework

Basically, the end application is a physical based deformation system. The

system takes an object, performs deformation on the object and renders it on screen.

Deformation is performed based on mass-spring system method. An additional

algorithm is added before any deformation is performed in order to select nodes

(vertices of the object) to be deformed.

 68

The simulation system is divided into two main phases, preprocessing phase

and run time processing phase.

The objective of preprocessing phase is to provide a suitable data for the run

time processing phase. In this context, suitable data is data that does not require any

more data processing during run time. It consists of two modules. The first module,

tetrahedral discretization, will discretize input data, in this case original geometry of

deformable objects, into tetrahedral meshes. Geometric based representation is

chosen over other representation such as voxels to enable full hardware support of

polygons rendering. The second module will built a data structure for mass-spring

system from the tetrahedral meshes provided by the first module.

The second phase, run time processing phase, is the mass-spring system

rendering loop. It consists of three main modules (standard mass-spring system) with

one additional module. The three main modules are collision detection and response

module, deformation processing module and rendering module. The first module will

detect and solve collision for the deformable object based on applied concentrated

loads. Based on the collision response, the simulation system will select area for

deformation in the selection of nodes module. When the area for deformation is

defined, the selection of nodes module will provide deformation processing module

information of area to be deformed. This way, actual deformation is performed on

smaller area compared to traditional method where deformation processing is

performed on the whole object. Finally, rendering module will render the deformable

object. The second phase will loop itself until terminated by the user. For this

research, the focus is on the selection of nodes for deformation module.

 69

Figure 3.1 Conceptual diagram of the deformable object systems.

To achieve real time deformable object simulation, this project will follow

some basic strategies described in previous chapter. Some interesting ideas are;-

1. Adaptive geometry for dynamics computations

2. Hybrid; mass-spring systems and volume embedding

 70

3. Simple dynamics; either by dynamics simplification or use existing simple

dynamics

4. Force propagations

5. Modal analysis or subdivide nonlinear elasticity systems into sets of linear

elasticity

6. Velocity-less numerical integrations (Verlet integrators); faster yet more

stable

The basic idea for nodes selection is based on force propagation idea. If force

applied to a node of the object, the force will propagate throughout the object. By

propagating deformation similar to force propagation nature, deformation processing

time can be reduced as number of nodes for deformation is reduced. Conceptual idea

of the systems is visualized in Figure 3.1.

3.3 Software development

Actual implementation will use structured C as its main programming

language although some features available only to C++ implementation are not

restricted to be used. C is a matured language and lots of freely available libraries

can be use with the language. Microsoft Visual Studio .NET 2003 was chosen as the

main Integrated Development Environment (IDE) for the project implementation.

Included in the packages is Microsoft Visual C++ .NET 2003. It is a powerful tool

for creating Microsoft Windows®-based and Microsoft .NET-connected

applications, dynamic Web applications, and XML Web services using the C++

development language.

The IDE provides a robust development environment comprises compilers

that are conformant to the International Standards Organization (ISO), a Standard

 71

Template Library (STL) implementation, industry-standard Active Template Library

(ATL) and Microsoft Foundation Class (MFC) libraries, WinForm .Net libraries and

powerful integrated development environment features enabling efficient editing and

debugging of source code. The most important integrated library is STL which

provide easy, robust, optimized way for managing dynamic data. The latest

Microsoft STL implementations are fully compatible across various platforms such

as Linux and SGI’s.

User interface is designed visually using the provided tools and Windows

Forms and components. It has a powerful debugger and advanced compilers, offering

advanced options for code generation on 32- and 64-bit platforms. Other alternatives

for user interfaces are Fast Light Tool Kit (http://www.fltk.org/), Fox toolkit

(http://www.fox-toolkit.org/), QT toolkit

(http://www.trolltech.com/products/qt/index.html) and wxWindows

(http://www.wxwindows.org/) which are freely available and cross platform.

Visual C++ .NET 2003 enables developers to build entirely unmanaged

Windows-based applications and components. The compiler is enhanced with several

new and improved optimizations and capabilities, including Whole Program

Optimization, the ability to generate optimized code for recent processor

technologies (including the Intel Pentium 4), and the ability to better optimize for

processors with Streaming SIMD Extension (SSE and SSE2) support. The latest

multi-threading features for both compiler and processor are a big plus as mass-

spring systems support parallel processing natively.

The Visual C++ .NET 2003 compiler is conformant with the ISO C++

language definition, and can easily builds modern C++ code and library sources.

Visual C++ .NET 2003 provides wide range of libraries, including a fully ISO-

compliant STL implementation (providing generic container classes and algorithms).

This is very useful to our implementations as an efficient, error free data structure is

highly required.

 72

Fully integrated is the Visual Studio Debugger, an advanced tool that enables

multi-language debugging, managed and unmanaged debugging, and remote

debugging. Enhanced Edit and Continue features exist for unmanaged C++ code.

The debugger also supports mini-dump technology, enabling developers to quickly

identify and correct problems in deployed applications.

OpenGL was chosen as the rendering application programming interface

(API) technology for this project. It is the environment of choice for developing

portable, multi-platform interactive 2D and 3D graphics applications. OpenGL

incorporates a broad set of rendering, texture mapping, special effects, and other

advance visualization functions. OpenGL is supported in wide variety of popular

desktop and workstation platforms, ensuring wide application deployment.

It is a matured technology with optimize driver supported by three

dimensional hardware developers. With broad industry support, OpenGL is the only

truly open, vendor-neutral, multiplatform graphics standard. OpenGL API-based

applications can run on systems ranging from consumer electronics to PCs,

workstations, and supercomputers. As a result, applications can scale to any class of

machine that the developer chooses to target.

OpenGL is well structured with an intuitive design and logical commands,

similar concept to traditional structure programming paradigm (in this case, C

language). Efficient OpenGL routines typically result in applications with fewer lines

of code than those that make up programs generated using other graphics libraries or

packages. In addition, OpenGL drivers encapsulate information about the underlying

hardware, freeing the application developer from having to design for specific

hardware features. Numerous books have been published about OpenGL, and a great

deal of sample code is readily available, making information about OpenGL

inexpensive and easy to obtain.

 73

OpenGL does proved to be an invaluable rendering asset but it’s not without

it weakness, or lack of actual basic implementation features. It lacks camera

navigation systems, user interface, math function, geometric processing and tools for

manipulating rendered objects. For this project’s cause, vertex picking, arcball

rotation, dynamics computation and geometry discretization is required.

There are many available libraries and tools filling the gaps of OpenGL

implementations. Such are 3d engines, utility toolkits, physics library, math library

and computational geometry tools. Some interesting 3d engine which provides the

some of the required features are OGRE (Object Oriented Rendering Engines)

(http://www.ogre3d.org/), Irrlicht engine (http://irrlicht.sourceforge.net/) and G3D 3d

engine (http://g3d-cpp.sourceforge.net/). Each of them works as a graphics toolkits

by providing camera systems, advanced rendering systems (shaders, LOD, etc), user

interface, object management and others useful stuffs with extensive documentation

and community support. Some of them go a long way to provide a useful framework

for physical based simulation by integrating with physics library. Such

implementation is can be seen from OGRE addons, named nogredex

(http://www.ogre3d.org/index.php?option=com_content&task=view&id=17&Itemid

=70). Other toolkits worth mention is GLVU

(http://www.cs.unc.edu/~walk/software/glvu/) which serves as a common platform

for common graphical tasks. Novodex (http://www.ageia.com/novodex.html) and

Meqon (http://www.meqon.com/) are two most impressive rigid body dynamics

library that are available freely and heavily documented. Although these libraries

doesn’t explicitly provide and support deformable object functions, these libraries

have optimized numerical integration function that is useful for mass-spring systems.

Useful computational geometry tools used for discretizing the geometric mesh are

tetgen (http://tetgen.berlios.de/) and gmesh

(http://www.elysiun.com/~theeth/gmesh/). Both provide an easy way to construct

tetrahedral from geometry input of various forms and shapes. Boost

(http://www.boost.org/) and Numerical Recipe (http://www.nr.com/) are two great

math libraries that are very useful for this project. Both provide mathematical

 74

function that can be used for mass-spring systems. For solving large sparse matrices,

there is Matrix Template Library (http://www.osl.iu.edu/research/mtl/). It is freely

available, fast, stable and accurate to use for solving large or very large sparse

matrices.

3.4 Testing methodologies

The method must be fully tested before it can be used by other users. The

software is planned to be tested based on its performance, total memory footprint,

visual acceptance and functionality and the correctness of the results.

Performance measurement is performed by recording the time used by

specific task. Testing will be performed under various situations including higher

geometry scenario. Processing time will be recorded for preprocessing geometry,

selecting elements for deformations and performing deformation. For each task,

memory usage is monitored.

Deformation is justified by its visual acceptance and comparing the result

between virtual and real counterpart. This evaluation is performed for various

simulated materials to ensure algorithm robustness.

For benchmarking purpose, testing is performed with different input data,

different deformation method and different parameter settings.

CHAPTER IV

IMPLEMENTATION

4.1 Introduction

The simulation system was built using C/C++ languages in Windows

platform using OpenGL. This chapter provides discussions including data

preparation, various techniques implementations, algorithms and data structure.

4.2 Preparing data

The goal of data preparation is to have a tetrahedral mesh data, suitable for

mass-spring system based deformable object simulation. The basic steps are

preparing geometry data for tetrahedral mesh generation, generate tetrahedral mesh

from the geometric data using tetrahedral mesh generation library, and preprocess the

tetrahedral mesh data for simulation specific needs.

