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ABSTRACT 

 

 

 

 

 Information Retrieval or IR system main task is to retrieve relevant 

documents according to the user’s query.  One of IR most popular retrieval model is 

the Vector Space Model.  This model assumes relevance based on similarity, which 

is defined as the distance between query and document in the concept space.  All 

currently existing chemical compound database systems have adapt the vector space 

model to calculate the similarity of a database entry to a query compound.  However, 

it assumes that fragments represented by the bits are independent of one another, 

which is not necessarily true.  Hence, the possibility of applying another IR model is 

explored, which is the Probabilistic Model, for chemical compound searching. This 

model estimates the probabilities of a chemical structure to have the same bioactivity 

as a target compound.  It is envisioned that by ranking chemical structures in 

decreasing order of their probability of relevance to the query structure, the 

effectiveness of a molecular similarity searching system can be increased.  Both 

fragment dependencies and independencies assumption are taken into consideration 

in achieving improvement towards compound similarity searching system.  After 

conducting a series of simulated similarity searching, it is concluded that PM 

approaches really did perform better than the existing similarity searching.  It gave 

better result in all evaluation criteria to confirm this statement.  In terms of which 

probability model performs better, the BD model shown improvement over the BIR 

model.   
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ABSTRAK 

 

 

 

 

 Tujuan utama sistem pencarian maklumat atau IR (Information Retrieval) 

adalah untuk mencari dokumen yang relevan berdasarkan permintaan pengguna.  

Salah sebuah model IR yang popular adalah model ruang-vektor.  Model in 

menganggap bahawa sesebuah dokumen itu adalah relevan kepada sesuatu 

pertanyaan  berdasarkan keserupaan antara keduanya.  Ia ditakrif sebagai jarak di 

antara dokumen dan permintaan pengguna (atau query), dalam sebuah ruang konsep.  

Model ruang-vektor ini telah diaplikasikan ke dalam sistem pencarian sebatian kimia 

yang serupa.  Walau bagaimanapun, ia menganggap bit-bit yang mewakili pecahan-

pecahan molekul kimia sebagai saling tidak berkait antara satu sama lain.  Ini adalah 

tidak semestinya benar dalam keadaan sebenar.  Maka, projek ini mencadangkan 

perlaksanaan pencarian keserupaan alternatif, iaitu dengan mengaplikasikan sebuah 

lagi model IR iaitu model kebarangkalian.  Model ini akan menganggarkan 

kebarangkalian samada sesebuah struktur kimia itu mempunyai bioaktiviti yang 

serupa dengan molekul pertanyaan ataupun tidak.  Ini dijangka dapat menghasilkan 

sebuah sistem yang mempunyai keberkesanan yang lebih baik untuk pengguna.  Ini 

adalah kerana struktur dinilai dan dipaparkan mengikut susunan menurun 

kebarangkalian sesebuah struktur itu aktif, terhadap pertanyaan pengguna.  Kedua-

dua anggapan kebersandaran dan ketidaksandaran bit pada struktur kimia, akan 

dipertimbangkan untuk menghasilkan sistem pencarian keserupaan yang berkesan.  

Hasil eksperimen menyimpulkan bahawa pencarian keserupaan berdasarkan model 

kebarangkalian adalah lebih berkesan daripada pencarian keserupaan yang sedia ada.    

Selain daripada itu, adalah didapati bahawa model kebarangkalian berdasarkan 

anggapan kebersandaran bit menghasilkan keputusan yang lebih baik berbanding 

dengan anggapan ketidaksandaran bit.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Problem 

 

 

Cheminformatics is now being extensively used by the pharmaceutical and 

agrochemical companies, to find new active compounds and bring them to market as 

quickly as possible.  Highly sophisticated systems have been developed for the 

storage, retrieval and processing of a range of types of chemical information.  

Although chemical structures differ greatly from other entities that are commonly 

stored in database, some parallels can be drawn between chemical database searches 

and searches on words or documents (Miller, 2002).  Hence, this project focuses on 

two different fields: the chemical retrieval system as well as the information retrieval 

system.  Here, an alternative chemical search method is proposed based on the 

concepts obtained from the information retrieval model. 

 

 

Information retrieval (IR) is a science or art of locating and obtaining 

documents based on information needs expressed to a system in a query language.  

Hence, IR systems need to interpret the content of documents or information items in 

a collection and rank them according to their degree of relevance.  IR systems have 
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expanded rapidly due to the vast usage of Internet.  Many new approaches have been 

introduced to facilitate user’s task in finding information to be used in problem 

solving and achieving their goals.  Previous methods, like the Boolean Model are no 

longer sufficient in retrieving relevant documents, mainly because it pays little 

attention to the ranking of the result retrieved and has limited features in query 

formulation and processing (Croft, 1995). As a result, IR research turns to partial 

match methods, which consist of two retrieval models: the Vector Space Model 

(Salton and Buckley, 1988a) and the Probability Model (van Rijsbergen, 1979; Fuhr, 

1992).  Vector space assumes that relevance is based on similarity measures that are 

defined as the distance between query and document in the concept space.  It 

represents documents and query by vectors in the space whose elements are their 

values on the different dimensions.  Similarity measure measures the cosines angle 

between document- vector and query-vector.   Probability model on the other hand, 

estimates the probabilities of relevance or non-relevance of a document to an 

information need. 

 

 

Chemical compound databases have now been widely used to assist in the 

development of new drugs.  It has progressed from being a mere repository of 

compound synthesized within an organisation, to being a powerful research tool for 

discovering new lead compounds, worthy of further synthetic or biological study.  

One of the facilities provided for this purpose is the similarity searching tool, in 

which the database can be searched for compounds similar to a query compound.  

The main use for this tool is to find other compounds similar to a potential drug 

compound, with the hope that these similar compounds have similar activity to the 

query compound and can be better optimised as drugs compared to the initial 

compound. 

 

 

Thus, there is always a need to develop new similarity searching methods.  

This project is an example of an effort to develop a new similarity searching method 

to help researchers find lead compounds faster and more effectively.  
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1.2 Problem Statement 

 

 

Due to the similarities in the way that chemical and textual database records 

are characterised, many algorithms developed for the processing of textual databases 

are also applicable to the processing of chemical structure database and vice versa 

(Willett, 2000).  For instance, all existing chemical compound similarity searching 

systems applies the Vector Space Model (VSM).  Even though this approach has 

acceptable retrieval effectiveness (Salim, 2002), the VSM only considers structural 

similarity, ignoring both activity and inactivity.  Other than that, the evaluation order 

of the query and the database compounds was not taken into account.  It also 

assumes that fragments are independent of all other fragments, which is not 

necessarily true (Yates and Neto, 1999). 

 

 

Hence, this project focuses on developing a similarity searching method 

based on the Probability Model (PM).  It is a stronger theoretical model and there are 

many approaches in this model (Crestani, et al., 1998).  However, only two 

approaches are used here that are the Binary Independence Retrieval (BIR) Model 

and Binary Dependence (BD) Model.  Their implementation and effectiveness in 

performing similarity searching has never been experimented or compared with the 

present similarity searching method.  

 

 

 

 

1.3 Project Objectives 

 

 

The following are objectives for this project: 

 

a) To develop a new compound similarity searching method which is based 

on the PM as stated as below: 
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 BIR model, which is the most simple model and basic of all 

approaches in PM, assuming linked dependence. 

 BD model, which is a more realistic approach in retrieving active 

structures, where presence or absence of a bit gives effect to the 

presence or absence of another. 

 

b) To test the effectiveness of each similarity searching method developed 

based on its ability to give similar active compounds to the target 

compound. 

 

 

1.4 Scope 

 

 

The scope of this project is as follows: 

 

a) Probability-based compound similarity searching is based on the BIR and 

BD model. 

 

b) Vector space-based compound similarity searching uses the Tanimoto 

coefficient to calculate the similarity measure. 

 

c) All representation of the chemical compound is in the form of binary 

descriptor.  The Barnard Chemical Information (BCI) bit-string is used 

which is a dictionary-based bit sting. 

 

d) Testing is done on the National Cancer Institute (NCI) AIDS dataset. 

 

 

1.5 Significance of Study 

 

 

Many research works have been done on vector space based similarity 

searching.  As mention earlier, it is not without its limitations.  Thus, the focus of this 
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project is to take up other alternatives of IR and apply it in compound similarity 

searching.  PM takes into account both activity and inactivity of a chemical 

compound, unlike VSM, which only considers structural similarity.  Hence, research 

work should be done to develop a similarity searching based on PM, and compare its 

effectiveness with the current similarity searching methods. 

 

 

Currently, there are many similarity searching methods developed and much 

effort is given in improving them.  The question now, is why the need of another 

similarity searching method?  Bajorath (2002) refers to virtual screening of 

compounds as an “algorithm jungle”.  However, the fact is biological activity is more 

diverse and complicated than can be addressed by a single method.  Different 

methods rank active compounds differently and thus selecting different subsets of 

actives.  This can lead to the fact that a method can find some actives that all other 

methods would miss. 

 

 

Sheridan and Kearsley (2002) mentioned that looking for the best way in 

searching chemical database can be a pointless exercise.  However, the authors also 

mentioned that multiple methods are still needed, as stated below: 

 

 It is as if we have a set of imperfect windows through which to view 

Nature.  As computational scientists, we get nearer to the truth by 

looking through as many different windows as possible. 

 

 (Sheridan and Kearsley, 2002: 910) 
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1.6 Organisation of Report 

 

 

The outline for this research report is as follows: 

 

 

Chapter 2 covers the literature review of this project, which is divided into 2 

parts.  The first part discusses about the current similarity searching method.  This 

section will also describe the requirements of similarity searching.  Firstly molecular 

descriptors are discussed.  Similarity values obtained depends heavily on the set of 

descriptors used.  Descriptors are vectors of numbers, each of which is based on a 

predefined attribute.  It can be classified into 1D, 2D and 3D.  Next, similarity 

coefficient is discussed.  Similarity coefficients are used to obtain a numeric 

quantification to the degree of similarity between a pair of structures.  Basically there 

are four main types of similarity coefficients that will be discussed, which are 

distance, association, correlation and probabilistic.  The second part explains about 

the models in IR in terms of the definition and mathematical structures.  Both the 

VSM and PM are discussed.  The PM mainly focuses on the BIR and BD model.  

Discussion is also done in this chapter, to relate both the chemical database and IR 

domain. 

 

 

Chapter 3 discuses the methodology used in this project.  It covers 

experimental design as well as performance evaluation.  Results of the experiments 

conducted are recorded in Chapter 4.  There is also a discussion which includes 

critical analysis and result comparison of the performance evaluation done.  Finally, 

Chapter 5 concludes this report. 
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1.7 Summary 

 

 

There is always a need to develop new similarity searching methods to find 

lead compounds more effectively and thus reduce the time needed to develop new 

drugs.  Since, there are resemblances between conducting chemical database searches 

and searches on documents; hence, this project proposes an alternative chemical 

search method based on the concepts obtained from the IR domain (i.e. the BIR and 

BD model).  We have discussed in this chapter the objectives, scope and significance 

of this project, to set the context for the work explained further in the research report.   



CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

This chapter is divided into two parts.  The first part covers topics on the 

current chemical database search method emphasizing on how similarity searching 

complements the early search methods like structure searching and substructure 

searching.  Performance of similarity searching is very much influenced by the 

similarity coefficient used to measure the likeness between structures.  This in turn, 

depends on how chemical structures are represented.  Hence these two requirements 

are also covered in this chapter.   

 

 

The second part of this chapter discusses about the models in information 

retrieval (IR).  Both the VSM and PM are discussed.  This project focuses on 

Probability Model.  There are many approaches in this model as mentioned by 

Crestani, et al. (1998).  However, only two approaches are used here.  The first is the 

Binary Independence Retrieval (BIR) Model, which is a simple model assuming 

independence of terms.  The second approach in probability model is Binary 

Dependence (BD) Model, which is the opposite of the independence assumptions.  It 

however yields a more realistic approach in retrieving relevant documents.   
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Discussion is also done in this chapter, to relate both the chemical database 

and IR domain.  Here, the similarity between current compound search method and 

Vector Space Models is shown.  Algorithms developed for the processing of textual 

databases are also applicable to the processing of chemical structure database 

(Willett, 2000).  This has been the basis of this project.  Another alternative in 

compound similarity searching is proposed that is based on Probability Model.  Apart 

from having a strong theoretical basis, PM is a more realistic approach in retrieval 

system.  It will rank chemical compounds in decreasing order of their probability of 

being similarly active to the target compound.  According to the Probability Ranking 

Principle (PRP), if the ranking of the compounds is in decreasing probability of 

usefulness to the user, then the overall effectiveness of the system to its users will be 

the best (Cooper, 1994).   

 

 

 

 

2.1 Searching Methods for Databases of Molecules 

 

 

There are three different retrieval mechanisms offered by the chemical 

databases.  There are the structure searching, substructure searching and similarity 

searching.  Structure searching and substructure searching are used by the early 

chemical information systems.  There were later complemented by similarity 

searching, which is the focus of this project. 

 

 

 

 

2.1.1 Structure Searching 

 

 

Structure searching involves searching for a molecule of database for a 

specified query molecule.  It is also known as the exact-match searching (Miller, 

2002).  This searching mechanism is done by firstly asking the user to supply the 
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complete structure of a molecule.  At this moment, user must already have a well 

defined specification on their mind.  The database is then searched for compound 

that matches perfectly with the target structure.  Comparison to determine 

equivalence is done using the graph isomorphism algorithm, where chemical 

structure is treated as graph.  A graph is generated for each compound based on its 

connection table.  Atoms in the chemical structure are denoted as vertices whereas 

their bonds are denoted by their edges.  Searching is done by checking the graph 

describing the query molecule with the graphs of each of the database molecules for 

isomorphism.  Two graphs are isomorphic if there is 1:1 corresponding between 

vertices and 1:1 corresponding between edges, with corresponding edges joining 

corresponding vertices. 

 

 

Structure searching is performed to find out whether a proposed new structure 

already exists in a database.  This is to ensure that the structure is novel and never 

been identified before.  If it is not in the database, then the new structure is registered 

in a structure file, also known as a register file, in which there is only a single and 

unique record of each compound.  Some additional information about the new 

structure can also be recorded in an associated data file.  Hence, a structure searching 

can also be used to get some additional data about a particular compound. 

 

 

A structure search might yield no hits even though the compound is present in 

the database.  This is depending on the flexibility of the query specification.  Other 

than that, this type of search is also very time consuming.  This due to the number of 

different connection tables that can be constructed for a compound, that is N! for N-

atom molecule (Salim, 2002). 
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Table 2.1: Overview of structure searching 

Structure searching 

Question: 
Which molecule in a database matches exactly with the 

specified structure? 

Query requires: An entire specification of a molecule. 

Application: 

 Identify whether compound exist in database or not. 

 To get some data about a particular compound e.g. 

associated biological test results. 

Limitation: 

 Time consuming. 

 User must already have a well-defined specification to 

avoid no-hits even though structure is in the database. 