 77

Figure 4.1 Stereolithography file format requirements. 1. No open edge. 2. No

double face. 3. No spike. 4. No multiple edges. (Images from 3D Studio Max 7.0

Reference Manual)

There are two freely available tetrahedral generators that seem very suitable

for the simulation systems needs, Tetgen (available at

http://tetgen.berlios.de/index.html) and NETGEN (available at

http://www.hpfem.jku.at/netgen/). Provided as low level library, Tetgen was chosen

due to its good documentation, ease of use and the ability to refine the generated

tetrahedral mesh.

Geometric data preparation is no trivial task. The geometry must have met

various geometric criteria before tetrahedral mesh can be generated. The inability of

Tetgen to automatically fix the geometry requires the use of third party tools to fix

the geometry.

The geometric data must have these criteria (some of them are

stereolithography format requirements):-

1. no open edge

 78

2. no double face

3. no spike

4. no multiple edge

5. no orphan vertex

6. no collided face

7. consistent normals

Figure 4.2 Example of tetrahedral with no quality enforcement. (Images from

Tetgen 1.3 Manual)

Figure 4.3 Example of tetrahedral with quality enforcement. (Images from Tetgen

1.3 Manual)

For geometry that didn’t have these requirements, third party tools such as

Floating Point Solution’s MeshWorks 1.0, Okino Computer Graphics’s PolyTrans

for Max and NuGraf, Right Hemisphere’s Deep Exploration CADTools plugins and

discreet 3ds Max 7 can be used for fix these problems. Most of the problems can be

fixed with 3D Studio Max 7.0 using its modifier tools such as STL check, cap holes,

data exporters and vertex weld or by manual vertex fix.

 79

When the geometric data is ready, the tetrahedral meshes are generated using

Tetgen. Tetgen provides various settings to tweak the desired tetrahedral output. One

of them is a tetrahedral quality constraint setting which is used to ensure radius-edge

ratio greater than 2.0. Enforcing quality constraint will increase the number of

vertices and tetrahedral immensely. Since most of sample geometric objects

composed of high number of vertices, quality constraint is of no practical use as of

current hardware processing power limitation. Thus, all sample geometric objects are

created using no quality constraints.

Sample geometric objects are either freely downloaded from the internet or

built using discreet 3D Studio Max 7.0. The objects are classified as simplified range

scan, human organ, primitive objects, concave data, extreme data (extreme length,

flat object, etc) and contains hole.

 80

Figure 4.4 Some example of tetrahedral meshes viewed with Tetgen viewer. In top-

left to top right order, the data are Stanford bunny, Stanford bunny internals, human

stomach, human stomach internals, sphere and human liver. All of them are freely

available on the internet except for sphere which is generated using discreet 3D

Studio Max 7.0. Screenshots were taken using Tetgen Viewer.

 81

4.3 Building the framework

Building an optimal data management system for simulation comprises of

high number of vertices poses a big performance problem. The same goes for simple

mass-spring solver, which poses visual artifact problem and stability problem.

Instead, physics library is used for its mass-spring simulation solver and its data

management system. This makes implementation easier and multiple experiments

can be performed quickly. Other features of physics library such as visualization

tools, profiling and collision detection makes it very interesting to use. Since this

research’s main interest is an additional algorithm to reduce deformation processing

time and not building a complete mass-spring systems, using physics library allows

the comparison of classical mass-spring deformation with or without the additional

algorithm in a very fair and unbiased way. Also, using closed source library proved

that the algorithm is general enough that it can be used in physics library with little

knowledge of underlying library structure. The new algorithm, denoted as

optimization algorithm, main purpose is to select small sets of nodes to be solve by

physics library. The optimization algorithm takes input from collision response and

provides small sets of nodes to be deformed by simulation system.

Figure 4.5 Conceptual flow of common physical simulation after inserting

optimization algorithm.

There are various physics library that is suitable for this cause ranging from open

source, closed source, commercial and non-commercial. The physics libraries that

are freely available for non-commercial use are:

1. Open Dynamics Engine

2. Newton dynamics

3. Tokamak physics library

 82

4. True Axis physic library

5. Meqon Dynamics

6. Ageia Physx

Ageia Physx was chosen due to multiple reasons. Comparisons are loosely

based on technology demo provided by each physics library. In terms of number of

nodes per simulation scene, Physx are able to sustain the highest number of frame

rate for scene with high number of nodes. Couple with a physic processing unit

(PPU) card, the simulation performance would be much higher. As of current

writing, PPU is exclusively supported by Ageia Physx. Other great aspect of Physx is

that it has good documentations, technical support, active community and matured

code.

4.4 Performance issues

Each simulation frame consists of collision detection and response,

deformation processing, and rendering. For least acceptable visuals, simulations must

run at least 24 frames per second. This frame rate leaves 42 milliseconds to prepare

for each simulation frame. For best possible visuals, simulations must run more than

75 frames per seconds. This requires 13 milliseconds or less per simulation frame

preparation. Under these constraints and depending on the application requirements,

deformation processing may contain 50% or less processing time for each frame. For

the optimization algorithm to be effective, it must use very small processing time.

This includes iterations, caching, searching and mathematical operations.

 83

4.5 General strategy

For large number of nodes, the deformation systems usually suffer even with

large memory. Assuming a processing system with 1 GB of RAM, the deformation

processing remains a bottleneck while the system RAM utilizations are no where

near maximum capacity. The same goes for rendering capacity. Current graphic

cards have huge rendering pipeline. It would be beneficial to utilize this feature by

featuring full geometry complexity. Elastic deformable object which does not change

topology, gives advantage in terms of data structure and geometric reconstruction

compared to non-elastic deformable objects. Fast static data structure and

preprocessed search result can increase run time performance. Since simulation of

deformable objects requires heavy computations, it would be wise to use cheap

computation for its optimizations in order to bring more room for deformation

processing. Computation cost can be reduce by using simple mathematical function,

reuse computed data, preprocess, putting a computation or time cap for each frame or

using smaller sized variables. Using some mathematical function known to have high

computation cost includes division and square roots should be avoided if possible.

4.6 Building algorithm template

Algorithm template is a general algorithm that will be the basis of algorithm

refinement and testing. The algorithm output will be small sets of active nodes which

will be process for deformation. The algorithm strategy would be:

1. Activate nodes that are near the area where concentrated loads are applied.

2. Simulate spring physics for every active node.

3. Deactivate nodes that reach its equilibrium state.

4. Inactive node with active node neighbor will act as spring constraint between

the two.

 84

Figure 4.6 Example of activation systems in 2D. (1) Concentrated loads are applied

to a node. (2) When the node reaches its non-equilibrium state, it will activate its

neighbor. (3) The activation process continues until the node reaches its equilibrium

state. Inactive nodes will act as constraint. Active nodes reaching equilibrium state

will be deactivated.

 85

4.7 Defining non-equilibrium state

An object is in equilibrium if the resultant of the system of forces acting on it

has zero magnitude. In other words, the object is at rest. In mass-spring systems, the

equilibrium state is a state where total accumulated forces on node have zero

magnitude. If total accumulated forces on node have non-zero magnitude, the node is

considered in non-equilibrium state. Total accumulated forces are the sum of all

forces acting on the node. Forces acting on node can be either internal forces or

external forces. Internal forces are forces from springs acting on the node. External

forces are forces derived from collision response or manually applied forces. Other

forces can be additional forces for preserving surface and volume. It is safe to say

that nodes will be displaced when its total accumulated forces are non-zero (F ≠ 0).

Based on equilibrium state, the updated algorithm would be:

1. Deactivate nodes with zero total accumulated forces

2. Activate collided and selected nodes

3. Activate active node’s neighbor with non-zero total accumulated forces

4. Start simulation

Testing accumulated forces against certain threshold would be better as the

node would be easier to deactivate, harder to activate and threshold provides a means

of simulation scaling. The algorithm with accumulated forces threshold would be:

1. Deactivate nodes if total accumulated forces are less than threshold

2. Activate collided and selected nodes

3. Activate active node’s neighbor if total accumulated forces are less than

threshold

4. Start simulation

Based on Figure 4.5, optimization algorithm takes input from collision

response. There are three types of collision response. Constraint based collision

response modifies the position of the interpenetrated object directly by giving new

projected position. Impulse based collision response use instantaneous impulses or

 86

changes in velocity to prevent objects from interpenetrating by modifying the first

derivative of the positions (i.e. velocities). Penalty based collision response uses

spring to pull the object out of collision state by modifying the second derivative of

the positions (i.e. accelerations). In other words, constraint based collision response

provides a new position, s, impulse based method provides a new velocity, v and

penalty based collision response provides a new acceleration, a. Instead of

computing total accumulated forces for collided object to query the equilibrium

status, it would be better to use values from collision response. But first, the relation

between forces and collision response output must be defined. In other words, are

there any physical quantities that can reflect changes to F?

From physics text book,

F = ma

Where F is force, m is mass and a is acceleration. Above equation proved that a

change in a will change F as long as m not changing. To find velocity relationship,

F = m(dv/dt)

dv = v1 – v0

v = ds/dt

Where dv is delta velocity, dt is delta time and ds is delta position. A change in

velocity, v will change F. For position s,

ds = s1 – s0

Thus, equilibrium state can be defined from value provided by collision response. In

other words, equilibrium state can be defined as changes in position, velocity or

acceleration.

The easiest way to define a non equilibrium state is by using position, s.

 87

4.8 Relative distance from node to its neighbor as equilibrium state

Activation test is performed by finding whether the node is in non

equilibrium state. Non equilibrium state is defined as a change in distance between

current node and its neighbor. Given sr as node position, sn as neighbor position and

dcache as previous frame distance between node position and neighbor position. A

node will be in non equilibrium state if current distance from node to its neighbor,

|sr-sn|, is not equal to previous distance from node to the neighbor, dcache. If the node

is in non equilibrium state, activate its neighbor. This activation test is performed for

every neighbor. Adding threshold would modify the non equilibrium test to if current

distance from node to its neighbor, |sr-sn|, is more than or less than previous distance

from node to the neighbor, dcache, multiplied with threshold.

Deactivation test is performed by determining whether the node is in

equilibrium state. Since deactivation does not relate to neighbors (deactivation

deactivates nodes, not its neighbors), equilibrium state is define as distance from

current node position to previous node position. Given sr as current node position,

scache as previous node position, the test would be, if distance from current node

position, sr, to previous node position, scache, equals to zero, the node is deactivated.

After adding threshold, the test would be, if distance from current node position, sr,

to previous node position, scache, less than threshold, the node is deactivated.

For activation test, each neighbor requires 1 distance cache from node to

neighbor, totaling 3 distance caches for 3 neighbors. For deactivation test, previous

node position is cached. This method is evaluated using best case scenario where

activation and deactivation occurs in a tetrahedral (one active node with three

neighbors). The cost for activation test for a single neighbor is 2 additions, 3

subtractions, 5 multiplications, 2 relational and 1 square roots. For 3 neighbors, the

total cost is 6 additions, 9 subtractions, 15 multiplications, 6 relational and 3 square

roots. Due to threshold multiplications, square root operation cannot be simplified by

using squared value. For node deactivation test, the cost for single node deactivation

is 2 additions, 3 subtractions, 3 multiplications, 1 relational and 1 square root. Square

 88

root can be eliminated by using squared value since it is used only in relational

operation.

Figure 4.7 Activation test. If (|sr(t1)-sn(t1)| > dcache*threshold || |sr(t1)-sn(t1)| <

dcache*threshold), activates its neighbor, sn(t1). In other words, if current distance,

dcurrent is more than dcache multiplied with threshold or current distance, dcurrent is less

than dcache multiplied with threshold, activate the neighbor, sn.

Figure 4.8 Deactivation test. If (|sr(t1)-sr(t0)| > threshold), deactivate itself, sr. In other

words, if current distance, dcurrent is less than threshold, deactivate sr.

 89

Table 4.1 The cost for activation and deactivation test for best case scenario (1

node and 3 neighbors).

 Activation Deactivation Total

Addition 6 2 8

Subtraction 9 3 12

Multiplication 15 3 18

Relational 6 1 7

Square root 3 0 3

Cache 3 1 4

From the best case scenario, the optimization algorithm is quite fast to be

practically used using current hardware. With 3 square roots and 4 data caches being

the most expensive, it would be better if both of that can be reduce or eliminated.

4.9 Distance from current node position to previous node position as

equilibrium state

Non equilibrium state is defined as the distance from current node position to

previous node position is not zero. Given sr(t1) as current node position, sr(t0) as

previous node position, the node is in non equilibrium state if distance from sr(t0) to

sr(t1) is greater than zero. Since the test is performed per node with no relation to its

neighbor as compared to previous method, non equilibrium node will activate its

entire neighbor. Adding threshold would modify the non equilibrium test to if

distance from sr(t0) to sr(t1) is greater than threshold. Deactivation test is exactly the

same from previous method (see Figure 4.8).

 90

Figure 4.9 Activation test. If (|sr(t1)-sr(t0)| > threshold). In other words, if current

distance, dcurrent is greater than threshold, activate all neighbors. Deactivation test is

exactly the same from previous method (see Figure 4.8).

Cache of previous node position is used for both activation test and

deactivation test. One distance calculation is needed for each activation test and

deactivation test. The cost of both activation and deactivation test for best case

scenario is 2 additions, 3 subtractions, 3 multiplications, 1 relational and 1 square

root. Since square root value is used in relational operations, it is possible to use

squared value instead. Thus the total cost for both activation and deactivation test is 4

additions, 6 subtractions, 3 multiplications and 1 relational.

Table 4.2 The cost for activation and deactivation test for best case scenario (1

node and 3 neighbors).

 Activation Deactivation Total

Addition 2 2 4

Subtraction 3 3 6

Multiplication 3 3 6

Relational 1 1 2

Square root 0 0 0

Cache 1 1(shared) 1

 91

4.10 Node’s linear velocity as equilibrium state

Instead of using positions as basis, the third method defines the non

equilibrium state as non-zero linear velocity. Given sr(t1) as current node position,

sr(t0) as previous node position, the node is in non equilibrium state if current node

linear velocity is not zero. If current node is in non-equilibrium state, activates its

entire neighbor. Adding threshold would modify the non equilibrium test to if current

node linear velocity greater than or less than threshold. To simplify this relational

operation, magnitude of linear velocities is used instead of vector of linear velocities.

This would modify the non equilibrium test to if current node linear velocity

magnitude greater than threshold. Computing accurate magnitude requires square

root operations. A more simple method would be to measure the magnitude per axis.

The problem with this simple method is that the same magnitude does not always

pass the non equilibrium test when the node experiences multiple velocities from

different axis. An example is shown in Figure 4.10. Common method for finding

magnitude requires one square root operation. But, since the magnitude is used in

relational operation only, it is safe to use squared value. The deactivation test using

linear velocity magnitude would be if current node linear velocity magnitude lesser

than threshold, deactivate itself. Apart from the difference in relational operator used,

both activation test and deactivation test are perfectly the same.

For best case scenario, activation test and deactivation test requires 2

additions, 3 multiplications and 1 relational operation. Thus, the total cost for both

activation and deactivation test is 4 additions, 6 multiplications and 2 relational

operations. Successful activation test will result in activation of all current node

neighbors. Note that using linear velocity results is no cache and square roots in its

testing procedure unlike 2 previous methods.

 92

v1

v2
x

y tx

ty

Figure 4.10 Inconsistencies of using simple magnitude measuring by using per axis

test. v1 and v2 are linear velocities with the same magnitude, tx and ty are axis

threshold and x and y are axis. v2 passed the non equilibrium test while v1 failed the

non equilibrium test even when both share the same magnitude.

Figure 4.11 Activation test. If (|sv(t1)| > threshold), activate all its neighbors. In

other words, if current node velocity, sv(t1) is greater than threshold, activate all its

neighbors.

Figure 4.12 Deactivation test. If (|sv(t1)| < threshold), deactivate itself, sr. In other

words, if current node velocity, sv(t1) is lesser than threshold, deactivate itself, sr.

 93

Table 4.3 The cost for activation and deactivation test for best case scenario (1

node and 3 neighbors).

 Activation Deactivation Total

Addition 2 2 4

Subtraction 0 0 0

Multiplication 3 3 6

Relational 1 1 2

Square root 0 0 0

Cache 0 0 0

 94

4.11 Algorithm

The final optimization algorithm in simplest form using velocity as non

equilibrium definition would be:
inline void optimizeDeformation(pointer to softbody, pointer to list
of collided nodes)
{
//deactivation
for all activated nodes
{
 if current time - activation time > active time threshold
 {
 if squared linear velocity magnitude < squared linear velocity
magnitude threshold
 {
 deactivate node
 }
 }
}

//activation from collision
activate all collided nodes
activation time = current time

//n igh
for all activated nodes

e bor activation

{
 if current time - neighbor activation time > neighbor activation
time threshold
 {
 if squared linear velocity magnitude > squared linear velocity
magnitude threshold
 {
 neighbor activation time = current time
 for all neighbors
 {
 activate nodes
 activation time = current time
 }
 }
 }
}

}

 95

4.12 Data structure

To achieve full performance, it is essential to prepare the required data for

run time efficiency. The deformable object does not experience topological changes

which make it suitable to prepare static lists of neighbors or other required data in pre

processing. Additional node data is linked with node in the physics systems.

The additional node data consist of:

1. List of neighbors

2. Activation status(active, inactive, constraint)

3. Activation time

4. Neighbor activation time

Other data includes

1. List of faces (for vertex normals computation)

A dynamic data structure is needed to keep track of the activated nodes by

storing list of pointers to activated nodes. Dynamic data structure is used to minimize

the time to traverse active nodes. Other required values are squared linear velocity

magnitude threshold, active time threshold and neighbor activation time threshold.

 96

4.13 Conclusion

This chapter provides details on the making of the optimization algorithm and

its justifications.

Figure 4.13 Example deformations of Stanford bunny data.(Top left image is the

undeform pose)

The next chapter will provide results, analysis and discussion of the

optimization algorithm.

CHAPTER V

ANALYSIS

To better understand the optimization algorithm benefits and pitfalls, series of

benchmarks are performed.

5.1 Introduction

This chapter performs series of benchmarks to analytically evaluate the

performance of optimization algorithms. First, comparison of arithmetic operation

for various methods of activation and deactivation are presented. Then, benchmark

methodology and discussions followed. After that, discussions continue to various

issues concerning the optimization algorithms.

 98

5.2 Evaluations of algorithms

The first optimization algorithm uses distance as its basis and its activation

test relies on each neighbor position. This would make the computation cost increase

with increasing number of neighbors for each node. Its advantages though are the

number of active node is maintained at minimum for each step due to activation test

will only activate single node per successful activation test. For best case scenario,

the first optimization algorithm requires three square roots and for every node, the

total required cache is the total number of neighbors.

The second optimization algorithm requires less computation cost than the

first optimization algorithm. It also doesn’t require any square roots computations.