 

 

 

 

2.1.2 Substructure Searching 

 

 

Substructure searching involves the user specifying a set of pieces of a 

chemical structure and requests the system to return a set of compounds that contain 

the pieces.  This is done by undergoing detailed atom-by-atom graph matching in 

which each and every atom and bond in the query substructure is mapped onto the 

atoms and bonds of each database structure.  This is to determine whether subgraph 

isomorphism is present.  However, checking of subgraph isomorphism has an NP-

complete nature (Gillet et al., 1998), which means that it is totally infeasible to be 

implemented especially on large databases.   This is why, substructure searching has 

become a two stage procedure, where the first stage involves pre-screening of the 

database to eliminate structures that cannot possibly match the query.  The remaining 

structure will then undergo the final, time-consuming atom-by-atom search. 

 

 

Pre-screening of structures can be done by using structural keys.  Keys 

encode the presence or absence of specific structural features.  Detailed explanation 
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is given in the next section.  Basically, keys are generated when the structures are 

registered in the database.  A key is created by defining the structural features of 

interest, assigning a bit (1 represents presence, 0 represents absence) to each one of 

these features and generating a bitmap for each compound in the database.  At search 

time, only those structures that have all the keys set by the query structure need to be 

examined for atom-by-atom mapping. 

 

 

The purpose of this search mechanism is to find structures containing a 

specified functional group, thus allowing the properties common to that group to be 

observed.  It can also be used in the implementation of pharmacophoric pattern 

searching, where compounds containing a specific 3D substructure that has been 

identified in a molecular modelling study, are sought. 

 

 

Although substructure searching provides invaluable tool for accessing 

databases of chemical structures, it does pose several limitations.  First, the user 

posing the query must already have acquired a well defined view of what sorts of 

structures are expected to be retrieved from the database.  They can also tell while 

browsing the hits, how each answer satisfied the search question.  Second, there is 

very little control on the size of the output produced.  For example, the specification 

of a common ring system can result in retrieval of thousands of compounds from a 

chemical database.  Finally, this search mechanism does not rank the output in order 

of decreasing probability of activity.  It simple divides the database to structures 

containing the query and those that do not. 
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Table 2.2: Overview of substructure searching 

Substructure searching 

Question: 
Which molecules in a database contain the specified 

structure? 

Query requires: 2D or 3D substructure common to actives. 

Application: 
 Find structures containing a specified functional 

group. 

Limitation: 

 User must already have a well-defined view of what 

sort of structures are expected to be retrieved. 

 Little control on the size of output produced. 

 No ranking mechanism. 

 

 

 

 

2.1.3 Similarity Searching 

 

 

Limitation of both structure and substructure searching has promoted interest 

in similarity searching.  This search method is based on the similar property principle 

(Johnson and Maggiora, 1990) where structurally similar molecules will exhibit 

similar physiochemical and biological properties.  Closely related to this principle is 

the concept of neighbourhood behaviour (Patterson, et al., 1996) which states that 

compounds within the same neighbourhood or similarity region have the same 

activity. 

 

 

Similarity searching is carried out by specifying an entire molecule in the 

form of a set of structural descriptors.  Then, the target molecule is compared with 

the corresponding set of descriptors for each molecule in the database.  Each 

comparison enables the calculation of a measure of similarity between the target 

structure and every database structure.  Next, the database molecules are then sorted 

into order of decreasing similarity to the target.  The output of the search is a ranked 

list showing structures judged to be most similar to the target, thus having the 
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greatest probability of interest to the user.  The top structures of the list also show 

that they are nearest neighbours of the target molecule.  

 

 

This search mechanism can be use for rational design of new drugs and 

pesticides.  The nearest neighbours for an initial lead compound are sought in order 

to find better compounds.  Other than that, it can also be used for property prediction, 

where properties of an unknown compound are estimated from those of its nearest 

neighbour. 

 

 

Similarity searching has proved to be extremely popular with users.  It is 

especially useful firstly because little information is needed to formulate a reasonable 

query.  No assumption need to be made about which part of the query molecule 

confers activity.  Hence, similarity methods can be used at the beginning of a drug 

discovery project where there is little information about the target structure and only 

one or two known actives.  Implementations of similarity methods are also 

computationally inexpensive.  Thus, searching large databases can be routinely 

performed. 

 

 

There are two factors which influence the definition of molecular similarity, 

they are: the information used to represent the molecules, and measures used to 

quantify the degree of structural resemblance between target structure and each of the 

structures in the database.  The following sections further explain these two factors. 
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Table 2.3: Overview of similarity searching 

Similarity searching 

Question: 
Which molecules in a database are similar to the query 

molecule? 

Query requires: One or more active molecules. 

Application: 

• To find better compounds than initial lead compound, 

for design of new drug or pesticides. 

• Property prediction of unknown compound. 

Why especially 

useful: 

• Little information is needed to formulate a reasonable 

query. 

• Computational inexpensive. 

 

 

 

 

2.1.4 Post-searching Processing of Results 

 

 

After conducting a chemical database search, a user might still face with a list 

of compounds too large to examined or test.  Hence, post search processing of result 

will be done.  It can consist of three approaches, mainly filtering, clustering and 

human inspection. 

 

 

Filtering involves imposing secondary search criteria to eliminate 

compounds.  Hence, hit list may be further pruned for compounds having undesirable 

or non drug like properties.  For example compounds might be removed if it cost too 

much to process or if the molecules have overly reactive groups which could be 

hazardous.  There are also instances where compound resemble each other that there 

is no point to test all of them.  Hence, only representative subset of a larger set is 

taken in consideration.  This is done by clustering similar compounds.  Lastly, the 

last approach involves human inspection which requires great deal of effort and is 
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very time-consuming.  However, it may yield valuable results drawn from insights 

after seeing a set of structures in the wider context of the research process. 

 

 

 

 

2.2 Representation of Chemical Structures 

 

 

Selecting compounds requires some quantitative measure of similarity 

between compounds.  These quantitative measures in turn depend on the compound 

representation or structural descriptors that are amenable to such comparisons.  

Structural descriptors are actually vectors of numbers, where each of them is based 

on some-predefined attributes.  They are generated from a machine-readable 

structure representation like a 2D connection table or a set of experimental or 

calculated 3D coordinates.  Molecular descriptors can be classified into 1-

dimensional (1D), 2-dimensional (2D) and 3-dimensional (3D) descriptors. 

 

 

 

 

2.2.1 1D Descriptors 

 

 

1D descriptors model 1D aspect of molecules.  It is also known as global 

molecular properties where physicochemical properties are used as molecular 

descriptors.  Examples of these properties are molecular weight, ClogP (log of the 

octanol / water partition coefficient), molar refractivity (the ratio of the speed of light 

in a vacuum to its speed in a sample compound) and many more.  The main 

disadvantage of physicochemical properties is that they need to be calculated for 

every compound in the database and some properties can be extremely time-

consuming to calculate. 
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2.2.2 2D Descriptors 

 

 

2D descriptors model 2D aspects of molecule obtained from the traditional 

2D structure diagram.  There are two types of 2D descriptors which are the 

topological indices and 2D screens.  Topological indices characterise the bonding 

pattern of a molecule by a single value integer or real number.   The value obtained is 

from mathematical algorithms applied to the chemical graph representation of 

molecules.  Thus, each index contains information not about fragments or some 

locations on the molecule, but rather about the molecule as a whole.  The second type 

of 2D descriptors is the 2D screens, which is the focus of this project and thus 

explained in detailed in this section. 

 

 

2D screens refer to bit strings that are used to represent molecules.  It was 

originally developed for substructure search system.  2D screens can be further 

classified to dictionary-based bit strings and hashed fingerprints.  In dictionary-based 

bit strings, a molecule is split up into fragments of specific functional groups or 

substructure.  Substructural fragments can involve atoms, bonds and rings.  Example 

of fragment types used in 2D screens can be seen in Figure 2.1. 

 

 

Fragment are recorded in a predefined dictionary of fragments, that specifies 

the corresponding bit position or screen number of the fragments in the bit string.  If 

a particular fragment is present, then a corresponding bit is set in the bit string.  The 

number of occurrence of the fragment is not recorded in the bit string.   Hence if a 

fragment is present for 100 times, it would only set one bit.  It is the number of 

different types of fragments that determines the number of bits set in a bit string and 

not its quantity.  Examples of dictionary based bit strings are BCI bit strings (Barnard 

Chemical Information Ltd.) and MDL MACCS key system (Durant, et al., 2002).  

Figure 2.2 shows the concept of encoding chemical structure as a bit string. 
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Figure 2.1 Example of fragment types used in 2D screens (Salim, 2002) 

 

 

 
Figure 2.2 Encoding chemical structure as a bit string (Flower, 1997) 

 

 

Another alternative to dictionary-based bit strings is hashed fingerprint.  

Unlike the previous bit string, it is not dependent on a predefined list of structural 
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fragments.  Instead, unique fragments that exist in a molecule are hashed using some 

hashing function to fit into the length of the bit string.  Hence, the fingerprints 

generated are characterized by the nature of the chemical structures in the database 

rather than by fragments in some predefined list. 

 

 

Hashed fingerprint adopt the path approach to replace fragment dictionary.  

By default, all paths through the molecular graph of length 1 to 8 atoms are found.  

Bits corresponding to each possible type of path are set if present.  The resulting bit 

string is then folded to reduce storage requirements and speed searching.  Example of 

system using hashed fingerprints is the Daylight Chemical Information system 

(James, et al., 2000).  Figure 2.3 shows how bits are set using this approach.  A 

molecule is decomposed into a set of atom paths of all possible lengths.  Each of 

these paths is then mapped to a bit set in a corresponding binary string.   Although all 

existing fragments are included in the hashed fingerprint, it can result in very dense 

fingerprints.  Overlapping of patterns as a result from hashing can also cause loss of 

information and give false similarity values, as common bits in two strings can be set 

by completely unrelated fragments. 

 

 

 
Figure 2.3 Bits set using the path approach (Flower, 1997) 
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Currently, 2D screens are widely used for database searching, mainly on 

selecting compounds for inclusion in biological screening programs.  This is due to 

its proven effectiveness (Brown and Martin, 1997), and low processing requirements 

to calculate similarities between a target structure and large number of structures. 

 

 

 

 

2.2.3 3D Descriptors 

 

 

3D descriptors model 3D environment of molecules.  They have the ability to 

model the biological activity of molecules because the binding of a molecule to a 

receptor site is a 3D event.  Examples of 3D descriptors are 3D screens, Potential- 

Pharmocophore-Point (PPP) and affinity fingerprints.  3D descriptors however, are 

computationally more expensive than 2D descriptors.  This is because, it does not 

only involve generating 3D structure but it needs also to handle conformational 

flexibility and decide which conformers to include.  Brown and Martin (1997) also 

state that 3D fingerprints are not generally superior to 2D representation and that 

complex designs do not necessarily perform better than simpler ones. 

 

 

 

 

2.3 Similarity Coefficients 

 

 

One of the most important components of a similarity searching system is the 

measure that is used to quantify the degree of structural resemblance between the 

target structure and each of the structures in the database.  This measure is called 

similarity coefficients.  This section gives brief overview on types of coefficients 

used in the chemical database searching, with some common examples.  Although 

there are many ways in expressing similarity coefficient, discussion is limited to the 
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binary form of the coefficient since this project involves the usage of 2D bit string 

based similarity measures. 

 

 

Assume that a chemical structure, SM is described by listing its set of binary 

attribute-values or vector, such that SM = {b1M, b2M, b3M,  … bnM}, where there are n 

attributes, and biM is the value of attribute Ai for structure SM.  The coefficients shown 

in this section are in binary form, where the presence or absence of bit Ai in the set of 

bits, is used to represent chemical structures SM or query SQ.  SimM, Q is the similarity 

between molecule M and query molecule Q.  There are two ways of expressing the 

formulae of similarity coefficients, when the data under analysis is in binary form: 

 

a) Formulae based on the 2 x 2 contingency table    

Based on Table 2.4, a is equal to the number of attributes whose value 

both in SM and in SQ is 1, while d is equal to number of attributes whose 

value both in SM and in  SQ is 0.  b is equal to the number of attributes 

whose value in SM is 1 and in SQ is 0 while c is equal to the number of 

attributes whose value in SM is 0 and in SQ is 1.  The sum of all these 

value (a + b + c + d) is equal to the number of attributes, n of each 

chemical structure.  The examples shown in this section uses 2 x 2 

contingency table to express the similarity coefficients. 

 

 

Table 2.4: 2 x 2 contingency table 
 biQ = 1    biQ = 0    

biM = 1 a b 

biM = 0 c d 
   

 

 

b) Formulae based on set theory 

A second alternative is to use the set-theoretic notation, where the 

following are defined: 
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 sm is the set elements biM in vector SM whose value is 1,   

 sq is the set elements biQ in vector SQ whose value is 1,   

 | sm | refers to the number of elements in set sm,  

 | sq | refers to the number of elements in set sq,  

 | sm ∩  sq | refers to the number of elements common to both sm 

and sq, 

 | sm ∪  sq | refers to the number of elements in both sm and sq.   

 

|sm ∩  sq| in this notation is equivalent to a in the previous notation and 

|sm ∪  sq| is equivalent to n.  | sm | is equivalent to a + b and | sq | is 

equivalent to a + c.  Hence, we can easily convert from one notation to 

another.  Take for example the Tanimoto coefficient below: 

 

 
 Contingency table Set theory 

Tanimoto 

cba
a
++

 

qmqm

qm

qmqqmmqm

qm

ssss

ss

ssssssss

ss

∩−+

∩
=

∩−+∩−+∩

∩
=

 

Figure 2.4 Converting contingency table based formula to set theory 

based formula. 

  

Even though the first notation is used in this section to express all 

formulae, however in this project the set theory notation is used in its 

implementation. 