Since the second optimization algorithm doesn’t rely on its neighbors, the total cache

per node is only one. The drawback of the second optimization algorithm is that once

the activation test succeeded, it will activate all neighbors of current node. Although

this doesn’t be a problem if the application requires more accurate behavior, it does

requires more physics computation compared to the first optimization algorithm. The

first and second optimization algorithm operates optimally with constraint based

collision response (where it provides new position) coupled with Taylor series based

integrator (position based integrator) due to the algorithm reliance of position.

Otherwise, for every activation and deactivation testing, data must be converted.

The third optimization algorithm has the lowest computation cost compared

to the two previous optimization algorithms. Like the second optimization algorithm,

the third optimization algorithm doesn’t require any square root. Unlike both

previous optimization algorithms, the third optimization algorithm doesn’t require

any cache. Successful activation test will activate all neighbor of current node

allowing better physical behavior at the cost of more node activated. Unlike previous

two optimization algorithm, this optimization algorithm will operate optimally for

impulse based collision response (where it provides new velocities) couple with

Verlet based integrator (velocity based integrator). Current simulation system uses

 99

Physx library which employ an impulse based collision response and Verlet

integrator system. Other method for defining the non equilibrium state using

acceleration is not tested due to the requirement of data conversion.

Table 5.1 The cost of activation and deactivation test comparison for best case

scenario (1 node and 3 neighbors).

 Relative distance

from node to its

neighbor as

equilibrium state

Distance from

current node

position to

previous node

position as

equilibrium state

Node’s linear

velocity as

equilibrium state

Addition 8 4 4

Subtraction 12 6 0

Multiplication 18 6 6

Relational 7 2 2

Square root 3 0 0

Cache 4 1 0

5.3 Results and benchmarks

To further evaluate the algorithm, a series of benchmark is performed. First,

the goals of benchmark are outline. Then, each method of benchmark is detailed.

After that, hardware, software and domain specifications are given. The details of

input data follow after that.

There are two types of benchmark. The first benchmark compares the

optimization algorithm with other algorithm. The second benchmark deals with

different optimization algorithm settings.

 100

5.3.1 Goals

The benchmarks are performed based on these goals:

1. To prove that the optimization algorithm can reduce the deformation

processing cost especially for high polygonal object.

2. To analyze the effect upon having higher resolution data from low

resolution data performance wise.

3. To prove that the optimization overhead cost is very low.

4. To prove that the optimizations algorithm as a highly scalable method.

5. To prove that the optimization algorithm can dynamically scale the

deformation area as required.

5.3.2 Benchmarking method

To perform the benchmarking process, series of data is captured during

application execution for prefix set of time. Captured data are frames per second,

optimization overhead cost, physic library computation cost and total number of

active nodes. Multiple input data are used the benchmarking procedure ranging from

different resolution of Stanford bunny and perfectly symmetrical icosahedrons

sphere. For every object, the same simulation is performed during 30 seconds of real

time execution. In the first 10 seconds, no external force is applied to the deformable

objects to evaluate the result of best case scenario of the deformable object. The next

20 seconds apply large external force to the deformable object in order to simulated

real world usage. The force is constantly applied but the direction is changing for

every 1 second. During these 30 seconds, total number of frames rendered per second

 101

is captured in 1 second interval. To eliminate bias and inaccuracy, optimization

overhead cost, physic library computation cost and total number of active nodes are

captured using other means of timing. Instead of using real time duration, simulation

time with duration that is incremented based on fixed time-step per every frame is

used. For every one second of simulation time, data is captured for other

benchmarking data except fps. Simulation time step is 0.02 seconds (50 time step for

1 second).

The application is customized so that it will not jeopardize the accuracy of

captured data. Multi threading feature is disabled, no collision detection is

performed, fixed simulation time-step, simple flat surface rendering with hardware

normalization and no special optimization method from the physic library is used.

5.3.3 Specifications

The simulation was performed on Intel based PC with 3.0 GHz processor and

NVIDIA GeForce FX 5200 3d accelerator with 1gig 400 MHz DDR2 RAM. Display

driver version 91.47 is used. The prototype was implemented in C++, uses OpenGL

for rendering and uses Ageia PhysX’s mass spring system for deformation

processing. At current time of writing, the latest available version of Ageia PhysX is

2.5.1.

 102

5.3.4 Input data

There are two main data used in the benchmarking procedure; different

resolution of Stanford bunny and perfectly symmetrical icosahedrons sphere.

Stanford bunny is chosen not because it’s a popular geometric mesh used in

computer graphics research, but because it provide various necessary features in a

single package. It is non-convex and have uniform distribution of vertices, two long

thin ears, complex creased area near front leg and smooth surfaces in the spine area.

The Stanford bunny is reconstructed into various different resolutions to measure the

performance hit going from low resolution data to high resolution data. The three

resolutions Stanford bunnies are named as bunny100, bunny500 and bunny1000. The

other input data is a sphere. A sphere provides different properties compared to

Stanford bunny. An icosahedrons sphere is nearly perfect symmetry, convex and all

edges have nearly similar length. The primary purpose of the sphere is to evaluate the

effect of different optimization algorithm settings. The sphere data is named as

icosa12.

Statistics of input data for benchmark

0

2000

4000

6000

8000

10000

bunny100 bunny500 bunny1000 icosa12

Data

To
ta

l

Vertex
Surface
Tetrahedra
Edge

Figure 5.1 The statistic comparison of benchmark input data.

 103

Table 5.2 Details of input data.

 bunny100 bunny500 bunny1000 icosa12
Vertex 159 929 1729 1442
Surface 314 1854 3454 2880
Tetrahedra 441 3100 5818 4098
Edge 756 4955 9273 6979

The algorithm were also tested against a wide range of geometric mesh

having properties such as convex, non-convex, thin object, long object, uniform

object, non-uniform object and object containing hole. The main purposes of these

data are to detect odd behavior, artifacts and bug tracking. Since the evaluation is

purely subjective, no discrete result and conclusion are made based on these results.

Figure 5.2 Input data for benchmark are bunny100 (top left), bunny500 (top

right), bunny1000 (bottom left) and icosa12 (bottom right).

 104

5.3.5 Benchmarks against other method

The first series of benchmarks are performed to compare performance and

computation cost of three different deformation methods for three different

resolutions of input data. The first method is the classical mass spring method. It is

the standard no optimization mass spring systems. The second method is Ageia

PhysX optimized method. Although Ageia PhysX was originally engineered for rigid

body simulation, it provides various features that can be use in deformable

simulation in order to gain more performance. Since the underlying method of Ageia

PhysX optimization is a trade secret, it will not be discuss further. Only default

settings for Ageia PhysX are used. The final method is the optimization method.

The default optimization algorithm settings are:

1. Squared linear velocity magnitude threshold = 10 unit

2. Active time threshold = 2000 ms

3. Neighbor activation time threshold = 2000 ms

There’s no real unit in the simulation system. But to give a sense of

proportional, deformable object is scaled to fit in a cube with 800*800*800

simulation unit.

For each benchmarking process, 4 types of information are captured; frames

per second, physic computation cost, optimization cost (optimization method only)

and total number of active nodes (optimization method only). The first benchmark is

captured using bunny100 input data.

 105

Bunny100 frames per second

220

240

260

280

300

320

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Real time in sec

Fp
s

Classic
PhysX
Optimized

Bunny100 physic computation cost

0
10
20
30
40
50
60
70

1 15 29 43 57 71 85 99 113 127 141 155

Simulation time in sec

Ph
ys

ic
 c

os
t i

n
m

s

Classic
PhysX
Optimized

Bunny100 optimization cost

0
1
2
3
4
5
6
7

1 15 29 43 57 71 85 99 113 127 141 155

Simulation time in sec

O
pt

 c
os

t i
n

m
s

 106

Bunny100 total active nodes

0

50

100

150

200

1 15 29 43 57 71 85 99 113 127 141 155

Simulation time in sec

A
ct

iv
e

no
de

s

Figure 5.3 Benchmark charts for bunny100.

From Figure 5.3, deformable simulation using optimization method gain

more frames per second compared to the other 2 methods. The second chart shows

that optimization method does reduce physic computation cost especially during the

first 10 second of simulation time where no external force is applied to the

deformable object. Since the number of nodes is particularly low, the third chart

shows that for around 150 nodes, the worst case scenario (where all nodes are

activated), the maximum cost for optimization method is 6 ms. Meanwhile, for best

case scenario simulated in the first 10 simulation seconds is less than 1 ms. The final

chart shows that almost all nodes are active during benchmarking time. Overall, the

bunny100 input data is too forgiving. With 300 frames per seconds averaged, it is

unclear where the bottleneck actually is.

 107

Bunny500 frames per second

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Real time in sec

Fp
s

- h
ig

he
r

is
 b

et
te

r
Classic
PhysX
Optimized

Bunny500 physic computation cost

0
50

100
150
200
250
300
350
400

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Simulation time in sec

Ph
ys

ic
 c

os
t i

n
m

s
- l

ow
er

is

 b
et

te
r Classic

PhysX
Optimized

Bunny500 optimization cost

0
2
4
6
8

10
12
14

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Simulation time in sec

O
pt

 c
os

t i
n

m
s

- l
ow

er
 is

be

tte
r

 108

Bunny500 total active nodes

0

200

400

600

800

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Simulation time in sec

Ac
tiv

e
no

de
s

- l
ow

er
 is

be

tte
r

Figure 5.4 Benchmark charts for bunny500.

Figure 5.4 shows the benchmark data captured using medium resolution data,

bunny500. Again, the fps is higher by large margin if using optimization method as

showed in the first chart. In the second chart, total physic computation time is lower

compared to other method of deformation. The maximum optimization method cost

is 12 ms, twice higher than bunny100 worst case scenario optimization cost.

Considering the number of vertices for bunny500 is almost six times higher than

bunny100, the optimization cost is still very low. The final chart shows irregular

spikes in total number of actives nodes. This indicates that, with default settings, the

worst case scenario is hard to achieve. The optimization algorithm successfully

maintains lower nodes for physics computations.

 109

Bunny1000 frames per second

25

30

35

40

45

50

55

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Real time in sec

Fp
s

- h
ig

he
r

is
 b

et
te

r
Classic
PhysX
Optimized

Bunny1000 physic computation cost

0
100
200
300
400
500
600
700
800

1 3 5 7 9 11 13 15 17 19 21 23

Simulation time in sec

Ph
ys

ic
 c

os
t i

n
m

s
- l

ow
er

is

 b
et

te
r Classic

PhysX
Optimized

Bunny1000 optimization cost

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23

Simulation time in sec

O
pt

 c
os

t i
n

m
s

- l
ow

er
 is

be

tte
r

 110

Bunny1000 total active nodes

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23

Simulation time in sec

Ac
tiv

e
no

de
s

- l
ow

er
 is

be

tte
r

Figure 5.5 Benchmark charts for bunny1000.

The last benchmark shown in Figure 5.5 performed using bunny1000, the

highest resolution data used in this benchmark. Like previous input data, the

benchmark reported higher fps with optimization method. The physic computation

cost also lower than the other two methods. The highest optimization cost reported is

19 ms, which is 7 ms higher compared to bunny500 input data. This is because, the

optimization algorithm with current default setting implicitly does not permit node

activation more than 1000 nodes as shown in the forth chart.

The results from this benchmark clearly indicated that the optimization

algorithm can reduce deformation processing. Based on the benchmark performed on

different resolution of input data, the optimization algorithm works efficiently better

with high polygonal objects. The optimization overhead cost reported in all

benchmark is very low with maximum of 19 ms. The next benchmark focuses of

different settings of optimization algorithm.

 111

5.3.6 Benchmarks against various settings

To better see the usage of various optimization algorithm settings, the next

benchmark will perform a series of benchmark using icosa12 input data with

different optimization algorithm settings. Detail of the setting are given in Table 5.3

Table 5.3 Optimization algorithm settings.

 Default Setting 1 Setting 2 Setting 3 All low All high All medium
Active time
threshold, ms 2000 1 2000 2000 1 4000 1000
Squared linear
velocity
magnitude
threshold 10 10 1 10 1 20 10
Neighbor
activation time
threshold, ms 2000 2000 2000 1 1 4000 1000

There are seven optimization algorithm configurations. The default setting is

the medium level, all purpose setting. Setting 1 through 3 are default settings with

one of the parameters set to the lowest. The purpose of these configurations is to

evaluate the impact of setting very low individual threshold parameter. The other

three configurations set all the value to extreme. The All low setting sets all value to

extreme low. The All low setting can also be considered as no threshold settings. The

All high settings set the value to the highest suitable value. The All medium setting

sets the value in between the All low and All high settings.

There are three threshold parameters available. Active time is the duration of

how long the activated node remains active before it will be checked for

deactivation. Velocity thresh is squared linear velocity magnitude threshold used in

activation and deactivation procedure. Active nodes with squared linear velocity

magnitude lower than Velocity thresh will be considered for deactivation. Active

nodes with squared linear velocity magnitude higher than Velocity thresh will

activated all its neighbors. Activate neighbor time is neighbor activation time

 112

threshold. Nodes that have activated all its neighbor will only considered to re-

activate all its neighbor again if the period of neighbor activation is more than

activate neighbor time.

Icosa12 frames per second with different setting
parameter

30
35
40
45
50
55
60
65

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Real time in sec

Fp
s

- h
ig

he
r i

s
be

tte
r

Default
Setting 1
Setting 2
Setting 3

Icosa12 frame per second with extreme settings

30
35
40
45
50
55
60
65

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Real time in sec

Fp
s

- h
ig

he
r

is
 b

et
te

r

Default
All low
All high
Medium

Figure 5.6 Frames per second benchmark result for icosa12.

The first chart from Figure 5.6 shows that, setting the active time very low

yield better fps results. Setting the other two parameters to very low values will bring

the performance down quite a bit. The second chart shows that setting all parameter

to very low will yield very low performance.

 113

icosa12 optimization cost with different setting
parameter

0
20
40
60
80

100
120

1 4 7 10 13 16 19 22 25 28 31

Simulation time in sec

O
pt

 c
os

t i
n

m
s

- l
ow

er

is
 b

et
te

r Default
Setting 1
Setting 2
Setting 3

icosa12 optimization cost with extreme settings

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation time in sec

O
pt

 c
os

t i
n

m
s

- l
ow

er
 is

be

tte
r

Default
All low
All high
All med

Figure 5.7 Optimization cost benchmark result for icosa12.

In Figure 5.7, the first chart shows that by setting neighbor activation time

threshold to a very low value will result in higher optimization cost, which is bad.

For best performance, active time threshold must be set to low. The second chart

shows that setting all parameter values to low values will result in higher

optimization cost. This is due to excessive node activation and deactivation for every

time step.

 114

icosa12 physic computation cost with different
setting parameter

0
100
200
300
400
500
600
700

1 4 7 10 13 16 19 22 25 28 31

Simulation time in sec

P
hy

si
c

co
st

 in
 m

s
-

lo
w

er
 is

 b
et

te
r

Default
Setting 1
Setting 2
Setting 3

icosa12 physic computation cost with extreme
settings

0
100
200
300
400
500
600
700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation time in sec

P
hy

si
c

co
st

 in
 m

s
-

lo
w

er
 is

 b
et

te
r

Default
All low
All high
All med

Figure 5.8 Physic computation cost benchmark result for icosa12.

Figure 5.8 show the benchmark result of physics computation cost. For

lowest physic computation cost, active time threshold must be set to low. Setting

squared linear velocity magnitude threshold to low will result in lower performance,

as showed in the first chart. The second chart indicates that setting all values to very

low values results in higher physics computation cost. The all high setting yield

lowest physic computation cost.

 115

icosa12 total active nodes with different setting
parameter

0

500

1000

1500

2000

1 4 7 10 13 16 19 22 25 28 31

Simulation time in sec

A
ct

iv
e

no
de

s
- l

ow
er

 is

be
tte

r
Default
Setting 1
Setting 2
Setting 3

icosa12 total active nodes with extreme setting

0
200
400
600
800

1000
1200
1400
1600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation time in sec

Ac
tiv

e
no

de
s

- l
ow

er
 is

be

tte
r

Default
All low
All high
All med

Figure 5.9 Total active nodes benchmark result for icosa12.

In Figure 5.9, the first chart shows that setting active time threshold to a very

low values will results in lowest number active nodes. The second chart shows that

the All high settings results in lowest number of activated nodes while the All low

setting results in higher number of activated nodes.

The second series of benchmark tries to find the effect of different parameter

setting. Based on the results, Active time threshold have the biggest performance

impact. It must be set to low to achieve better performance. Setting it low will make

 116

activated nodes easily deactivated. The other two parameters are better left at high

values for better performance.

High performance comes at a cost of simulation accuracy. Sometimes the

inaccuracy is evident visually. Since the visual perception is a subjective topic, it will

not be discuss further. Nevertheless, the result from the benchmark should provide a

good guidance on finding the best combination and parameter settings for any

simulation requirements.

5.4 Other issues

The optimization algorithm contributes extra cost to the simulation systems.

For small deformations where the total number of active nodes is small, the cost for

optimization algorithm is very small. As the number of active nodes reaches the total

number of nodes, running time performance may drop due to extra optimization

overhead cost. For worst case scenario where all nodes were activated, the

optimization algorithm is inefficient and will render the simulation system slower

than classical simulation systems. Thus, the optimization algorithm is best use for

small deformation (as shown in Figure 5.12).

 117

Figure 5.10 The higher the number of active nodes, the lower the performance for

simulation systems with optimization algorithm.

The threshold, used as a mean of scaling the simulation system, can produce

undesired behavior if used improperly. For best performance, active time threshold

must be set to low, squared linear velocity magnitude threshold must be set to high

and neighbor activation time must be set to high. This will make the nodes harder to

activate and very easy to deactivate. On the contrary, for best behavior, all settings

must be set to low. This will results in easier nodes activation and faster nodes

deactivation. The downfalls of this setting are the overhead cost of the optimization

algorithm will rise quickly as more nodes are activated. With this setting, most of the

time, large numbers of node are activated. This will defeat the purpose of this

optimization algorithm where it would be best if only small portion of nodes active

most of the time. Choosing the right threshold would be the matter of whether the

simulation accuracy or speed is needed. For optimal solution, the settings must be

suited around the distance for the node needs to be displaced 1 pixel in a single time

step on the viewing device (see Figure 5.11). If, for example, the node is currently far

away or the deformable object is highly complex where multiple nodes shares single

pixel in the viewing device, the setting must be, at most, suited around the smallest

distance between adjacent nodes (see Figure 5.12). To express the distance in other

form such as velocity, the conversion would be how much velocity needed for the

node to travel the distance in a single time step. Thus the optimal threshold for a

node using distance as non equilibrium state definition would be the distance for the

 118

node to be displaced to the next pixel in the viewing device or if the node shares

single pixel in the viewing device with other nodes, the threshold would be the

smallest distance of all neighbor distances. Choosing different threshold for every

node at runtime using this method is expensive. One way to reduce the computation

is to compute the threshold for a single node which has smallest node to neighbor

distance. Since the deformation is small, it’s easy to track the node which has the

smallest node to neighbor distance. In reality, current hardware computation power is

not enough for a real time simulation where the nodes is so dense it occupy single

pixel with multiple nodes in the viewing device. Thus, the optimal setting method is

not implemented.