 

 

There are four main types of similarity coefficients, which are distance 

coefficient, association coefficient, correlation coefficients and probabilistic 

coefficients.  The origins of these coefficients can be found in the review paper by 

Ellis, et al. (1994).  They are all briefly explained below: 

 

a) Distance coefficient 
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This coefficient is used to measure the distance between structures in a 

molecular space.  It is difficult to visualise the geometry of a space of 

more than 3 dimensions (hyperspace).  Hence to preserve the validity of 

geometric distances between objects in a hyperspace, the coefficient must 

have the property of metrics.  In order to do so, a distance coefficient 

needs to obey certain rules: 

 

 Distances must be zero or positive: SimM, Q  ≥ 0 

 Distances from object to itself must be zero: SimM, Q  = SimQ, M  = 

0 

 Distance between non-identical objects must be greater than zero: 

If SM ≠ SQ, then SimM, Q > 0 

 Distance must be symmetric: SimM, Q = SimQ, M 

 Distance must obey the triangular inequality: SimM, Q  ≤ SimM, X  + 

SimQ, X 

 

 

Table 2.5: Examples of distance coefficients (Ellis, et al., 1994) 

Coefficient Binary Formula 

Mean Manhattan 

n
cb +

 

Mean Euclidean 

n
cb +

 

Mean Canberra 

n
cb +

 

Divergence 

n
cb +

 

 

 

b) Association coefficient 

Association coefficient is a pair-function that can measure the agreement 

between the binary, multi-state or continuous character representations of 

two molecules.  It is based on the inner product of corresponding 

elements of two vectors denoted by a.  The basic formula of an 
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association coefficient for binary data is formed by dividing a.  The 

following table shows examples of association coefficients: 

 

Table 2.6: Examples of association coefficients (Ellis, et al., 1994) 

Coefficient Binary Formula 

Jaccard / Tanimoto 

cba
a
++

 

Ochiai / Cosine 

))(( caba
a

++
 

Dice 

cba
a
++2

2
 

Russell / Rao 

n
a

 

Sokal / Sneath 

c2b2a
a
++

 

 

 

c) Correlation coefficient  

This coefficient measures the degree of correlation between sets of values 

representing the molecules, like the proportionality and independence 

between pairs of real-valued molecular descriptors.   The following table 

shows examples of correlation coefficients: 

 

 

Table 2.7: Examples of correlation coefficients (Ellis, et al., 1994) 

Coefficient Binary Formula 

Pearson 

))()()(( dcdbcaba
bcad

++++
−

 

Yule 

bcad
bcad

+
−

 

McConnaughey 

))(( caba
bca 2

++
−
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Stiles 

))()()((
log

dcdbcaba
2
nbcadn

2

10 ++++

⎟
⎠
⎞

⎜
⎝
⎛ −−

 

Dennis 

))(( caban
bcad

++
−

 

d) Probabilistic coefficient 

Probabilistic coefficient focuses on distribution of the frequencies of 

descriptors over the members of a data set, giving more importance to a 

match on an infrequently occurring variable.  However, this type of 

coefficient is not much used in measuring molecular similarity due to its 

poor performance and extremely extensive computations requirement 

(Adamson and Bush, 1975). 

 

 

 

 

2.4 Information Retrieval (IR) 

 

 

Information retrieval is a science or art of locating and obtaining documents 

based on information needs expressed to a system in a query language (Losee, 1997).  

Normally, people mistakenly refer to it as data retrieval.  Instead, data retrieval 

involves retrieving data from tables that have rows and columns.  It is then organized 

and presented in a manner that provides information to users.  However, in 

documents, there are no tables or columns to refer to, making it difficult in terms of 

seeking and retrieving such information.  Hence it can be concluded that data 

retrieval system deals with data that has a well-defined structure and semantic, for 

example the database system.  It is not suitable for use in retrieving information 

about a subject or topic. 

 

 

IR system needs to interpret the content of the documents or information 

items in a collection and rank them according to their degree of relevance.  It focuses 

on two main issues:  
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a) Extracting the semantic information from the document text, 

 

b) Match it with user’s request and determine their degree of relevance. 

 

Recently, IR has taken the centre stage.  Before the World Wide Web 

(WWW) is introduced, finding and retrieving information has depended on an 

intermediary such as librarians or other information experts.  This field used to be 

considered as too esoteric for a typical user.  The Web is an enormous repository of 

knowledge and culture.  Now, every group of users can use it to find information.  Its 

success is due to its standard user interface that hides the computational environment 

running it.  Since the Web is vast and unknown, how does one find information?  

Surely by navigating through the Web would be a tedious and inefficient way of 

doing it. 

 

 

Matters are made worst when there is no well-defined underlying data model 

for the Web.  Hence, IR research is now an important component in major 

information services and the Web.  Its goal is to facilitate convenient retrieval of 

information regardless of its form, medium or location. 

 

 

 

 

2.4.1 Retrieval Process 

 

 

To show how retrieval is done, consider the following example.  Below is a 

user information need:  

Find all documents containing information on the crime rate in Kuala 

Lumpur involving teenagers. 

In order to be relevant, the result must include statistic of crime rates in Kuala 

Lumpur that only involves teenagers.  The user must then translate this information 

into a query, which can be processed by the IR system.  Translation usually produces 
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set of keywords or index terms, which represent the description of the user’s 

information need. 

 

 

IR system then retrieve document which might be useful or relevant to the 

user, ranking it according to a likelihood of relevance, before showing it to the user.  

Normally, the results will not be good, as most users do not know how to formulate 

their query out of their information needs. 

 

 

The user then examines the set of ranked documents for useful information.  

At this point, user can pinpoint a subset of useful document and initiate a user 

feedback cycle, which is based on the documents selected by the user.  The system 

then changes the query formulation.  This modified query is a better representation of 

the user’s need and hence, a better retrieval. 

 

 

 

 

2.4.2 Classical Retrieval Model 

 

 

In IR models, the following elements are given: 

 

a) A finite set of identifier (e.g. keyword, terms) 

 

b) A finite set of documents where a document can be a collection of some 

other objects or modelled as a series of weights.  Weights refers to the 

degree to which identifier relate to a particular document. 

 

c) A finite set of criteria (e.g. relevance, non-relevance), according to which 

two documents are compared to each other.  The result of this comparison 

is a score assigned to that pair of documents. 
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Classical retrieval is a process of associating documents to a query, which the 

scores are greatest, based on a given criterion (Dominich, 2000).  As described 

earlier, IR involves documents, denoted by d and a given query, q.  Retrieval 

involves the task of finding these documents, which implies the query (d→q).   

 

 

Initially, Boolean retrieval model was used to do this task.  A review of this 

model as well as other classical retrieval models can be found in Fuhr (2001).  

Boolean model is part of the exact matching methods category, where the query are 

normally represented by Boolean statements, consisting of search terms interrelated 

by the Boolean operators AND, OR and NOT.  The retrieval system will then select 

those stored items that are identified by the exact combination of search terms 

specified by the query.  Given a four-term query statement such as “(A AND B) OR 

(C AND D)”, the retrieved items will contain either the term pair A and B or the pair 

C and D or both pairs.   

 

 

Retrieval performance of the Boolean model depends on the type of search 

request submitted and on the homogeneity of the collection being searched (Blair and 

Maron, 1985).  Specific queries may lead to only a few items being retrieved but are 

most likely to be useful.  On the other hand, when query are broadly formulated, 

many more stored items are retrieved, including both relevant and irrelevant items.  

Retrieval performance is also generally better when the stored collection covers a 

well-defined subject, compared to those covering many different topic areas. 

 

 

This model has been widely accepted, because Boolean formulations can be 

used to express term relationships such as synonym relations identified by the OR 

operators and term phrases specified by the AND operators.  Furthermore, fast 

responses are obtained even for very large document collections. 
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Unfortunately, Boolean model posses some disadvantages.  Firstly, all 

retrieved documents are assumed to be equally useful.  This approach also has no 

ranking system.  Thus it acts more like a data retrieval model rather than an IR 

model.  Secondly, successful retrieval mainly requires a very well formed query and 

good search keys.  This is not likely since that the users have problem specifying 

their information needs.  The document representations itself are imprecise, since IR 

system has only limited processing methods that can represent the semantics of a 

document.  Certainly, this would lead to retrieval of too few or too many documents. 

 

 

Thus, IR research turns to partial match methods category to overcome the 

limitation of the Boolean approach.  It consists of two retrieval models that is Vector 

Space Model (VSM) and Probability Model (PM).  VSM is based on index term 

weighting.  These term weights are used to compute the degree of similarity between 

each documents stored in the system and the user query.  Then, the retrieved 

documents are sorted in decreasing order of this degree of similarity.  PM on the 

other hand, captures the IR problem within a probabilistic framework.  The model 

tries to estimate the probability that the user will find the document interesting or 

relevant.  It then presents to the user ranked documents in decreasing order of their 

probability of relevance to the query.  In contrast to the Boolean model, both of these 

approaches take into consideration documents, which match the query term only 

partially.  As a result, the ranked documents retrieved, are more precise than the 

documents retrieved by the Boolean model (Yates and Nato, 1999).  The following 

sections explain these models in more detail. 

 

 

 

 

2.5 Vector Space Model (VSM) 

 

 

The VSM (Salton and Buckley, 1988a), represents both the documents and 

queries as a vector of terms.  Given a document Dj and a query q characterised by a 
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vector, such that Dj = {t1j, t2j, t3j, ..., tnj} and q = {t1q, t2q, t3q, ..., tnq}, where there are n 

elements.  Elements tij or tiq is a value representing either:  

 

a) The presence or absence of term ti in the set of terms that is used to 

represent document Dj or query q in which the data are in binary form.  

Here, every term is treated equally.  One may argue that this does not 

reflect real life situation, where one term may have more importance than 

others.  Hence, the second approach is being employed as explained 

below. 

 

b) The weight of term ti in the set of terms that is used to represent 

documents Dj or query q, in which data are in non-binary form.  Here, 

term weights are used to distinguish the degree of importance of the 

terms. 

 

 

Various schemes exist for term weighting (Salton and Buckley, 1988b; 

Sparck Jones, 1973; Yu et al., 1982).  The formula that each uses to calculate 

weights are made up of some combination of functions based on the factor term 

frequency (tfij), which is the raw frequency of a term ti inside document Dj.  Consider 

a collection C of objects and a user’s query which is a vague specification of a set A 

of objects.  tf factor refers to as local weight, where it is used to determined the intra-

cluster similarity.  Intra-cluster similarity is where one needs to determine what 

features better describe the objects in the set A.  Sparck Jones (1973) added an 

inverse document frequency (idf) factor.  This factor is a global weight which 

measures the inter-clustering dissimilarity, where one needs to determine what 

features better distinguish the objects in set A from the remaining objects in C.  Thus, 

the inverse document frequency form term ti is defined as: 

idfi = log (N / df) 

where N refers to number of document in collection and df is the number of 

document that contains ti.  Hence, the document indexing weight (wij) of term ti with 

respect to document Dj, is given by: 

wij = tfij x idfi 
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In this model, both document and query representations are described as 

points in T dimensional space, where T is the number of unique terms in the 

document collection.  Figure 2.5 shows an example of a VSM representation for a 

system with three terms. 

 
Figure 2.5 Three dimensional vector space. 

 

 

Each axis in the space corresponds to a different term.  The position of each 

document vector in the space is determined by the weight of the terms in that vector, 

which is discussed previously.  Here, there is just one criterion considered, which is 

relevance.  Similarity between query and document is measured by a function that 

determines the matching terms in the respective vectors in order to identify the 

relevant documents.  This function is also referred to as the similarity measure which 

has three basic properties: 

 

a) It has a value between 0 to 1, 

 

b) It does not depend on the order of which the document are being 

compared, and 

 

c) If the value is equal to 1, then the query vector is the same as the 

document vector. 

 

 

q

D2

Term1 

Terms2

Terms3

D1
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A common example of similarity measure is the Cosine coefficient, which 

evaluate the degree of similarity of document with regards to the query q, as the 

distance between the vector Dj and q.   This distance can be quantified by using the 

cosine angle between there two vectors, which is given below: 
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∑
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Based on this explanation, we can determine that in Figure 2.5, the 

documents D2 is more similar to the query q, due to its distance being nearer to q 

compared to D1.  Other than the Cosine coefficient, there are also other similarity 

measures used in text retrieval as listed by Ellis, et al. (1994). 

 

 

Values obtained from the similarity measures are next used to produce ranked 

list of relevant document.  They are sorted in decreasing order of the measures.  

Documents are said to be retrieved if their similarity measures exceeding a threshold 

value which is normally requested from the user.   

 

 

The VSM is a popular retrieval model especially among the Web community.  

It is either superior or almost as good as other alternative (Yates and Nato, 1999).  

This is due to its approach that is known for being simple and very effective in 

retrieving information.  The following is the rest of the main advantages of this 

model: 

 

a) Documents are ranked according to their degree of similarity to the query. 

 

b) Partial matching strategy allows retrieval of documents that approximate 

the query condition. 

 

c) Term weighting scheme improves retrieval performance. 
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However, the model is not without its drawbacks.  The disadvantages of this 

model are stated below: 

 

a) In VSM, terms are assumed to be mutually independent, for example the 

following figure.  Assume that a complete concept space, U is form by a 

set of terms: 4321 ttttU ∪∪∪= .  The term t corresponds to the disjoint 

basic concepts: ti ∩ tj = Ø for i ≠ j.  As a result, terms form a dissection of 

U.  However, in practice, terms are not necessarily independent of all 

other terms.   

 

 

 
Figure 2.6 Disjoint concept of U 

 

b) Even though this model is simple, its ranked answer sets are difficult to 

improve on without query expansion or relevance feedback within the 

framework of the vector model (Yates and Neto, 1999). 

 

 

 

2.6 Probability Model (PM) 

 

 

In the PM, formal probability theory and statistics are used to estimates the 

probability of relevance by which the document are ranked.  This methodology is to 

t1 t2

t3 t4
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be distinguished from looser approaches like the VSM, in which the retrieved items 

are ranked by a similarity measures whose values are not directly interpretable as 

probabilities. 

 

 

Given a document (D), a query (q) and a cut-off numeric value of 

probability., this model computes the conditional probability P(D|R) that a given 

document D is observed on a random basis given relevant event R, that the document 

is relevant to the query (van Rijsbergen, 1979).  Query and document are represented 

by a set of terms.  Then P(D|R) is calculated as a function of the probability of 

occurrence of these terms in relevant against non-relevant documents.  The term 

probabilities are similar to the term weights in the VSM.  However, a probabilistic 

formula is used to calculate P(D|R), in place of the similarity coefficient used to 

calculate relevance ranking in VSM.  The probabilistic formula depends on the 

specific model used, and also on the assumptions made about the distribution of 

terms.  An overview of the many probabilistic models developed can be seen in 

Crestani, et al. (1998).  This project however focuses on only two models as 

explained in later sections (BIR and BD models). 

 

  

Next, documents with relevance probability exceeding its non-relevance 

probability are ranked in decreasing order of their relevance.  Documents are said to 

be retrieved when their relevance probability exceed the cut-off value.  According to 

the Probability Ranking Principle (PRP), retrieval system effectiveness is optimal if 

documents are ranked according to their probability of relevance.  The justification 

of this system principle is as follows:  Let C denotes the cost of retrieving a relevant 

document and C  as costs for retrieving a non-relevance document.  A user prefers 

relevant documents, and thus CC >  is assumed.  Then the expected cost (EC) for 

retrieving a document D is computed as: 

 

where P(R|D) refers to the probability of relevant documents and 1- P(R|D) = 

P(NR|D) refers to probability of non-relevant documents. 

 

))|(1()|()( DRPCDRPCDEC −⋅+⋅=
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In a ranked list of documents, a user will look at the document and stops at an 

arbitrary point.  In order to minimize the sum of expected cost at any cut-off point, 

documents have to be ranked in the order of the increase of expected cost.  For 

example, for any two documents D1 and D2, rank D1 ahead of D2 if EC(D1) < 

EC(D2).  Due to CC > , this condition is equivalent to P (R | D) > P (NR | D).  

Hence, documents are ranked to decreasing probability of relevance, in order to 

minimize the expected cost.  So, here it can be seen that probabilistic retrieval 

models are directly related to retrieval quality. 

 

 

The evaluation order, whether document to query or vice versa, also matters 

in this model.  The conditional probability P(q|D) measures the exhaustivity of a 

document that responds to a query.  Whereas, conditional probability P(D|q) can be 

used as a measure of specifity.  Figure 2.7 shows the differences of both evaluation 

orders with ti corresponding to term i.  In another example, consider the 

encyclopaedia as our document.  The encyclopaedia contains a large number of 

terms, which mean that it can answer many queries.  Thus, a high value of P(q|D).  