Figure 5.11 The optimal threshold must suited for the node to be displaced to the

imaginary position which is the position where the node will be render at adjacent

pixel.

Optimal threshold

Current node

Pixels in the viewing device Neighbor

A pixel shares 2 nodes Neighbor

Figure 5.12 When node and its neighbor occupy the same pixel in the viewing

device, the optimal threshold must suit for the smallest distance from node to

neighbor between all neighbors.

 119

The concentrated loads applied must be very high to ensure node activation.

If the concentrated loads applied are very small, while the thresholds are set very

high, the deformable object would remain undeform.

For very small concentrated loads, the node tends to deactivate real fast due

to deactivation test being executed at every frame. This will result in unintended

behavior where the deformable object looks very hard or harder to deform, especially

when very small concentrated loads is applied. One way to eliminate this is by only

deactivates node that has been active for a pre defined period of time. This will

ensure that active node will always remain active after being activated for a period of

time. Active nodes have the tendency to activate its neighbor due to its vulnerability

to deform. Setting the time too high will result in more nodes active for a longer

period, which is expensive.

Rendering time can be reduced by using vertex buffer object instead of

immediate mode. This method stores vertex buffers in graphic card’s high speed

memory instead of system memory to improve rendering performance by minimizing

data copying. However, this method is best use with static object. Although it is

possible to use it with deformable object (by GPU based physics, etc.), it is not

tested.

For deformable object, normals have to be computed every time the object

deformed. Since the deformed vertices are active nodes, it is naturally easy to query

which vertices or faces that require normals computations. Exploitation is cheap as

the systems already have the list of active nodes and its list of neighbors. Flat

shading is implemented for that it provides better visual cues on actual surfaces and

it is much faster compared to Gouraud shading due to multiple normal averaging per

vertex in each frame.

 120

5.5 Conclusions

The main goal of optimization algorithm is to reduce the cost of deformation

processing. The benchmark results showed that for deformable objects interacting

with only concentrated loads, the optimization algorithm successfully reduce the

deformation processing especially for objects with high polygons as shown in the

first chart of Figure 5.5.

Charts in Figure 5.3 through Figure 5.5 shows that, the effect having upon

large number of nodes will reduce the simulation performance due to large number

of nodes to be process. However, the cost of optimization algorithm is still very

small with maximum of 19 ms per time step. The second series of benchmark clearly

shows that the optimization algorithm can be configured for either performance or

best deformation behavior. Various combination of setting and its implication on

performance are shown in Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9. Different

total frames per second captured from the first series of benchmark shows that the

optimization algorithm successfully scales the deformation area as required. This is

very evident in Figure 5.5 where when there are no deformation, the fps would go

around 50 fps and when there are lots of deformation, the fps would go around 40

fps.

The next chapter will discuss the achievement of the optimization algorithm

based on research objectives.

CHAPTER VI

CONCLUSIONS

6.1 Introductions

This chapter reviews the research objectives and research findings. First, the

objectives are reviewed along with it’s prove of achievement. Next is a list of

contributions from the research. Finally, outlines of possible future work.

6.2 Summary

In short, all four objectives as outline in Chapter 1 are achieved. Deformable

objects are represented using mass-spring model, which we find most appropriate. Our

method called the dynamic selection based method is able to reduce the computation for

deforming an object and this is demonstrated in a real-time simulation. The emphasis of

this research is on three most critical concerns, which are summarized below.

 121

1. To reduce deformation processing cost by reducing areas (total number

of nodes) for deformation.

a. The benchmark result from the first charts in Figure 5.3, Figure 5.4

and Figure 5.5 (first series of benchmarks) shows that overall, the

optimization algorithm successfully reduce the processing cost of the

simulation.

b. The second charts from the Figure 5.3, Figure 5.4 and Figure 5.5

shows the deformation processing cost. The optimization algorithm

successfully reduces total deformation processing cost throughout the

simulation.

c. The third chart from Figure 5.3, Figure 5.4 and Figure 5.5 shows that

the extra cost for optimization algorithm does influence overall

performance. However, the cost is extremely low. Simulation with

optimization algorithm is still superior compared to other tested

method thus making the extra computation cost of optimization

algorithm worth it.

2. To construct a dynamic method that can enlarge or shrink deformation

areas.

a. The forth charts from Figure 5.3, Figure 5.4 and Figure 5.5 shows total

number of nodes that are being processed for deformation for current

time step. Total numbers of active nodes vary according to the

simulation needs. This proves the optimization algorithm succeeded in

enlarging or shrinking the deformation areas as required.

b. Evidence of the optimization method can enlarge or shrink

deformation areas as required can be seen from the first and second

charts of Figure 5.3, Figure 5.4 and Figure 5.5. These figures show

that during the first 10 seconds of simulation time, when there is no

deformation, the simulation performances are at its best. After that,

external forces are applied to the deformable object to make it deform.

This makes the performance drop quite a bit due to deformation

processing.

 122

3. To develop a deformation system that can be scaled to either higher

performance or higher accuracy.

a. The second series of benchmark (Figure 5.6, Figure 5.7, Figure 5.8 and

Figure 5.9) evaluates the influence of each optimization algorithm

parameter settings. The results indicate that the configuration settings

can be tune to provide either best performance or best accuracy.

6.3 Contributions

Listed here are contributions made in this research and its comparison to other

similar method.

1. Reduced area for deformation: For every frame, deformable object is evaluated

for deformation. The result from the evaluation is a small area of deformable

object that will be selected for deformation. Similar in nature to ChainMail

(Gibson 1997), this will reduce required deformation processing time as only

small areas are actually deformed per frame.

2. Dynamically enlarge or shrink deformation area: Unlike previous deformation

method inspired by force propagation, dynamic selection based method can

dynamically enlarge or shrink deformation areas. Previous works usually either

resort to static range of areas (Choi et al. 2003) or propagate over the deformable

object infinitely (Dusyak and Zhang. 2004). Other method that can dynamically

enlarge or shrink deformation area doesn’t have physical based justifications in its

deformations.

3. Scalable for performance or accuracy: In order to tackle broad range of

applications, dynamic selection based method allows the user to tinker with the

parameter settings. These settings enable the application to be tuned for high

 123

accuracy or high performance. Chapter 5 provides testing result of different

parameter settings.

4. Low cost definition of equilibrium state: Definition of equilibrium state is a

requirement in order to effectively select areas that should be deformed. This

research provides an efficient method to define equilibrium state based on physics

justifications. Different methods of equilibrium state complete with its

comparison analysis of computation cost are provided.

5. Independent of deformation method: The algorithm is successfully

implemented in existing physical based deformation method. Generally, the

algorithm is a selection algorithm. There should be no major problem to

implement this algorithm in other physical based deformation method.

6. Robust algorithm: There are situations which needs special care in previous

works. Different number of neighbours between inside node and surface nodes

poses a problem for ChainMail (Gibson 1997). (Choi et al. 2003) and Dragnet

(Grimm et al. 2004) experiences problem for multiple contact situation and

special care had to be taken. Due to high generality of the proposed algorithm(no

neighbour assumptions), this research shows that using the single provided

algorithm, no special care is needed to handle above mentioned situations.

7. Works for both structured and unstructured mesh: Unlike certain algorithm

(Gibson, 1997), this optimization algorithm works for both structured and

unstructured mesh. This is because the algorithm does not assume and does not

restrict the number of springs per each node.

6.4 Future work

This report presented an optimization technique to existing popular method. The

results are better in some areas compared to other similar method in the same domain.

 124

However, there is always a room for future research. Listed here are some suggestions,

improvements and open problems based on research findings.

1. The biggest problem with the optimization algorithm is the node activation

algorithm. For node activation, the algorithm will activate all neighboring

node, even if the node is already activated. This results in wasted resources.

The wasted resources are too high as can be seen in the second chart of Figure

5.7 (the All low settings). Although this problem can be counter by applying

multiple thresholds, the excessive use of thresholds leads to other problem

(bad deformation behavior)

2. Currently, there are two separated loops that read the active node data

structure for every time step, one for activation and one for deactivation. If

both activation and deactivation can be performed in a single loop, it will

surely boost overall simulation performance.

3. Currently, there are no ‘one size fits all’ for optimization algorithm settings.

Choosing the right threshold is very tricky, unless the environment is

restricted.

4. The nature of the system changes the behavior of the original materials

because of the delay from the force propagation.

 125

BIBLIOGRAPHY

Breen D., House D., Wozny M.: “Predicting The Drape Of Woven Cloth Using

Interacting Particles.” In Siggraph ’94 1994

Barbic J., James D. L.: “Real-Time Subspace Integration For St.Venant- Kirchhoff

Deformable Models.” Acm Transactions On Computer Graphics Acm

Siggraph 2005

 Morten Bro-Nielsen M., Cotin S.: “Real-Time Volumetric Deformable Models For

Surgery Simulation Using Finite Elements And Condensation.” Computer

Graphics Forum 1996

Baraff D., Witkin A.: “Large Steps In Cloth Simulation.” In Proceedings Of

Siggraph 1998

Kwang-Jin Choi , Hyeong-Seok Ko, “Stable but responsive cloth”, ACM

Transactions on Graphics (TOG), v.21 n.3, July 2002

David Baraff , Andrew Witkin , Michael Kass, “Untangling cloth”, ACM

Transactions on Graphics (TOG), v.22 n.3, July 2003

Morten Bro-Nielsen: Surgery Simulation Using fast Finite Elements. VBC 1996:

529-534

S. Cotin, H. Delingette, J.M. Clement, V. Tassetti, J. Marescaux, and N. Ayache,

Volumetric deformable models for simulation of laparoscopic surgery, Proc.

Computer Assisted Radiology (CAR'96), pp. 793-798, 1996

 75

S. Cotin, H. Delingette, J.M. Clément, M. Bro-Nielsen, N. Ayache , J. Marescaux,

Geometrical and Physical Representations for a Simulator of Hepatic

Surgery, Proc. MMVR-4'96, 1996

Cotin S., Delingette H., Ayache N.: “Real-Time Elastic Deformations Of Soft

Tissues For Surgery Simulation.” In Ieee Transactions On Visualization And

Computer Graphics, Vol. 5. 1999

Cotin S., Delingette H., Ayache N.: “A Hybrid Elastic Model Allowing Real-Time

Cutting, Deformations And Force-Feedback For Surgery Training And

Simulation.” The Visual Computer 16, 2000

Chadwick J., Haumann D., Parent R.: “Layered Construction For Deformable

Animated Characters.” In Siggraph ’89 1989

Chen Y., Zhu Q., Kaufman A., Muraki S.: “Physically-Based Animation Of

Volumetric Objects.” In Ca ’98: Proceedings Of The Computer Animation

1998

Grinspun E., Krysl P., Schröder P.: “Charms: A Simple Framework For Adaptive

Simulation.” In Proceedings Of Siggraph 2002 2002

Gibson S. F., Mirtich B.: “A Survey Of Deformable Models In Computer Graphics.”

Technical Report Tr-97-19, Merl, Cambridge, Ma, 1997

House D., Breen D.: “Cloth Modeling And Animation.” A. K. Peters, Ltd., 2000

Hutchinson D., Preston M., Hewitt T.: “Adaptive Refinement For Mass/Spring

Simulations.” In Proceedings Of The Eurographics Workshop On Computer

Animation And Simulation ’96 1996

Hauser K. K., Shen C., O’brien J. F.: “Interactive Deformation Using Modal

Analysis With Constraints.” In Graphics Interface ’03 2003

 76

Hunter P.: “Fem/Bem Notes.” University Of Oakland, New Zealand, 2005.

Http://Www.Bioeng.Auckland.Ac.Nz/Cmiss/Fembemnotes/Fembemnotes

James D. L., Barbi ˇC J., Twigg C. D.: “Squashing Cubes: Automating Deformable

Model Construction For Graphics.” In Proceedings Of The Siggraph 2004

Conference On Sketches & Applications 2004

James D. L., Fatahalian K.: “Precomputing Interactive Dynamic Deformable

Scenes.” Acm Transactions On Graphics Proceedings Of Acm Siggraph 2003

James D. L., Pai D. K.: “Artdefo: Accurate Real Time Deformable Objects.” In

Siggraph ’99 1999

James D. L., Pai D. K.: “Multiresolution Green’s Function Methods For Interactive

Simulation Of Large-Scale Elastostatic Objects.” Acm Transactions On

Graphics 22, 1 2003

Müller M., Dorsey J., Mcmillan L., Jagnow R., Cutler B.: “Stable Real-Time

Deformations.” In Proceedings Of The 2002 Acm Siggraph/Eurographics

Symposium On Computer Animation 2002

Müller M., Gross M.: “Interactive Virtual Materials.” In Gi ’04: Proceedings Of

Graphics Interface 2004

Müller M., Keiser R., Nealen A., Pauly M., Gross M., Alexa M.: “Point Based

Animation Of Elastic, Plastic And Melting Objects.” In Proceedings Of The

2004 Acm Siggraph/Eurographics Symposium On Computer Animation 2004

O’brien J. F., Bargteil A. W., Hodgins J. K.: “Graphical Modeling And Animation

Of Ductile Fracture.” In Proceedings Of Siggraph 2002

Platt S. M., Badler N. I.: “Animating Facial Expressions.” In Siggraph ’81 1981

 77

Point Based Animation: Resource Collection On The World Wide Web.

Http://www.pointbasedanimation.org, 2004

Picinbono G., Delingette H., Ayache N.: “Nonlinear And Anisotropic Elastic Soft

Tissue Models For Medical Simulation.” In Proceedings Of The Ieee

International Conference On Robotics And Automation 2001

Provot X.: “Deformation Constraints In A Mass-Spring Model To Describe Rigid

Cloth Behaviour.” In Proc. Graphics Interface 1995

Press W., Teukolsky S., Vetterling W., Flannery B.: “Numerical Recipes In C - The

Art Of Scientific Computing, 2nd Ed.” Cambridge University Press, 1992

Reeves W. T.: “Particle Systems – A Technique For Modeling A Class Of Fuzzy

Objects.” Acm Trans. Graph. 1983

Szeliski R., Tonnesen D.: “Surface Modeling With Oriented Particle Systems.”

Computer Graphics 26, 2 1992

Stam J.: “Stable Fluids.” In Siggraph ’99 1999

Terzopoulos D., Fleischer K.: “Modeling Inelastic Deformation: Viscolelasticity,

Plasticity, Fracture.” In Siggraph ’88 1988

Teschner M., Heidelberger B., Müller M., Gross M.: “A Versatile And Robust Model

For Geometrically Complex Deformable Solids.” In Proceedings Of

Computer Graphics International Cgi Jun 2004

Teschner M., Kimmerle S., Heidelberger B., Zachmann G., Raghupathi L.,

Fuhrmann A., Cani M.-P., Faure F., Magnenat Thalmann N., Strasser W.,

Volino P.: “Collision Detection For Deformable Objects.” Computer

Graphics Forum 24, 1 2005

 78

Terzopoulos D., Platt J., Barr A., Fleischer K.: “Elastically Deformable Models.” In

Siggraph ’87 1987

Terzopoulos D., Witkin A.: “Physically Based Models With Rigid And Deformable

Components.” Ieee Computer Graphics And Applications 8, 6 1988

Terzopoulos D., Platt J., Fleischer K.: “Heating And Melting Deformable Models

From Goop To Glop.” In Graphics Interface ’89 1989

Terzopoulos D., Waters K.: “Physically-Based Facial Modeling, Analysis, And

Animation.” Journal Of Visualization And Computer Animation 1, 1 1990,

Volino P., Magnenat-Thalmann N.: “Developing Simulation Techniques For An

Interactive Clothing System.” In Proceedings Of The 1997 International

Conference On Virtual Systems And Multimedia 1997

Volino P., Magnenat-Thalmann N.: “Implementing Fast Cloth Simulation With

Collision Response.” Ieee Computer Society 2000

R. Bridson, S. Marino, R. Fedkiw.: “Cloth & deformable bodies: Simulation of

clothing with folds and wrinkles” Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation SCA '03, July

2003

Witkin A., Baraff D.: “Physically Based Modeling: Principles And Practice.”

Siggraph Course Notes 1995, 1997

Wu X., Downes M. S., Goktekin T., Tendick F.: “Adaptive Nonlinear Finite

Elements For Deformable Body Simulation Using Dynamic Progressive

Meshes.” Eurographics Sept. 2001.

Matthias Mueller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus Gross, Marc

Alexa.:”Point Based Animation Of Elastic, Plastic And Melting Objects.” In

 79

Proceedings Of The Acm Siggraph/Eurographics Symposium On Computer

Animation 2004

Mark Pauly, Dinesh K. Pai, Leonidas J. Guibas.:”Quasi-Rigid Objects In Contact” In

Proceedings Of The Acm Siggraph/Eurographics Symposium On Computer

Animation 2004

Aras Pranckevicius.:”Xplodar - A Tiny Fem Simulator Demo.” 2004 Dec, Done For

University's 'Finite Element Modelling' Course

Http://Nesnausk.Org/Nearaz/Projxplodar.Html

Alan Watt, Mark Watt.:”Advanced Animation And Rendering Techniques:Theory

And Practice” Acm Press, Addison-Wesley 1992

Christophe Geuzaine And Jean-François Remacle.:”Gmsh: A Three-Dimensional

Finite Element Mesh Generator With Built-In Pre- And Post-Processing

Facilities” Version 1.60, 14 March 2005 Www.Geuz.Org/Gmsh/Index.Htm

Hang Si.:”Tetgen : A Quality Tetrahedral Mesh Generator And Three-Dimensional

Delaunay Triangulator.”Research Group Of Numerical Mathematics And

Scientific Computing, Weierstrass Institute For Applied Analysis And

Stochastics Mohrenstr. Version 1.3.4, June 17, 2005

Http://Tetgen.Berlios.De/

Kyle Owen.:”Area And Volume Calculations”

Http://Www.Gamedev.Net/Reference/Articles/Article2247.Asp

Kwoxrf@Umr.Edu 5/12/2005

Maciej Matyka And Mark Ollila.:”Pressure Model Of Soft Body Simulation”

Sigrad2003, The Annual Sigrad Conference. Special Theme – Real-Time

Simulations, November 20–21, 2003, Umeå University, Umeå, Sweden

 80

Thomas Jakobsen.:”Advanced Character Physics”

Http://Www.Gamasutra.Com/Resource_Guide/20030121/Jacobson_01.Shtml

Gamasutra Weekly article January 21, 2003

John E. Chadwick, David R. Haumann, Richard E. Parent.:”Layered Construction

For Deformable Animated Characters” Computer Graphics, Volume 23,

Number 3, July 1989

Mollemans, Wouter and Schutyser, Filip and Cleynenbreugel, Johan Van and

Suetens, Paul Tetrahedal mass spring model for fast soft tissue deformation

IS4TM, 2003 , 145-154

Christensen, J., Marks, J. and Ngo, J. T., \Automatic motion synthesis for 3D mass-

spring models", The Visual Computer, 1997, No. 13, pp. 20{28.