However, only a small part of this document will be relevant in most cases.  This is 

measured by P(D|q). 

 

  
Figure 2.7 P(q|D) vs. P(D|q) (Fuhr, 2001) 

 

 

Based on these advantages of PM, we can conclude that PM has strong 

theoretical basis and in principle should give the best predictions of relevance given 

available information.  Yet, probabilistic methods have not yet been widely used.  

This is because some researchers feel that the formulation of exact statistical 

       t1   t4  
 
      t2     q t5  
 
      t3   t6  
                  D 

P(D → q) = P(q|D) = 2/3    

P(q → D) = P(D|q) = 1 
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assumptions is an unnecessary theoretical burden.  They would rather spend the time 

and effort on looser formalisms and simpler approach than the probability theory.  

There is also the need to guess the initial separation of documents into relevant and 

non-relevant sets, and ongoing training collection with relevance information in 

order to provide clues about the documents when computing the conditional 

probability P(D|R). 

 

 

 

 

2.6.1 Binary Independence Retrieval (BIR) Model 

 

 

The BIR model (van Rijsbergen, 1979; Fuhr, 1992) is the simplest of all 

probabilistic models.  It is based on the presence or absence of independently 

distributed terms in relevant and non-relevant documents.  This means that the 

probability of any given term occurring in a relevant document is independent of the 

probability of any other term occurring in a relevant document and similarly for non-

relevant documents.  Hence, the name Binary Independence. 

 

 

This model takes into account the non-disjoint concepts, where with term ti 

and tj, ti ∩  tj ≠ Ø.  Hence, terms are map onto disjoint atomic concept by forming 

conjuncts of all term t, in which each term either occurs positively or negated.  

Hence, a document, D is represented as: 

n1
n1 ttD αα ∩∩= ...    with   =i

it
α      

⎩
⎨
⎧ =

=
1  if t
0   if t

  ii

ii

α
α

 

 

 

ti refers to the term t at location i on the document vector.  Whereas, αi acts as 

a binary selector that is, if αi = 1, then it means that the term occurs in the document, 

otherwise it is 0 and assumed negated.  For example, consider the following diagram, 

which illustrates a disjoint concept of three terms namely t1, t2 and t3, with Di, 

referring to documents.  The complete conjuncts of terms are as follows: 
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Figure 2.8 Construction of disjoint concepts for the case of 3 terms 

 

 

 

 

2.6.1.1 Retrieval Status Value (RSV) 

 

 

Retrieval status value refers to the similarity function that estimates ranking 

score of a particular document against the query posted by the user.  The optimal 

ranking function is given as P(R|D) / P(NR|D).  P(R|D) refers to the conditional 

probability of relevant documents whereas P(NR|D) refers to the conditional 

probability of non-relevant documents.  In order to estimate the probability of 

relevant and non-relevant documents, we consider the Bayes theorem where: 
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P(D|R) is the probability of a relevant document, 

P(D|NR) is the probability of a non-relevant document, 

P(R) is the probability of relevance, 

P(NR) is the probability of non-relevance, 

where 

P(D) is the probability of the document. 

 

 

Thus, by substituting the optimal ranking function with the expression in 

(2.1), we get: 

)|()(
)|()(

)|(
)|(

NRDPNRP
RDPRP

DNRP
DRP

⋅
⋅

=  
(2.2) 

 

 

Efficient matching requires data on the terms presence or absence in 

documents.  Other than that, it also requires terms presence probabilities in relevant 

and non-relevant documents.  Hence, two variables were defined, which are: 

 

a) pi that refers to the probability that a term appearing in a relevant 

document (R).  The complement of pi, denotes the probability of absence 

of a term in R.       

 

b) qi that refers to the probability that a term appearing in a non-relevant 

document (NR).  The complement of qi, denotes the probability of 

absence of a term in NR.     

 

 

Let αi refers to as a binary selector, as mentioned before.  Now, the 

probability of relevance of a document P (D|R) is given as: 
ii 1

in1i i p1pRDP αα −
=

−=∏ )()()|(
..

 

where pi = P (αi = 1 | R) and (1-pi) = P (αi = 0 |R).  Whereas, the probability of non-

relevance of a document P (D | NR) is given as: 
ii 1

in1i i q1qNRDP αα −
=

−=∏ )()()|(
..
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where qi = P (αi = 1 | NR) and (1-qi) = P (αi = 0 |NR).   

Thus, by substituting both the above expression in (2.2), the ranking function 

becomes: 
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(2.3) 

 

  

Then, by taking the logs of the ranking function, it will transform (2.3) into a 

linear discriminate function: 
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The constant C, which has been assumed the same for all documents, will 

vary from query to query.  It can be interpreted as the cut-off value applied to the 

retrieval function.  ci indicates the capability of a term to discriminate relevant from 

the non-relevant document.  It is also referred to as relevance weights or term 

relevance.   

 

 

 

 

2.6.1.2 Probability estimation and improvement 

 

 

There are two instances in probability estimation.  If we already know the set 

of relevant documents R, ci can be interpreted with assistance of the following table.  

Let N be the number of documents in the database and R refers to the number of 

relevant documents.  n refers to the number of documents which contain term ti, 

whereas r refers to the number of relevant documents which contain term ti. 
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Table 2.8: Contingency table for estimating ci (van Rijsbergen, 1979) 

 Relevant Non-relevant  

αi = 1 r n-r n 

αi = 0 R-r N-n-R+r N-n 

 R N-R N 

 

 

pi can be estimated as r/R whereas qi can be estimates as (n-r) / (N-R).  

Hence, the ci can be rewritten as: 

))((
)(log

rRrn
rnRNrci −−

+−−
=  

 

 

The last formula for pi and qi can create problems for small values of R and ri 

which normally is the case in real situation (Yates and Neto, 1999).  To avoid these 

problems, an adjustment factor is often added in which yield: 

 

a) pi = (ri + 0.5) / (R + 1) 

 

b) qi= (ni - ri + 0.5) / (N – R + 1) 

 

 

The second instance in estimating probability of pi and qi is when we do not 

know the set of relevant documents R at the beginning.  Hence, it is necessary to 

devise a method for initially computing the probabilities P(D|R) and P(D|NR).  In the 

beginning, they are no retrieved documents.  Thus, the following assumption is 

made: 

 

 

a) pi is assumed a constant for all index term ti.  Usually, the value 0.5 is 

selected: 

pi = 0.5 
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b) qi or the distribution of index terms among the non-relevant documents 

can be approximated by the distribution of index terms ti (ni) among all 

the document in the collection (N): 

qi = ni / N 

 

 

 As a result, documents which contain query terms are retrieved and provided 

an initial probabilistic ranking for them.  This is then improved by the following 

probability estimation improvement process.  Let V be a subset of documents initially 

retrieved and ranked by the BIR model.  Such a subset can be defined, for instance, 

as the top r ranked documents where r is a defined threshold.  Additionally, let Vi be 

the subset of V containing term ti.  Hence, the following assumption is made:       

  

a) pi can be approximated by the distribution of the index term ti among the 

documents retrieved so far: 

pi = Vi  / V 

 

b) qi can be approximated by considering all the non-retrieved document that 

are non-relevant: 

qi = (ni - Vi ) / (N - V) 

  

 

 This process can then be repeated recursively and it is now possible to 

improve the estimation on P(D|R) and P(D|NR) without any assistance from a human 

subject.  However, we can also ask assistance from the user for definition of the 

subset V.  The same adjustment factor is also added in calculating pi and qi to 

overcome problems due to small values of V and Vi. 

 

c) pi = (Vi + 0.5) / (V + 1) 

 

d) qi= (ni - Vi + 0.5) / (N – V + 1) 
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2.6.2 Binary Dependence (BD) Model 

 

 

Most IR models assume terms of query and documents are independent from 

each another.  This assumption of terms independence is a matter of mathematical 

convenience and hence yields to simplistic retrieval system.  Research work by 

Bollmann-Sdorra and Raghavan (1998) showed that, for retrieval functions such as 

the cosine used in the VSM, weighted retrieval is incompatible with term 

independence in query space.  They also proved that the term independence in the 

query space even turned out to be undesirable. 

 

 

The hazard of term independence is also pointed out by Cooper (1995), 

mainly on data inconsistency.  He also stated that the BIR model, discussed in the 

previous section, is mistakenly named and better referred to as linked-dependence 

model.  This model has been called Binary Independence, because simplified 

assumption is made, where document properties that serve as clues to relevance are 

independent of each other in both set of relevant documents and the set of non-

relevant documents.  However, Cooper stated that BIR model does exhibit weaker 

link-dependence.  Although this is very much debatable, it has at least the virtue of 

not denying the existence of dependencies.  Link-dependence is based on one 

important assumption: 

)|()|(
)|()|(

)|,(
)|,(

NRBPNRAP
RBPRAP

NRBAP
RBAP

=  

where A, B are regarded as properties of documents and R designates the relevance 

set whereas NR designates the non-relevance set.  The degree of statistical 

dependence of documents in the relevant set is associated in a certain way with their 

degree of statistical dependence in the non-relevant set.    

  

 

 Hence, the correct procedure is to assume dependence of terms and thus 

creating a more realistic retrieval system.  Term dependencies exist when the 

relationships between terms in document are such that the presence or absence of one 

term provides information about the probability of the presence or absence of another 
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term (Loose, 1994).  Based on this assumption, many probabilistic models were 

proposed to remove the independence assumption.  For example, the Bahadur 

Lazarsfeld Expansion or BLE (Losee, 1994) and tree dependence model (van 

Rijsbergen, 1979).  The tree dependence model exhibits a number of advantages over 

the exact model provided by the BLE expression.  It is also more easily computed 

than the BLE expansion (Salton, et al., 1983).  Tree dependence model applies the 

approach suggested by Chow and Liu (1968) to capture term dependence, where an 

MST is constructed using mutual information, for a dependence tree.  Also from this 

approach is the Chow Expansion, which was originally used in the pattern 

recognition field.  However, it has been applied in probabilistic IR as done by Lee 

and Lee (2002) and hence will be the focus of this project. 

 

 

Instead of just considering the absence or presence of individual terms 

independently, one selects certain pairs of terms and calculates a weight for them 

jointly.  Assume vector D = {t1, t2 . . . tn} are binary values.  Dependence can be 

arbitrarily complex as follows: 

)...,|()...,|()|()()...()( 1nt2t1tntP2t1t3tP1t2tP1tPnt1tPDP −==  (2.5) 

in which we need to condition each variables in turn by steadily increasing set of 

other variables, to capture all dependence data.  This is computationally inefficient 

and impossible if we do not have sufficient data to calculate the high order 

dependencies.  Hence, another approach is taken to estimate P(D), which captures 

the significant dependence information.  P (ti | ti-1 … t1) is solely dependent on some 

preceding variable tj(i).  In other words, we obtained: 

ij(i)0              
n

1i ijtitPDP ≤≤∏
=

= ))(|()(  (2.6) 

 

 

A probability distribution that can be represented as in the above expression 

is called a probability distribution of first-order tree dependence (Chow and Liu, 

1968).  For example the Figure 2.9, according to equation (2.6), the probability of a 

structure can be written as P(t1) P(t2|t1) P(t3|t2) P(t4|t2) P(t5|t2), or the following 

product expansion: 
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P(t1)P(t2|tj(2)) P(t3|tj(3))… P(tn|tj(n)) 

where the function j(i) exhibits the limited dependence of one bit on preceding bits. 

 

 

 
Figure 2.9 Term dependence tree 

 

 

 

 

2.6.2.1 Dependence Tree 

 

 

 A dependence tree is an obvious method for identifying the most important 

pairwise dependencies and the best mapping of j(i).  Chow and Liu (1968) suggest 

constructing a Maximum Spanning Tree or MST (Whitney, 1972).  The nodes are 

used to represent the individual terms and the branches between pairs of nodes, 

which designates the pair wise similarities or dependencies.  To construct an MST 

for a set of entities, we need to identify the most important similarities between pairs 

of entities.  Expected Mutual Information Measure or EMIM is a criterion for 

measuring this similarity or dependence between pairs (Crestani et al., 1995).  

Hence, an MST is a tree that includes every node and maximizes the sum of EMIM.  

EMIM is defined as follows: 

∑=

jtit jtpitP
jtitP

jtitPjtitI
, )()(
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t3 t4 
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where the sum is taken over all combinations of values of term ti and tj (either 0 or 1) 

and P (ti, tj), P (ti) and P (tj) are computed as the proportion of documents in the 

collection containing respectively both terms ti and tj.  

 

 

Table 2.9: Simple maximum likelihood estimates 

 ti = 1 ti = 0  

tj = 1 (1) (2) (7) 

tj = 0 (3) (4) (8) 

 (5) (6) (9) 

 

 

The calculation of EMIM can be simplified, by using the simple maximum 

likelihood estimates for the probabilities based on the data contained in Table 2.9.  

Then I(ti, tj) is calculated as follows: 

)8)(6(
)4(log)4(

)8)(5(
)3(log)3(

)7)(6(
)2(log)2(

)7)(5(
)1(log)1( +++  

 

 

It can be seen that EMIM is based on co-occurrences data derived from the 

entire collection.  Thus, it is used to measure the dependence between a pair of terms.  

By having this figure (which correspond to (1)) and knowing the number of 

documents (9) in the file, thus any inverted file will contain the rest of the frequency 

data needed to fill in the counts in the other cells.  We can get (5) and (7) from the 

inverted file, which will help determine (2), (3), (4), (6) and (8).  In addition, any 

zero entries in one of the cells 1 to 4 is taken care by letting 0 log 0 = 0. 

 

 

The construction of the MST, for a given set of n nodes requires the 

generation of n (n - 1) / 2 EMIM values for distinct pairs of nodes.  For example if 

there are four nodes (a, b, c, d) then six EMIM value will be generated for each pairs 

of nodes.  The algorithm suggested by Whitney (1972) is based on the Dijkstra 

technique where a maximum spanning tree is grown by successively adjoining the 
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farthest remaining node to a partially formed tree until all node of the graph are 

included in the tree.   

 

 

 

 

2.6.2.2 Retrieval Status Value (RSV) 

 

 

Once the dependence tree has been found, the approximate distribution can 

be written down in the form of (2.6).  ti and  tj(i), now acts as binary selector where if 

the terms exists in the document it is denoted by 1 and 0 if otherwise.  From this, a 

discriminate function can be derived for the probability of ti given tj(i), which is as 

follows: 
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where pi|j(i) = P (ti = 1| tj(i) = 1) and pi = P (ti = 1| tj(i) = 0).  Then, by substituting 

(2.7) in (2.6), taking the logarithm and collecting terms, we obtained the Chow 

Expansion (Chow and Liu, 1968): 
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(2.8) 

 

                       

 C represents a constant since it is not associated with any binary selector, 

hence not included in the calculation of RSV.  It is assumed the same for all 

documents, but varies from query to query.  Take note also that if terms are indeed 

independent, pi|j(i) = pi and the last two sums in the expansion disappear, leaving the 

familiar expansion for the independent case.  However, since dependence does exist, 

additional linear and quadric terms are obtained.  
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As mentioned in section 2.6.1.1, the optimal ranking function is given as 

P(R|D) / P(NR|D), where P(R|D) is the probability of relevant documents whereas 

P(NR|D) refers to the probability of non-relevant documents.  Using the Bayes 

theorem expression (2.2) is obtained.  It can be rewritten in the manner below.  We 

also have determine that that only P(D|R) and P(D|NR) is considered as the rest is 

considered as a constant. 
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 Thus, by adapting the Chow Expansion (2.8) in (2.9), we can determine 

P(D|R) and P (D|NR), which are as follows: 
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(2.10) 

pi|j(i) is the probability of both term ti and term tj(i) appearing in relevant 
documents, 

pi is the probability of both term ti appearing in relevant documents, 

qi|j(i) is the probability of both term ti and term tj(i) appearing in non-
relevant documents, 

where 

qi is the probability of both term ti appearing in non-relevant 
documents. 

 

 

   Next, by substituting expression (2.9) with (2.10), the complete ranking 

function is as below.  Furthermore, since P(ti =1 | tj(i) = 1,R) =  P (ti = 1, tj(i) = 1,R) /  

P( tj(i) = 1 | R), hence it further transform the expression into (2.11): 
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2.6.2.3 Probability estimation and improvement 

 

 

If we already know the set of relevant documents R, then ci can be interpreted 

with assistance of the same contingency table used by BIR model (Table 2.8) and 

thus producing the following assumption.  The adjustment factor is also taken in 

consideration to avoid problem occurring from small value of A and ai. 

 

a) pi = (ai + 0.5) / (A + 1) 

 

b) qi = (ni - ai + 0.5) / (N – A + 1) 

 

c) pj(i) = (V j(i) + 0.5) / (A + 1) 

 

d) q j(i) = (n j(i) - a j(i) + 0.5) / (N – A + 1) 

 

e) pi|j(i) = (a i|j(i) + 0.5) / (A + 1) 

 

f) q i|j(i) = (n i|j(i) - a i|j(i) + 0.5) / (N – A + 1) 

 

where N is the number of  documents in database 
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 ni refers to the frequency of document containing term ti 

 nj(i) refers the frequency of document containing term tj(i) 

 ni|j(i) refers to the frequency of document containing both 

term ti and term tj(i)  

 A is the total number of relevant documents 

 a refers to the total number of relevant documents 

containing a particular term t 

 

 

On the other hand, if the relevant information is not available, we generally 

assume that all documents in collection are relevant.  Thus, the following assumption 

is made.  q or the distribution of index terms among the non-relevant documents can 

be approximated by the distribution of index terms t (n) over all the document in the 

collection (N).  It is also assumed that pi is proportional to qi, especially pi = 1 / (2-qi) 

(Robertson and Walker, 1997).  The same assumption is also made between pi|j(i) and 

qi|j(i); and between pj(i) and qj(i).  From these assumptions, the Chow Expansion can be 

adapted into the probabilistic retrieval model without relevance information as 

follows: 
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 As a result, documents which contain query terms are retrieved and provided 

an initial probabilistic ranking for them.  Next, probability estimation improvement 

process is done similar to the BIR model, explained earlier.  This process is repeated 

recursively to improve the estimation on P(D|R) and P(D|NR) automatically. 
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2.7 Discussion 

 

 

Similarity searching as discussed in this chapter compares the query’s 

corresponding set of descriptors to each molecule in the database.  A similarity 

measure is then calculated and based on this numeric value; a ranked list is produced. 

This similarity searching mechanism can be seen as similar to VSM, as depicted by 

Figure 2.10.  This diagram depicts the industry standard similarity searching process 

for bit-string based representation.  This confirms Willett’s (2000) statement that 

algorithms developed for the processing of textual database are also applicable to 

processing of chemical structure database and vice versa.  This is due to the 

similarities in the ways that chemical and textual database records are characterised.  

Text documents are indexed by keywords.  Similarly, there are 2D and 3D molecular 

fragment representations in a chemical database.  Each are characterised by some 

small number of substructural features chosen from a larger number of potential 

attributes. 

 

 

As text retrieval system are replacing Boolean retrieval model with best 

match searching (that is ranking of documents in the decreasing order of similarity to 

the query), the same can be said with chemical information system.  Substructure 

searching system is now being complemented with similarity searching.  Here, 

similarity measure is calculated to define the inter-molecular structural similarity.  

Most of the molecular similarity measures used originate from areas outside 

chemoinformatics, particularly from text retrieval.  Similarity coefficients have been 

used in many fields where classification is important.  Classification involves the 

ordering of objects into groups or sets, on the basis of relationships of similarity that 

exist between them.  It has been used in chemical and textual information retrieval.  

However, lack of communication between these fields has resulted in much 

duplication of effort (Ellis, et al., 1994). 
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Figure 2.10 Application of VSM in similarity searching 

 

 

Similarity searching has inherited the limitations of VSM, the most obvious is 

assuming that bits are considered as independent of each other, and this in practice is 

not true.  Other than this, it also does not incorporate the importance of a particular 

fragment in active and inactive known compound that can increase probability of 

compounds being active or inactive.  Hence, PM is proposed.  It has a strong 

theoretical basis and retrieval effectiveness is expected to be near-optimal.  Each 

document’s probability of relevance estimate can be reported to the user in ranked 

output.  It would presumably be easier for most users to understand and base their 
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stopping behaviour upon a probability of relevance than a cosine similarity value.  

The PM approach has yet to be applied in the compound retrieval system.  Hence, to 

close the knowledge gap, these alternatives of information retrieval in compound 

similarity searching, need to be taken up, and determine whether PM is better in 

terms of retrieving structures from chemical databases. 

 

 

 

 

2.8 Summary 

 

 

In this chapter, we have discussed important fundamentals of IR and 

chemical retrieval system.  Just as a document is relevant or not to a particular user’s 

query, so is a molecule active or inactive, in some particular biological test.  

Similarity in text and chemical database particularly in representation of records, has 

allow application of algorithms for processing textual databases to processing 

chemical structure.  For this project, it is in terms of applying PM in similarity 

searching, mainly the BIR model and BD model.  Other than that, we also discussed 

about the important elements in calculating similarity measures.  There are molecular 

representation and similarity coefficient to quantify the similarity between the 

representations of two molecules.  In the next chapter, details the real 

implementation of the proposed approach in the chemical database environment.  

Project methodology covers the experimental designs as well as data and equipment 

used in this project. 

 

 



CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

In the previous chapter, we have discussed on the chemical compound 

similarity searching as well as the IR models in detail.  The chapter also covers how 

both of these fields are related with each other.  As the objective of this project is to 

apply the Probability Model in chemical compound similarity searching, hence there 

is a need to investigate whether the proposed approach yields better performance of 

screening chemical compounds compared to the existing method.  This chapter 

discusses about the steps taken to carry out this research.  It mainly focuses on the 

computational experiment designs (Figure 3.1) where it details about the data set, 

structural descriptors and similarity searching methods used.  Evaluation is also done 

to analyse the performance of each of the similarity searching methods.   

 

 

 
Figure 3.1 Outline of Chapter 3
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3.1 Computational Experiment Design 

 

 

The basis of this study comes from the virtual screening environment itself.  

In a similarity search of a corporate database, a known bioactive compound is used 

as a target structure to prioritise molecules for biological screening.  An effective 

similarity method will give a high percentage of actives among those compounds 

ranked highest in terms of structural similarity with that target.  As the similarity 

values decreases, the percentage of actives covered will become gradually less.  This 

is because more and more dissimilar molecules are used, with no actives covered 

when the compounds and the active target have no structural similarity between 

them. 

 

 

 Figure 3.2 depicts the work flow of the computational experiment of this 

project.  Using the NCI AIDS dataset as the test data set, all chemical structures are 

firstly represented using the BCI bit string.  Then, a series of simulated similarity 

searching studies is conducted to compare the effectiveness of different similarity 

methods.  In the data set, each active compound acts as a probe to search the 

remainder of the data set.  Compounds are then ranked according to the calculated 

similarity values, from most to least similar.  Lastly, the ranked list is analyzed to 

determine which method is better.  In doing so, we need to consider an important 

criterion, which is: how good are the methods in separating active and inactive 

structures? (Sheridan and Kearsley, 2002).  It is not the absolute similarity value that 

determines which method is better because it is generally not comparable between 

methods.  Hence, three approaches in evaluating the performance of the search 

methods are taken up, mainly the GH score, initial enhancement and the number of 

actives at top 5% of ranked list.  Details of this approaches is explained in the 

following sections. 

 



 55

 
Figure 3.2 Workflow of the simulated similarity searching. 

 

 

 

 

3.2 Test Data Sets 

 

 

Evaluating the performance of different similarity measures requires an ideal 

test data set that satisfies the following requirement (Chen and Reynolds, 2002) that 

is it should sample the chemical regions it covers as thoroughly as possible so that it 

can really test the capability of a similarity measure to differentiate between active 

and inactive structure. 

 

 

The experiment here uses the National Cancer Institute (NCI) AIDS Database 

(National Cancer Institute, 1999) as the test data set to satisfy this requirement.  It 

represents a large data set composed of both active and inactive compounds against a 

specific therapeutic target and provides a thorough sampling of a particular region in 

chemical space.  This public database contains 5772 compounds, including 247 

confirmed active (CA), 802 confirmed moderately active (CM) and 4723 confirmed 

inactive (CI).  In this data set, both the CA and CM are treated equally as actives and 

the CI as inactive.  The following shows the format of the input file for the dataset as 

well as some sample data: 

Query molecule posted 

Perform similarity searching 

Convert database to bit strings 

Display chemical structures retrieved 

Analyse performance 
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{compound name} {A list of bits set to 1 in the bit string} {Separator} {Total bits set to 1} 
aids99_CA_STR1 1 3 6 8 19 77 80 81 99 103 . . . 0 117 
aids99_CM_STR10 1 6 8 39 46 86 89 149 242 298 . . . 0 53 
aids99_CI_STR100 1 2 3 6 8 14 16 38 40 45 . . . 0 72 
    
    

Figure 3.3 File format of data set with sample data (aids99_5772.bci1052.txt) 

 

 

The above data set file can also be used to generate an inverted file.  Inverted 

file consist of a list of molecule IDs containing fragments.  It is mostly used in this 

work, to determine total number of structures that contains a particular bit bi, where i 

refers to the location of the bit b in the bit string.   This is also known as the notation 

ni, mostly used in the BIR and BD model.  The following shows the format of the 

inverted file created based on the dataset, together with some sample data: 

 

 
    
{Bit number} {A list of structures containing bit bi} {Separator} {Total structures 

containing bit bi } 
1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17. . . 0 4663 
2 2 4 5 7 8 9 17 24 28 34 38 39 40 49 50 . . . 0 2986 
3 1 3 5 7 8 9 10 11 12 13 14 15 16 17 18. . . 0 3487 

    
    

Figure 3.4 File format of inverted file with sample data (inverted.txt) 

 

 

 

 

3.3 Structural Descriptors 

 

 

A chemical structure in this work is represented using BCI (Barnard 

Chemical Information Ltd.) bit string.  A molecule is divided into fragments of 

specific functional groups or substructures.  The fragments are recorded in a 

predefined fragment dictionary that specifies the corresponding bit positions of the 

fragments in the bit string.  Bits represent the absence or presence of fragments either 

individually or as a group.  The following figure shows an example of a simple bit 
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string.  Here, the dictionary contains four fragments; each corresponds to an 

individual position in the fingerprint bit string. 

 

 

 
Figure 3.5 Example of simple fingerprint (Barnard Chemical Information Ltd.) 

 

 

This project however uses the BCI 1052-bit structural key-based bit string.  It 

is generated based on the presence or absence of fragments in the BCI’s standard 

1052 fragments-dictionary.  It encodes augmented atoms, atom pairs with a distance 

between atoms of any length desired, atom sequences of any length desired; ring 

composition sequences for any size desired and ring fusion descriptors. 

 

 

Generating descriptors for this project is a simple procedure where scanning 

through the data set (Figure 3.3) there is a list of bit number that is set to ‘1’ in the bit 

string of a particular chemical structure.  Using this list, the bit strings are then 

generated.  The following are some sample of descriptors generated: 

 

 
  
{compound name} {Bit string representation} 
aids99_CA_STR1 10100101000000000010000000000000000000000000000000000000 . . . 
aids99_CM_STR10 10000101000000000000000000000000000000100000010000000000 . . . 
aids99_CI_STR100 11100101000001010000000000000000000001010000100000100000 . . . 
  
  

Figure 3.6 Example of descriptors generated (aids.txt) 
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3.4 Experiment 1: Comparing the Effectiveness of Similarity Searching 

Methods 

 

 

This project deals with three similarity searching methods.  The first is the 

existing approach in similarity searching which is based on the VSM.  Here, the 

Tanimoto coefficient is used as the similarity measure.  The second approach 

involves applying the PM in similarity searching.  There are two models that are used 

here namely the Binary Independence Retrieval (BIR) and Binary Dependence (BD) 

Model.  According to Losee (1994), BD model has actually improved the 

performance of retrieval system compared to those applying independence 

assumptions of terms.  Even though, it is theoretically stronger than the BIR model, 

its performance is yet to be proven in the chemical compound database. 

 

 

 

 

3.4.1 Vector Space Model 

 

 

As explained in the literature review, the industry standard similarity 

searching process for bit-string based representation consists of the following steps.  

First, specify the specification of an entire target structure.  Then, compare the target 

structure with corresponding set of features for each database structure.  Each 

comparison enables the calculation of a measure of similarity.  In order to do so, the 

Tanimoto coefficient is used.  Hence, the measure of similarity between a compound 

structure A and B is defined as follows: 

cba
cBAsim
−+

=),(  

a is the number of unique fragments in compound A, 

b is the number of unique fragments in compound B, 

where 

c is the number of unique fragments shared by compounds A and B. 
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It is chosen because it is the standard for measuring the binary structural 

similarity of compounds and it has one of the best overall performances compared to 

other coefficients (Salim, 2002).  Finally, the retrieval system ranks structures based 

on their similarity to the target structure.  They are sorted into order of decreasing 

value of similarity measure.  Figure 3.7 details the algorithm of this similarity 

method. 

 

 

 
Figure 3.7 Algorithm of existing similarity searching method 

 

 

 

 

3.4.2 Binary Independence Retrieval Model 

 

 

A chemical compound structure is represented using the binary indexing 

concept.  To apply BIR model, bits of a chemical structure S are map onto disjoint 

concept by forming conjuncts of all bit b, in which each bit occurs either positively 

or negated, that is: 

n1
nb1bS αα ∩∩= ...    with   =i

ibα      
⎪⎩

⎪
⎨
⎧ =

=

1  if ib

0   if ib
  i

i

α

α
 

 

 

1. Post active structure as query 
2. For every structure in database 

2.1. common = 0 
2.2. For all structure screen, i 

2.2.1. if query.screen[i] = ‘1’ and structure.screen[i] = ‘1’ 
common = common +1 

2.3. Calculate similarity 
2.3.1. a = total bits set to 1 for query 
2.3.2. b = total bits set to 1 for structure 
2.3.3. c = common 
2.3.4. tanimoto = c / (a +b-c) 

3. Rank structures in decreasing order of Tanimoto scores 
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bi refers to bit b at location i on the bit string,  where 

αi acts as binary selector.  If is αi = 1, then the bit occurs in the structure, 

otherwise it is 0 and assumed negated. 