Petr Krysl, Eitan Grinspun, Peter Schr¨oder.:”Natural Hierarchical Refinement For

Finite Element Methods” International Journal For Numerical Methods In

Engineering, Vol 56, Num 8, February 2003

Petros Faloutsos, Michiel Van De Panne, Demetri Terzopoulos.: “Dynamic Free-

Form Deformations” Ieee Transactions On Visualization And Computer

Graphics, Vol. 3, No. 3, July-September 1997 201

William M Hsu, John F Hughes, Henry Kaufman .:“Direct Manipulation Of Free

Form Deformations” Computer Graphics 26, 2, July 1992

Gentaro Hirota, Renee Maheshwari, Ming C. Lin.: “Fast Volume-Preserving Free

Form Deformation Using Multi-Level Optimization” Appeared In Acm Solid

Modeling '99 Paper Session

Basdogan, C., 2001, "Real-Time Simulation Of Dynamically Deformable Finite

Element Models Using Modal Analysis And Spectral Lanczos

Decomposition Methods", Proceedings Of The Medicine Meets Virtual

Reality Mmvr’2001 Conference, Jan 24-27, Irvine, Ca

 81

Berkley, J., Et Al., 2000, “Creating Fast Finite Element Models From Medical

Images”, Proceedings Of Medicine Meets Virtual Reality 2000.

Xunlei Wu, Michael S. Downes, Tolga Goktekin, Frank Tendick.: “Adaptive

Nonlinear Finite Elements For Deformable Body Simulation Using Dynamic

Progressive Meshes” Eurographics 2001 / A. Chalmers And T.-M. Rhyne

Guest Editors Volume 20 2001, Number 3

P.Volino, M. Courchesne, And N. M. Thalmann.: “Versatile And Efficient

Technique For Simulating Cloth And Other Deformable Objects”. Proc.

Siggraph 1995

Http://Www.Informatik.Umu.Se/~Jwworth/Medpage.Html

Http://Www.Radiologyinfo.Org/Content/Diagnostic/Diagnostic.Htm

Advanced Finite Element Methods Asen 5367 - Spring 2003. Aerospace Engineering

Sciences - University Of Colorado At Boulder Online Notes

Http://Caswww.Colorado.Edu/Courses.D/Afem.D/Home.Html

Kawabata, S.:“The Standardization And Analysis Of Hand Evaluation.”The Textile

Machinery Society Of Japan, Osaka, 1980

Alan H. Barr.: “Global And Local Deformations Of Solid Primitives” Proc. Siggraph

1984

Stephen M. Platt, Norman I. Badler.:“Animating Facial Expressions” August 1981

Acm Siggraph Computer Graphics , Proceedings Of The 8TH Annual

Conference On Computer Graphics And Interactive Techniques, Volume 15

Issue 3

Thomas W. Sederberg, Scott R. Parry.:”Free-Form Deformation Of Solid Geometric

Models” Siggraph 1986

 82

Sabine Coquillart.:“Extended Free-Form Deformation : A Sculpturing Tool For 3d

Geometric Modeling” Siggraph 1990

Yuencheng Lee, Demetri Terzopoulos, Keith Waters .:”Realistic Modeling For

Facial Animation” 1995 Computer Graphics

Chen, D., And Zeltzer, D.:“Pump It Up: Computer Animation Of A Biomechanically

Based Model Of Muscle Using The Finite Element Method," Proc. Siggraph'92

L. P. Nedel, D. Thalmann.:”Real Time Muscle Deformations Using Mass-Spring

Systems” Proceedings Of The Computer Graphics International 1998

Joel Brown, Jean-Claude Latombe, Kevin Montgomery .:“Real-Time Knot-Tying

Simulation” 27 April 2004 Springer-Verlag 2004

Andrew M. Ladd, Lydia E. Kavraki.:”Using Motion Planning For Knot Untangling”

Department Of Computer Science, Rice University, Houston, Tx 77005, Usa

April 8, 2003

Jeff Philips, Andrew Ladd, Lydia E. Kavraki.:“Simulated Knot Tying” Ieee Int Conf

On Robotics And Automation 2002

Poh Liong Yong, S. Nagappan.:” Physiscs For Stpm Volume 1” Penerbit Fajar Bakti

Sdn Bhd 2003

Michael Hauth.:”Visual Simulation Of Deformable Models” PhD Thesis 2004

A. Fuhrmann, C. Groß, and V. Luckas. Interactive animation of cloth including self

collision detection. In Proceedings of Winter School of Computer Graphics

WSCG 2003

Pocino, Nick. Writing a Verlet-Based Physics Engine, Game Programming Gems 4,

Charles River Media, 2004

 83

Markus A. Schill, Sarah F. Frisken Gibson, Hans-Joachim Bender, Reinhard Männer:

Biomechanical Simulation of the Vitreous Humor in the Eye Using and

Enhanced ChainMail Algorithm. MICCAI 1998: 679-687

Sarah F. Frisken Gibson: 3D Chainmail: A Fast Algorithm for Deforming

Volumetric Objects. SI3D 1997: 149-154, 195

Kup-Sze Choi, Hanqiu Sun, Pheng-Ann Heng, Jun Zou: Deformable simulation

using force propagation model with finite element optimization. Computers

& Graphics 28(4): 559-568 (2004)

Kup-Sze Choi, Hanqiu Sun, Pheng-Ann Heng, Jack C. Y. Cheng: A scalable force

propagation approach for web-based deformable simulation of soft tissues.

Web3D 2002: 185-193

Sarah F. Frisken-Gibson, Using Linked Volumes to Model Object Collisions,

Deformation, Cutting, Carving, and Joining, IEEE Transactions on

Visualization and Computer Graphics, v.5 n.4, p.333-348, October 1999

Jinah Park, Sang-Youn Kim, Seung-Woo Son, Dong-Soo Kwon, Shape retaining

chain linked model for real-time volume haptic rendering, Proceedings of the

2002 IEEE Symposium on Volume Visualization and Graphics p. 65 - 72,

2002

Johannes P. W. Grimm, Clemens Wagner, Reinhard Manner, Interactive Real-Time

Simulation of the Internal Limiting Membrane, Medical Simulation:

International Symposium, ISMS 2004, Cambridge, MA, USA, June 17-18,

2004.

A. Duysak, Jian J. Zhang, "Fast Simulation of Deformable Objects," iv, pp. 422-427,

Eighth International Conference on Information Visualisation (IV'04), 2004.

 84

Desbrun M., Cani M.-P.: “Animating Soft Substances With Implicit Surfaces.” In

Computer Graphics Proceedings 1995, ACM Siggraph

Mathieu Desbrun, Marie-Paule Gascuel: “Animating Soft Substances with Implicit

Surfaces.” Siggraph 1995

Mathieu Desbrun, Nicolas Tsingos, Marie-Paule Gascuel: “Adaptive Sampling Of

Implicit Surfaces For Interactive Modelling And Animation.” Comput.

Graph. Forum 1996

Desbrun M., Cani M.-P.: “Smoothed Particles: A New Paradigm For Animating

Highly Deformable Bodies.” In 6th Eurographics Workshop On Computer

Animation And Simulation ’96 1996

Marie-Paule Cani, Mathieu Desbrun: “Animation of Deformable Models Using

Implicit Surfaces.” Ieee Trans. Vis. Comput. Graph. 1997

Desbrun M., Cani M.-P.: “Active Implicit Surface For Animation.” In Proceedings

Of Graphics Interface 1998

Debunne G., Desbrun M., Barr A., Cani M.-P.: “Interactive Multiresolution

Animation Of Deformable Models.” In Eurographics Workshop On

Computer Animation And Simulation ’99 1999

Desbrun M., Schröder P., Barr A. H.: “Interactive Animation Of Structured

Deformable Objects.” In Graphics Interface ’99 1999

Mathieu Desbrun, Peter Schröder, Alan H. Barr: “Interactive Animation Of

Structured Deformable Objects.” Graphics Interface 1999

Desbrun M., Cani M.-P.: “Space-Time Adaptive Simulation Of Highly Deformable

Substances.” Tech. Rep., Inria Nr. 3829, 1999

 85

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, Alan H. Barr: “Adaptive

Simulation of Soft Bodies In Real-Time.” Ca 2000

Debunne G., Desbrun M., Cani M.-P., Barr A. H.: “Adaptive Simulation Of Soft

Bodies In Real-Time.” In Computer Animation ’00 2000

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, Alan H. Barr: “Dynamic Real-

Time Deformations Using Space & Time Adaptive Sampling”. Siggraph

2001

Mark Meyer, Gilles Debunne, Mathieu Desbrun, Alan H. Barr: “Interactive

Animation of Cloth-Like Objects in Virtual Reality.” Journal of Visualization

and Computer Animation 12 2001

Debunne G., Desbrun M., Cani M.-P., Barr A.: “Dynamic Real-Time Deformations

Using Space & Time Adaptive Sampling.” In Computer Graphics

Proceedings Aug. 2001, Annual Conference Series, Acm Siggraph 2001