 

 

In order to estimate the ranking score of a particular structure against the 

target structure or query, the optimal similarity function is the ratio of probability of 

active structures (P (A|S)) to probability of inactive structures (P (NA|S)).  This is 

also referred to as the Retrieval Status Value (RSV).  Based on the Bayes theorem, 

the similarity function becomes the following: 

)|()(
)|()(

)|(
)|(

NASPNAP
ASPAP

SNAP
SAP

⋅
⋅

=  (3.1) 

P(S|A) is the probability of an active structure, 

P(S|NA) is the probability of an inactive structure, 

P(A) is the probability of actives, 

where 

P(NA) is the probability of inactives. 

 

           

However, we need to associate the relevance of a structure to an explicit 

feature.  Two variables are used which are pi (probability that bit bi appearing in an 

active structure) and qi (probability that bit bi appearing in an inactive structure).  

Hence, we get the following expression of P (S|A) and P (S|NA): 
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..  (3.2) 

 

 

Then, by substituting (3.2) in (3.1) and taking logs of the ranking function, it 

will turn into a linear discriminate function as stated below:  
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where ci indicates the capability of bit bi to discriminate active from inactive 

structure.  It is the only term considered here as it is associated with the binary 

selector αi.  Constant C is ignored because it is the same for all structures, hence 

having no effect on the expression.  In addition, it is assumed that pi = qi for all terms 

not included in the query formulation (Fuhr, 1992).  This restricts the evaluation of 

the sum to query bits and thus producing the above expression. 

 

 

In a chemical compound database, the activity and inactivity of a particular 

structure is already determined.  Hence we can estimate the probabilities P (S|A) and 

P (S|NA) based on the contingency table in Table 3.1: 

 

 

Table 3.1: Contingency table of relevance judgement (van Rijsbergen, 1979) 

 Active Inactive  

αi = 1 a n-a n 

αi = 0 A-a N-n-A+a N-n 

 A N-A N 

 

 

Here, N is the total number of structures in the database, n refers to the total 

number of structures which contain bit bi, A is the total the total number of active 

structures, and a refers to the total number of active structures containing bit bi.  

From this table, the following is estimated: 

 

a) pi = ai / A 

 

b) qi = (ni - ai) / (N - A) 



 62

Hence, the ci can be rewritten as: 

))((
)(log

aAan
anANaci −−

+−−
=  

 

 

However, the formulas of pi and qi may pose problems for small values of A 

and ai.  To avoid these problems, an adjustment factor is added which yields: 

 

a) pi = (ai + 0.5) / (A + 1) 

 

b) qi = (ni - ai + 0.5) / (N – A + 1) 

 

 

Figure 3.8 summarizes the algorithm of this similarity searching method. 

 

 

 
Figure 3.8 BIR model algorithm 

 

 

 

 

 

 

 

1. Post active structure as query 
2. N = Total number of structures in database 
3. A = Total number of active structures in database 
4. Determine ai 

4.1. For each screen i 
4.1.1. ai = Total number of structures which is a subset of A containing bit bi 

5. For every structure in the database 
5.1. Calculate similarity 

5.1.1. RSV = 0.0 
5.1.2. For every common bit shared by both query and structure 

5.1.2.1. pi = (ai + 0.5) / (A + 1) 
5.1.2.2. qi = (ni - ai + 0.5) / (N – A + 1) 
5.1.2.3. RSV = RSV + log10 (pi / (1- pi )) + log10 ( (1- qi ) / qi) 

6. Rank structures in decreasing order of their RSV 
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3.4.3 Binary Dependence Model  

 

 

Bit dependencies refer to the presence or absence of a bit which provides 

information about the probability of presence or absence of another bit.  Assume 

vector structure, S = {b1, b2 . . . bn} are binary values.    It is arbitrarily complex to 

capture all dependence data as we need to condition each variable in turn on a 

steadily increasing set of other variable.  Hence, to estimate probability of a structure 

(P(S)) this model captures only the significant pairwise dependence information.  

Thus P(S) is the probability of a bit i solely dependent on some preceding bit bj(i): 

ij(i)0              
n

1i ijbibPSP ≤≤∏
=

= ))(|()(  (3.4) 

 

 

A probability distribution that can be represented as in the above expression 

is called a probability distribution of first-order tree dependence (Chow and Liu, 

1968).  Take for example the following dependence tree: 

 

 

 
Figure 3.9 A dependence tree 

 

 

From equation (3.4), the probability of a structure can be written as 

P(b1)P(b2|b1) P(b3|b1) P(b4|b2) P(b5|b2), or the following product expansion: 

P(b1)P(b2|bj(2)) P(b3|bj(3))… P(bn|bj(n)) 

where the function j(i) exhibits the limited dependence of one bit on preceding bits. 

b1

b4 b5

b3b2
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There are many possible dependence tree that can be generated to find the 

best ordering and mapping of j(i).  Chow and Liu (1968) suggest constructing a 

Maximum Spanning Tree (MST) using the Expected Mutual Information Measure 

(EMIM).   EMIM is a measure of a variable containing the information about another 

variable.  Hence, it requires the counting of co-occurrences of bits in a structure, and 

thus used to measure the dependence between a pair of bits.   

 

 

Let G(V,E) be a connected graph, where V is the set of nodes and E is the set 

of edges.  Assign to each edge (i, j(i)) a weight w(i, j(i)) obtained from calculating the 

EMIM value of the pair of variable.  An MST is a tree that includes every node and 

has maximal total weight.  It simply maximizes the sum: 

∑
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where I(bi, bj(i)) represents the expected mutual information between bit bi and bj(i),  
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The contingency table below further simplify the calculation of EMIM in to 

the following: 
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Table 3.2: Contingency table of maximum likelihood estimates 

 bi = 1 bi = 0  

bj(i) = 1 (1) (2) (7) 

bj(i) = 0 (3) (4) (8) 

 (5) (6) (9) 

 

 

 Hence, the first step in this model is to generate the MST to identify the most 

important pairwise dependencies.  Each given chemical structure collection will 
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construct an MST based on all bits included in the collection.  There are many 

algorithms in generating an MST from pairwise association measures.  The most 

efficient is by Whitney (1972).  It is based on the Dijkstra technique where a 

maximum spanning tree is grown by successively adjoining the farthest remaining 

node to a partially formed tree until all node of the graph are included in the tree 

(Figure 3.10).   

 

 

 
Figure 3.10  The Dijkstra algorithm 

  

 

Figure 3.11 further summarises the algorithm for constructing the dependence 

tree in this work.  At each iterative step, the unsolved nodes are stored in array 

not_in_tree.  The node of the partially completed tree with the largest value of 

EMIM to node not_in_tree[i] is stored in the array farthest_existing_node[i] and the 

length or weight of edge from not_in_tree[i] to farthest_existing_node[i] is stored in 

biggest_edges[i].  Hence, the node not yet in the tree which is farthest to a node of 

the tree may be found by searching for the maximal element of array biggest_edge.  

It is then added to the tree and removed from array not_in_tree.  For each remaining 

in array not_in_tree, the distance from farthest node of the tree (stored in 

biggest_edge) is compared to the distance from the new node of the tree.  Then the 

array biggest_edge and farthest_existing_node is updated if the new distance is 

farther.  This process is repeated until all nodes are in the tree.   

 

 

1. To initialise: 
1.1. Start with graph G0 = (V0, E0) consisting of a single solved 

node. 
1.2. The arc set is empty. 

2. Find all unsolved nodes that are directly connected by a single arc to 
any solved node (i, j(i)).  For each unsolved node, calculate the 
weight w(i, j(i)) based on the EMIM value . 

3. Choose the largest value of EMIM and add the corresponding 
unsolved node to the solved set.  Also add the corresponding edge to 
the arc set. 

4. If the newly solved node is not the destination node then repeat the 
process again.  
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Figure 3.11 The MST construction algorithm 

 

 

Next, the dependence tree is then used to expand the query by taking the 

original query bits and adding all bits that are immediately adjacent in the MST.  The 

pairwise term dependencies obtained for all bit pairs bi and bj in the expanded query 

such that each pair (bi, bj) is represented by an edge in the spanning tree. 

 

1. Calculate EMIM 
1.1. For (i = 0; i< MAXSCREENS, i++) 

1.1.1. For (j = i ; j< MAXSCREENS, j++) 
1.1.1.1. Calculate EMIM for bit i and bit j and stored in array 

DM[i][j] 
1.1.1.2. DM[i][j] = DM[j][i] 

2. Initialise the following: 
2.1. num_nodes_outside = MAXSCREENS-1 
2.2. new_node = MAXSCREENS-1 
2.3. num_of_edges = 0 
2.4. for i = 0 to i < num_nodes_outside 

2.4.1. not_in_tree[i] = i 
2.4.2. biggest_edges[i] = DM[i][new_node] 
2.4.3. farthest_existing_node[i] = new_node 

3. Update labels of nodes not yet in tree 
3.1. for i = 0 to i < num_nodes_outside 

3.1.1. outside node = not_in_tree[i] 
3.1.2. edge weight = DM[outside node][new_node] 
3.1.3. if (biggest_edges[i] < edge weight) 

biggest_edges[i] = edge weight 
farthest_existing_node[i] = new_node 

4. Find node outside tree farthest from tree 
4.1. best edge = biggest_edges[0] 
4.2. for i = 0 to i < num_nodes_outside 

4.2.1. if (biggest_edges[i] > best edge) 
best edge = biggest_edges[i] 
best node = i 

4.3. MST[num_of_edges][0] = not_in_tree[best node] 
4.4. MST[num_of_edges][1] = farthest_existing_node[best node] 
4.5. new_node = not_in_tree[best node] 
4.6. num_of_edges = num_of_edges + 1 

5. Delete new tree node from array not_in_tree 
5.1. biggest_edges[best node] = biggest_edges[num_nodes_outside - 1] 
5.2. not_in_tree[best node] = not_in_tree[num_nodes_outside - 1] 
5.3. farthest_existing_node[best node] = closet_existing_node 

[num_nodes_outside - 1] 
5.4. num_nodes_outside = num_nodes_outside -1 

6. Repeat Step 3 to 5 until num_nodes_outside = 0  
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 The following explains the similarity function or RSV of this model.  As 

mentioned in section 3.4.2, the similarity function is as stated in expression (3.1).  

Based also the discussion in this section, we have found that only the term P(S|A) 

and P(S|NA) are considered.  The rest remains as a constant and does not include in 

the calculation of RSV.  Hence obtaining the expression: 

NA)|P(S log - A)|P(S 
SNAP

SAP log
)|(
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=  (3.5) 

 

 

For each structure S, the factors P(S|A) and P(S|NA) are computed using the 

following expression: 
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bi refers to bit b at location i, 

bj(i) refers to bit b at location j(i) where bit bj(i) is the preceding bit of bit 
bi, 

pi|j(i) is the probability of both bit bi and bit bj(i) appearing in active 
structures, 

pi is the probability of both bit bi appearing in active structures, 

qi|j(i) is the probability of both bit bi and bit bj(i) appearing in inactive 
structures, 

where 

qi is the probability of both bit bi appearing in inactive structures, 

 

 

 Then, by substituting (3.6) in (3.5), and taking into account that P(bi =1 | bj(i) 

= 1, A) =  P (bi = 1, bj(i) = 1, A) /  P( bj(i) = 1 | A), hence it further transform the 

expression into the following: 
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Relevance information is available in the database, this model computes the 

probability of P(S|A) and P(S|NA) using the same contingency table as the BIR 

model (Table 3.1) and thus producing the following assumption.  The adjustment 

factor is also taken in consideration to avoid problem occurring from small value of 

A and ai. 

a) pi = (ai + 0.5) / (A + 1) 

 

b) qi = (ni - ai + 0.5) / (N – A + 1) 

 

c) pj(i) = (V j(i) + 0.5) / (A + 1) 

 

d) q j(i) = (n j(i) - a j(i) + 0.5) / (N – A + 1) 

 

e) pi|j(i) = (a i|j(i) + 0.5) / (A + 1) 

 

f) q i|j(i) = (n i|j(i) - a i|j(i) + 0.5) / (N – A + 1) 

 

where N is the number of structures in database 

 ni refers to the frequency of structure containing bit bi 

 nj(i) refers the frequency of structure containing bit bj(i) 

 ni|j(i) refers to the frequency of structure containing both bit 

bi and bit bj(i)  

 A is the total number of active structures 

 a refers to the total number of active structures 

containing a particular bit b 

 

 

  Figure 3.12 summarizes the algorithm of this similarity searching method. 
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Figure 3.12 BD model algorithm 

 

 

 

 

3.4.4 Performance Evaluation 

 

 

Performance of each approach is evaluated by computing the following.  

Analysis on the result will be made and comparison among them will be done to 

determine which approach fairs well in the chemical compound database. 

 

 

 

 

1. Create dependence tree for collection 
2. Post active structure as query 
3. Expand query by taking the original query terms and adding all terms that are 

immediately adjacent in the dependence tree. 
4. N = Total number of structures in database 
5. A = Total number of active structures in database 
6. Determine a 

6.1. For each screen i 
6.1.1. ai = Total of structures which is a subset of A containing bit bi 

6.2. For each pair in expanded query 
6.2.1. ai|j(i) = Total of structures which is a subset of A containing both bit bi and 

bj(i) 
7. For every structures in database 

7.1. RSV = 0.0 
7.2. Calculate similarity 

7.2.1. For every common bit shared by both query and structure 
7.2.1.1. pi = (ai + 0.5) / (A + 1) 
7.2.1.2. qi = (ni - ai + 0.5) / (N – A + 1) 
7.2.1.3. RSV = RSV + (pi*(1-qi))/(qi*(1-pi))      
7.2.1.4. Find parent of matched bit in dependence tree.  If found and appear in 

structure bit string then 
pj(i) = (a j(i) + 0.5) / (A + 1), q j(i) = (n j(i) - a j(i) + 0.5) / (N –A+1) 
pi|j(i) = (a i|j(i) + 0.5) / (A + 1), q i|j(i) = (n i|j(i) - a i|j(i) + 0.5) / (N –A+1) 
b = ((pj(i)-pi|j(i))/(pj(i)*(1-pi))) – ((qj(i)-qi|j(i))/(qj(i)*(1-qi))) 
c = ((pi|j(i)*(1-qi|j(i)))/(qi|j(i)*(1-pi|j(i)))) – ((pi*(1-qi))/(qi*(1-pi))) – 
((pj(i)*(1-qj(i)))/(qj(i)*(1-pj(i)))) 
RSV = RSV + b + c  

8. Rank structures in decreasing order of their RSV 
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a) GH Score (Güner, 1998) 

The GH score gives an indication of how good the retrieved list is with 

respect to a compromise between maximum yield and maximum percent 

of actives retrieved.  Consider the following: 

 D is the number of chemical structures in the database, 

 A is the number of actives structures in the database, 

 Ht is the number of structures in a retrieved list, and 

 Ha is the number of active structures in a retrieved list. 

 

 

 
Figure 3.13 Schematic representation of the chemical database 

space, actives and hit (retrieved compound) list (Güner, 1998). 

   

 

The different metrics that can be used to evaluate the quality of a hit list 

are given below: 

 

 The percent yield of actives or also referred to as proportion of 

structures retrieved that are active (Precision). 

100% ×=
t

a

H
HY  

 Percent ratio of the actives in the list or also referred to as 

proportion of active structures that are retrieved (Recall). 

100% ×=
A

HA a  

 Number of actives not in the hit list: 

False negative = A - Ha 

Database 

Actives 

Hits 

D 

A 

Ht 
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 Number of inactive structures in the hit list: 

False positive = Ht - Ha 

 

Thus, the GH score is actually the sum of yield and ratio of actives in the 

hit list.  It is then divided by two, as denoted below: 
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b) Initial enhancement, which refers to a number of chemical structure 

retrieved before half of the actives are found.  The less the value, the 

better the performance of the similarity searching system. 

 

c) The number of actives at top 5% of the list.  If there are quite a number of 

active structures on the top 5% of this list, it denotes a good similarity 

searching system. 

 

 

 

 

3.5 Experiment 2: Comparing the Query Fusion Result of Similarity 

Searching Methods 

 

 

The purpose of this experiment is to investigate whether query fusion result 

of the proposed probability models, is better than VSM.  Data fusion is an approach 

where data, evidence, or decisions coming from or based on multiple sources, about 

the same set of objects are integrated to increase the quality of decision making 

under uncertainty about the objects (Salim, 2002).  The advantage of this approach is 

that it can improve confidence in decisions with the use of complementary 

information by inferring information that is outside of the capability of a single 

sensor information. 
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IR systems apply data fusion in combining the following components: 

multiple document representations, multiple queries and multiple retrieval 

techniques.  This section focuses on data fusion in combining multiple queries 

(Belkin et. al., 1995).  A number of studies have looked into the effect of capturing 

multiple queries from a single searcher or multiple searchers given the same 

specification of an information need, to get more evidence about relevance.  Some 

retrieval models were proposed that incorporates multiple representation of the 

information need (Turtle and Croft, 1991; Rajashekar and Croft, 1995).  Belkin et. al. 

(1995) on the other hand, found that applying adaptive weighting schemes to query 

combination gives better result than best individual system where progressive result 

combination were taken into consideration. 

 

 

In chemoinformatic, query combination is also being applied in combining 

several molecules in a single query.  Similarity searches using mixtures as queries 

and/or database entries was found to give better or at least equal results to 

experiments using single compounds as targets and database entries (Sheridan, 

2000).  Combined chemical target has also been used in an iterative similarity 

searching using approach analogous to relevance feedback in the text retrieval area 

(Singh et. al., 2001).  Hence, based on this concept, this second experiment uses 

combined chemical target in an iterative similarity searching to estimating 

probability instead of obtaining from the entire collection. 

 

 

The NCI AIDS dataset is divided equally to four sets, with 1443 structures in 

each set.  The NCI AIDS dataset organises compounds according to the following: 

CA, CM and CI.  Hence, this simplifies the division of the data sets with each set 

having equal distribution of CA, CM and CI.   The algorithm of this process is shown 

in Figure 3.14 and the result of this division is shown in Table 3.3. 
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Figure 3.14 Algorithm for the division of NCI AIDS dataset into four equal sets 

 

 

Table 3.3: The content of the four equal sets of dataset 

 
Total no. of 

CA 

Total no. of 

CM 

Total no. of 

CI 

Set No 1 62 201 1180 

Set No 2 62 200 1181 

Set No 3 62 200 1181 

Set No 4 61 201 1181 

Total Structures 247 802 4723 

 

 

 Next, an active compound is posted as query.  The similarity searching is 

conducted on the first set and it returns the top 100 compounds.  Based on these 

compounds, the probability of pi and qi for each bit i is computed.  It will then be 

used to obtained the ranking score function (RSV) for the second set.  The same 

procedure is repeated again, where the probability of pi and qi obtained from the top 

100 compounds of the second set is used to compute the RSV for the third set.  

Finally, the probability of pi and qi obtained from the top 100 compounds of the third 

set is used to compute the RSV for the fourth and final set.  Thus, the result of each 

query posted will return a total number of 400 compounds obtained by combining the 

result of each set.   

1. Set No = 1 
2. For every structure in database 

2.1.  Read compound name and its screen from Aids.txt (NCI AIDS dataset) 
2.2. Separate into four equal sets 

2.2.1. If Set No =1 
Store name and screen in the first file set. 
Set No = Set No + 1 

2.2.2. If Set No =2 
Store name and screen in the second file set. 
Set No = Set No + 1 

2.2.3. If Set No = 3 
Store name and screen in the third file set. 
Set No = Set No + 1 

2.2.4. If Set No = 4 
Store name and screen in the fourth file set. 
Set No = 1 
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3.5.1 Binary Independence Retrieval Model 

 

 

Figure 3.15 summarizes the algorithm of this similarity searching method. 

 

 
Figure 3.15 BIR model query combinational algorithm 

 

 

 

 

3.5.2 Binary Dependence Model 

 

 

Figure 3.16 summarizes the algorithm of this similarity searching method. 

 

1. Separate datasets in 4 equally divided sets 
2. Post active structure as query 
3. N = Total number of structures in set 
4. Conduct similarity searching on first set using the BIR model 

4.1. A = Total number of active structures in first set 
4.2. Determine ai 

4.2.1. For each screen i 
4.2.1.1. ai = Total number of structures which is a subset of A containing bit bi 

4.3. Calculate similarity for every structure in the first set 
4.3.1. RSV = 0.0 
4.3.2. For every common bit shared by both query and structure 

4.3.2.1. pi = (ai + 0.5) / (A + 1) 
4.3.2.2. qi = (ni – ai + 0.5) / (N – A + 1) 
4.3.2.3. RSV = RSV + log10 (pi / (1- pi )) + log10 ( (1- qi ) / qi) 

4.4. Rank structures in decreasing order of their RSV 
5. Retrieve top 100 compounds from the ranked list and obtain the following 

5.1. V = Total number of active structures in  the top 100 
5.2. Determine Vi 

5.2.1. For each screen i 
5.2.1.1. Vi = Total number of structures which is a subset of V containing bit bi 

5.3. Calculate similarity for every structure in the next set 
5.3.1. RSV = 0.0 
5.3.2. For every common bit shared by both query and structure 

5.3.2.1. pi = (Vi + 0.5) / (V + 1) 
5.3.2.2. qi = (ni – Vi + 0.5) / (N – V + 1) 
5.3.2.3. RSV = RSV + log10 (pi / (1- pi )) + log10 ( (1- qi ) / qi) 

5.4. Rank structures in decreasing order of their RSV 
6. Repeat step 5 for set 3 and 4. 
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Figure 3.16 BD model combinational query result algorithm 

1. Separate datasets in 4 equally divided sets 
2. Post active structure as query 
3. N = Total number of structures in set 
4. Conduct similarity searching on first set using the BD model 

4.1.  Load dependence tree for set and expand query. 
4.2. A = Total number of active structures in set 
4.3. Determine V 

4.3.1. For each screen i 
4.3.1.1. ai = Total of structures which is a subset of A containing bit bi 

4.3.2. For each pair in expanded query 
4.3.2.1. ai|j(i) = Total of structures which is a subset of A containing both bit bi 

and bj(i) 
4.4. Calculate similarity for every structures in first set 

4.4.1. RSV = 0.0 
4.4.2. For every common bit shared by both query and structure 

4.4.2.1. pi = (ai + 0.5) / (A + 1) 
4.4.2.2. qi = (ni - ai + 0.5) / (N – A + 1) 
4.4.2.3. RSV = RSV + (pi*(1-qi))/(qi*(1-pi)) 
4.4.2.4. Find parent of matched bit in dependence tree.  If found and appear in 

structure bit string then 
pj(i) = (a j(i) + 0.5) / (A + 1), q j(i) = (n j(i) - a j(i) + 0.5) / (N –A+1) 
pi|j(i) = (a i|j(i) + 0.5) / (A + 1), q i|j(i) = (n i|j(i) - a i|j(i) + 0.5) / (N –A+1) 
b = ((pj(i)-pi|j(i))/(pj(i)*(1-pi))) – ((qj(i)-qi|j(i))/(qj(i)*(1-qi))) 
c = ((pi|j(i)*(1-qi|j(i)))/(qi|j(i)*(1-pi|j(i)))) – ((pi*(1-qi))/(qi*(1-pi))) – 
((pj(i)*(1-qj(i)))/(qj(i)*(1-pj(i)))) 
RSV = RSV + b + c  

4.4.3. Rank structures in decreasing order of their RSV 
5. Retrieve top 100 compounds from the ranked list and obtain the following 

5.1. V = Total number of active structures in  the top 100 
5.2. Determine Vi 

5.2.1. For each screen i 
5.2.1.1. Vi = Total number of structures which is a subset of V containing bit bi 

5.2.2. For each pair in expanded query 
5.2.2.1. Vi|j(i) = Total of structures which is a subset of V containing both bit bi 

and bj(i) 
5.3. Load dependence tree for the next set and expand query. 
5.4. Calculate similarity for every structure in that set 

5.4.1. RSV = 0.0 
5.4.2. For every common bit shared by both query and structure 

5.4.2.1. pi = (Vi + 0.5) / (V + 1) 
5.4.2.2. qi = (ni - Vi + 0.5) / (N – V + 1) 
5.4.2.3. RSV = RSV + (pi*(1-qi))/(qi*(1-pi)) 
5.4.2.4. Find parent of matched bit in dependence tree.  If found and appear in 

structure bit string then 
pj(i) = (V j(i) + 0.5) / (V + 1), q j(i) = (n j(i) - V j(i) + 0.5) / (N –V+1) 
pi|j(i) = (V i|j(i) + 0.5) / (V + 1), q i|j(i) = (n i|j(i) - V i|j(i) + 0.5) / (N –V+1) 
b = ((pj(i)-pi|j(i))/(pj(i)*(1-pi))) – ((qj(i)-qi|j(i))/(qj(i)*(1-qi))) 
c = ((pi|j(i)*(1-qi|j(i)))/(qi|j(i)*(1-pi|j(i)))) – ((pi*(1-qi))/(qi*(1-pi))) – 
((pj(i)*(1-qj(i)))/(qj(i)*(1-pj(i)))) 
RSV = RSV + b + c  

5.4.3. Rank structures in decreasing order of their RSV 
6. Repeat step 5 for set 3 and 4. 
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3.5.3 Performance Evaluation 

 

 

Performance evaluation of each PM approach will be computed by 

determining the average total number of actives at top 400 of the list.  It is then 

compared to the average total number of actives at top 400 of the VSM approach.  A 

good similarity searching system is denoted if there are quite a number of active 

structures on the top 400 of the list.  

 

 

 

 

3.6 Hardware and Software Requirements 

 

 

In this section, hardware and software requirement of this project are stated.  

The following is the list of hardware and software used to carry this project: 

 

 

Table 3.4: Software Requirement 

Software Details 

1. Microsoft Visual C++ 6.0 All similarity searching programs will be developed using 

the C++ language.  Thus Visual C++ is used because it 

provides a stable environment to develop a program and 

an extensive help file. 

2. Microsoft Office XP This software package will be used to prepare reports and 

presentation file. 

3. Microsoft Project 2000 This software is a popular project management tool.  It is 

used to generate Gantt charts for this projects planning. 

4. Microsoft Windows XP As the operating system. 
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Table 3.5: Computer Specification 

Component Specification 

Processor:  Intel Pentium IV 2.8 GHz 

Memory:  512MB 

Hard disk: 40GB 

 

 

 

 

3.7 Discussion 

 

 

This chapter gives details on how experiment is carried out to determine 

whether the proposed approach have given us better performance result compared to 

the existing similarity searching method.  The aim of an effective retrieval system is 

to respond to a query so as to retrieve most active chemical structure, while 

retrieving very few inactive structures.  A series of simulated similarity searching is 

conducted for both existing and proposed approach.  This experiment design has 

been used on almost all research that involves determining the effectiveness of 

similarity searching system.  However, most experiment involves manipulating 

between the main requirements of similarity searching which is the structural 

descriptor and similarity coefficient, to determine which is superior (e.g. Chen and 

Reynolds, 2002; Salim, 2002).  Hence the same approach is also taken up in this 

project. 

 

 

We have chosen to base our comparison to VSM-based similarity searching 

with 2D screens as its structural descriptor and Tanimoto coefficient as its similarity 

measure.  2D screens particularly dictionary-based bit string are used here.  In 

Chapter 2, we have already discussed why this representation scheme is preferred 

rather than the other alternative of 2D screen which is the very dense hashed 

fingerprint.   
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For similarity measure, the Tanimoto coefficient is used.  It is an association 

coefficient where it is consider a common presence of attributes as evidence of 

similarity.  Association coefficient is also generally preferred to than the distance 

coefficients.  The difference between association and distance coefficient is that the 

latter effectively consider a common absence of attributes as evidence of similarity, 

whereas the former do not.  Chen and Reynolds (2002) conducted experiments and 

concluded that common presence of certain structural features is the primary factor 

in determining similarity between two chemical structures.  However, absence of 

features may also be important in some cases but is at best considered secondary. 

 

 

The proposed approaches for this work involve the PM (i.e. BIR and BD 

model).  It has already been discussed in detail in Chapter 2.  However, now we are 

no longer dealing with documents but chemical structures.  Applying PM in chemical 

database environment is very straight forward, particularly due to its similarity in 

representing object.  The following diagram summarises the framework in applying 

PM in chemical databases: 
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Figure 3.17 Proposed framework 

 

 

 

 

3.8 Summary 

 

 

In the effort to improve chemical retrieval system, PM was proposed.  Both 

independent and dependent assumption of bits were considered, that is by applying 

BIR and BD Model in chemical database environment. In this chapter, processing 

steps have been discussed for each model.  Overall, this project involves converting 

database to bit strings, performing similarity searching when user posts a query and 

displaying the result.  Lastly, the performance of each approach is evaluated.  Results 

and analysis of the performance evaluation is presented and discussed in Chapter 4. 
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CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

 

In Chapter 3, steps taken in conducting experiment in this project were 

discussed.  Thus, Chapter 4 presents the results of these experiments.  This chapter is 

very important as the outcomes will prove whether the proposed approaches are 

more favourable in chemical database processing.  The outline of this chapter is as 

follows:  As mentioned in previous chapters, the proposed PM-based similarity 

searching system will be compared with the existing method.  Hence, there are three 

groups of result belonging to the VSM, BIR and BD model.  There are 1049 active 

compounds (i.e. both CM and CA) posted as target compound.  The output of each 

similarity searching system is a series of ranked list of structures, and stored in the 

following output files: VSMResult.txt, BIRResult.txt and BDResult.txt.  Format of 

output file is as depicted in Figure 4.1.  From each ranked list, we acquire the 

performance evaluation for each method (Figure 4.2).  Next, the average of 1049 

(target compounds posted)  performance evaluation is calculated, which consist of 

the GH score, initial enhancement and total active structures at top 5% of the ranked 

list, which is from the first experiment.  The result of the second experiment is also 

shown here which includes the average total active structures at top 400 of the 

ranked list.  Discussion in this chapter emphasizes on the critical analysis of the 

results.  This is done by comparing the results of all three approaches and stating 

some observation based on it. 
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Figure 4.1 File format of output file. 

 

 

Figure 4.2 Sample evaluation result for similarity searching system. 

{Active molecule as target molecule} 
Query posted: 10100101000000000010000000000000000000000000000000000… 
 
{Structure ID} {Compound name} {Similarity / Ranking Score} 

1 aids99_CA_STR1  1.0000 
339 aids99_CM_STR193   0.9664 
156 aids99_CA_STR282 0.8760 

3 aids99_CA_STR102 0.8618 
23 aids99_CA_STR125   0.8346 

707 aids99_CM_STR58   0.8293 
499 aids99_CM_STR36   0.8160 
4097 aids99_CI_STR3895   0.7984 
232 aids99_CA_STR8   0.7692 
382 aids99_CM_STR238   0.7541 

: : : 
 

{Query No.} 
Query no. 1  
{GH Score section consisting of values for recall, precision, GH score, false positive, false negative} 
GH Score: 
   Recall  Precisions GHScore False+ False- 
   12.3928   44.9827    28.6877    159    919  {Values at 5% of structure retrieved} 
   16.3012   29.5848    22.9430    407    878  {Values at 10% of structure retrieved} 
   20.4004   24.7113    22.5558    652    835  {Values at 15% of structure retrieved} 
   25.5481   23.2035    24.3758    887    781  {Values at 20% of structure retrieved} 
   30.1239   21.8837    26.0038   1128    733  {Values at 25% of structure retrieved} 
   34.7950   21.0739    27.9345   1367    684  {Values at 30% of structure retrieved} 
 
Initial enhancement: 2633 {No of structures retrieved before half of the active structures are found.} 
No of actives at top 5%: 130 {No of active structures retrieved at top 5% of the ranked list.} 
 
Query no. 2 
GH Score:  
    Recall Precisions   GHScore False+ False- 
    5.4337   19.7232    12.5785    232    992 
   10.9628   19.8962    15.4295    463    934 
   15.2526   18.4757    16.8642    706    889 
   19.7331   17.9221    18.8276    948    842 
   26.2154   19.0443    22.6299   1169    774 
   30.9819   18.7644    24.8732   1407    724 
 
Initial enhancement: 2926 
No of actives at top 5%: 57    
… 
 
Query no. 1049 
GH Score:  
    Recall Precisions   GHScore False+ False- 
    7.6263   27.6817    17.6540    209    969 
   13.4414   24.3945    18.9179    437    908 
   19.1611   23.2102    21.1856    665    848 
   26.8827   24.4156    25.6492    873    767 
   32.9838   23.9612    28.4725   1098    703 
   39.0848   23.6721    31.3784   1322    639 
 
Initial enhancement: 2399 
No of actives at top 5%: 79 
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4.1 Results of VSM-based Similarity Searching 

 

 

Table 4.1 shows the average result of VSM-based similarity searching in 

terms of four evaluation merits discussed earlier.  In the first experiment, readings of 

GH scores are taken on each 5% interval of structure retrieved, which are 5%, 10%, 

15% …30%.  Readings stop at 30% of the structures retrieved.  This means that the 

final GH score value is obtained when 1732 compounds are retrieved.  More than 

this value is not considered because normally user will only look at most the top 

1000 compounds.  As seen in the table below, the GH score increases on each level.  

This is expected as when we retrieved more structure we obtain more actives.  While 

computing GH scores, we can also acquire the values for false negative and false 

positive on each level.  This is to find out the number of active and inactive in the 

ranked list, respectively.  For initial enhancement we consider the number of 

chemical structure retrieved before half of the actives are found.  The VSM-based 

similarity searching attains an average of 2705 compounds for this evaluation 

criterion.  Next, we can see that this approach returns an average of 73 active 

compounds on top 5% of its ranked list.  For the second experiment, the VSM-based 

similarity searching obtains an average of 95 active structures at top 400 of its list. 

 

 

Table 4.1: Summary of VSM Result 

Experiment 1: 
 
 5% 10% 15% 20% 25% 30%
Average GH Score 16.26 17.11 18.95 21.22 23.59 26.02
Average False + 215 450 686 921 1157 1391
Average False - 975 921 869 815 762 708

Average initial enhancement  : 2705 

Average number of actives at top 5%  : 73 

   

Experiment 2:   

   

Average number of actives at top 400 : 95 
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4.2 Results of BIR-based Similarity Searching 

 

 

Analogous to the results in the previous section, Table 4.2 shows the average 

result of BIR-based similarity searching in terms of the three evaluation merits.    As 

seen in the table below, the GH score from the first experiment also increases on 

each level.  For the number of chemical structure retrieved before half of the actives 

are found,  the BIR-based similarity searching attains an average of 1917 compounds 

for this evaluation criterion.  This approach also returns an average of 133 active 

compounds on top 5% of its ranked list.  Finally, for the second experiment, the BIR 

model retrieves an average of 155 actives at top 400 of its list. 

 

 

Table 4.2: Summary of BIR Model Result 

Experiment 1: 
 
 5% 10% 15% 20% 25% 30%
Average GH Score 29.43 29.51 31.06 32.97 35.14 37.27
Average False + 155 358 571 792 1016 1244
Average False - 915 829 754 686 621 561

Average initial enhancement  : 1917
Average number of actives at top 5%  : 133
   

Experiment 2:   

   

Average number of actives at top 400 : 155 

  
 

 

 

4.3 Results of BD-based Similarity Searching 

 

 

The summary of the average result of BD-based similarity searching is shown 

in Table 4.3.    GH scores increase on each level for this approach and obtains an 

average of 1859 compounds for initial enhancement.  Next, we can see that this 
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approach returns an average of 141 active compounds on top 5% of its ranked list.  

For the second experiment, the BD model obtains an average of 160 actives at top 

400 of its list. 

 

 

Table 4.3: Summary of BD Model Result 

Experiment 1: 
 
 5% 10% 15% 20% 25% 30%
Average GH Score 31.20 30.86 32.26 34.19 36.18 38.16
Average False + 147 348 559 779 1004 1233
Average False - 907 819 742 673 609 550

Average initial enhancement  : 1859
Average number of actives at top 5%  : 141
   

Experiment 2:   

   

Average number of actives at top 400 : 160 

  
 

 

 

4.4 Discussion 

 

 

In this section, two issues need to be determined.  The first being whether the 

PM-based similarity searching overcomes the existing approach.  If so, which of the 

probability models proposed is more superior in the chemical database environment.  

Hence, in each performance criterion, these two issues are taken into consideration.  

The following is the comparison made for all three approaches of similarity 

searching involved in this work, with respect to the performance criterion below: 

 

a) Experiment 1: Comparing the Effectiveness of Similarity Searching 

Methods 
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 GH Score 

 

In the following figure, GH score values at each 5% level of the 

structure retrieved are plotted for all the similarity searching method.  

As seen in the graph, we can conclude that both PM approaches 

outperform the existing system.   

As GH score gives quantitative measure of the ranked list quality, we 

can confirm the PM approaches is substantially more selective than 

the others without compromising present of actives too much.  The 

graph also shows that the BD model’s GH score performance exceed 

the BIR model but only slightly. 
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Figure 4.3 GH score analysis for VSM, BIR and BD model. 

 

 

 False Positive and False Negative 

 

Figure 4.4 shows the number of inactive structures in the ranked list, 

whereas Figure 4.5 shows the number of actives not in the ranked list.  
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This is referred to as the false positive and false negative of the ranked 

list.  In both cases, the VSM has the most false positive and false 

negative in its list.  The performance of both BIR and BD model on 

the other hand is much better.  However, BD model has the least 

number of false positive and false negative in its ranked list, with a 

decrease of 8 to 13 structures compared to the BIR model. 
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Figure 4.4 False positive analysis for VSM, BIR and BD model. 
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Figure 4.5 False negative analysis for VSM, BIR and BD model. 

 

 

 Average Initial Enhancement 

 

As discussed in Chapter 3, initial enhancement refers to the number of 

chemical structure retrieved before half of the actives are found.  

Hence, the performances of similarity searching methods are 

comparable, with the superior system having less value of initial 

enhancement.  The figure below shows us that again the VSM has the 

highest value of initial enhancement.  It retrieves approximately 800 

more structures compared to the PM approaches. 

Here again we can see that BD model is more superior in term of 

average initial enhancement.  BIR model retrieves 58 more structures 

before half of the actives are found compared to the BD model. 
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Figure 4.6 Initial enhancement analysis for VSM, BIR and BD model. 

 

 

 Average Total of Actives at 5% of List. 

 

A good similarity searching system is also denoted by the number of 

active structures at the top 5% of its list.  Top structures of the list 

normally show the nearest neighbours of the target molecule.  More 

actives on this part of ranked list can help elevate the lead 

optimisation process, where initial lead compound are sought in order 

to find better compounds.  The following shows us that the PM 

approaches have given more actives than the VSM.  It also suggests 

that the BD model is a more effective similarity searching system with 

slight improvement (8 active structure more) than the BIR model. 
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Figure 4.7 Average number of actives in top 5% for VSM, BIR and BD model. 

 

 

b) Experiment 2: Comparing the Performance of Query Fusion Result of 

Similarity Searching Methods 

 

 Average Total of Actives at Top 400 of List. 

 

The purpose of query fusion is to improve the performance of 

similarity searching based on combining chemical target in an 

iterative similarity searching to estimating probability instead of 

obtaining from the entire collection.  It is then compared to the 

average total number of actives at top 400 of the VSM approach.  A 

good similarity searching system is denoted by the number of active 

structures at the top 400 of its list.  The following shows us that the 

PM approaches have given more actives than the VSM.  It also 

suggests that the BD model is a more effective similarity searching 

system with five active structures more than the BIR model. 
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Avg no of actives at top 400
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Figure 4.8 Average number of actives in top 400 for VSM, BIR and BD model. 

 

 

 

 

4.5 Summary 

 

 

The proposed approaches for similarity searching are implemented according 

to the steps listed in the methodology.  Based on its ranked list, evaluation is done to 

determine which method is better.  Four main evaluation merits were considered here 

which are the GH score, initial enhancement, total actives at top 5% and total actives 

at top 400.  They are needed as to resolve the following issues: 1) Does PM-based 

similarity searching really overcomes the existing similarity searching; and 2) Which 

of the probability model proposed, perform better in the chemical database 

environment.  Results in this chapter have shown that in all four evaluation merits, 

the PM is superior, with significant improvement over the VSM.  Other than that, we 

can also conclude that the theoretical stronger BD model has a slight improvement 

over the BIR model, which has a weaker notion of dependence. 



CHAPTER 5 

 

 

 

 

CONCLUSION 

 

 

 

 

5.1 Summary of Work 

 

 

IR has taken the centre stage when the Internet was introduced.  Now, with 

endless repository of knowledge and culture, searching for information can be 

tedious.  Standard Boolean logic approaches are no longer sufficient for retrieving 

information.  Hence, many new retrieval models were introduced.  VSM is currently 

the most popular model used in major information services and the WWW.  Current 

similarity searching of chemical compounds also applies similar approach as the 

vector space.  Since there are similarities in the way that chemical and textual 

database records are characterised, it is no wonder why algorithms developed for the 

processing of textual databases can also be applied in chemical structure database 

processing database. 

 

 

In the effort of improving the chemical retrieval system, PM is proposed for 

this project.  It has strong theoretical basis and in principle should give the best 

performance of relevance.  Since there are no known application of probability 

model in similarity searching, hence this statement is yet to be proven.   
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Among the PM approaches proposed is the BIR and BD model.  BIR model 

was chosen, as it is the simplest probability model there is.  It was initially 

considered to see whether PM could be indeed applied in the chemical database 

environment.  The success of the implementation of BIR model has encourage the 

PM to be seriously considered for similarity searching.   

 

 

PM was proposed to overcome the VSM limitations, particularly its bit 

independence assumption.  As the BIR model offers linked-dependence, which is a 

weaker assumption of bit dependence, hence it is obvious to extend this work by 

repeating experiments with a dependence model i.e. BD model. 

 

 

Results from experiments carried out have determined that PM really did 

perform better than the existing similarity searching.  It gave better result in all the 

evaluation criteria thus confirming this statement.  In terms of which probability 

model performs better, the BD model shown some improvement over the BIR model.  

Thus, the findings of this work have help close the knowledge gap with hope that it 

can help contribute to the improvement of the current similarity searching system. 

 

 

 

 

5.2 Future Work 

 

 

The works of this project can be further enhanced in many ways.  Additional 

experiments can also be carried out to validate further the findings of this project.  

Since, various other techniques could be explored to find better alternatives to 

current similarity searching; hence, works need to be done before a practical 

implementation can be built upon the findings. 
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Take for example, there many other probability models that appeal for future 

consideration.  The non-binary independence model (Yu and Lee, 1986; Yu, Meng 

and Park, 1989) for instance, captures the information about the number of 

occurrences of a term within a document as well as the number of document having 

the term.  It has yield significant improvement over BIR model and is one of the 

ways to alleviate the consequences of the term independence assumption.  Hence, 

this model should also be considered for future research.  Other models such as 

inference network or belief network can also be studied. 

 

 

Experiments in this project could also be carried out on other chemical 

database available.  Chen and Reynolds (2002) mentioned that the NCI AIDS 

database is not a perfect data set for evaluation but it is the best data set available.  

Hence, to complement the findings, other chemical database should also be 

considered.  For example the MDDR (MDL Drug Data Report) database.  It is a 

licensable database and contains diverse drug-like molecules to which most have 

been assigned a therapeutic category (Molecular Design Ltd.).  As the NCI AIDS 

database gives thorough sampling of a particular region in chemical space, MDDR in 

turn gives a broad coverage of chemical space that is pharmaceutically relevant. 

 

 

In addition, other bit string representation can also be used in this project to 

represent chemical compounds, for example the Daylight fingerprint (James, el. al, 

2000) and the UNITY 2D bit strings (Tripos Inc., 1999).  The Daylight fingerprint is 

a 2048-bit hashed fingerprint that encodes each atom’s type, augmented atoms and 

paths of length 2 to 7 atoms.  One of the advantages of hashed fingerprint is that it is 

not library biased.  However, it does experience some loss of information.  

Meanwhile, UNITY 2D bit-string, unlike Daylight fingerprint that hashes all 

recorded information over the whole length of the fingerprint, keeps information 

from different-length paths distinct.  Different parts of the bit string, record 

information of fragments of length 2 to 6.  A few generic structural keys are added 

for some common atoms and bond types, producing a bit string of 992 bits.  
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