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ABSTRACT 

 
 
 
 
Large genome sequencing projects generate huge number of protein 

sequences in their primary structures that is difficult for conventional biological 
techniques to determine their corresponding 3D structures and then their functions. 
Protein secondary structure prediction is a prerequisite step in determining the 3D 
structure of a protein. In this research a method for prediction of protein secondary 
structure has been proposed and implemented together with other known accurate 
methods in this domain. The method has been discussed and presented in a 
comparative analysis progression to allow easy comparison and clear conclusions. A 
benchmark data set is exploited in training and testing the methods under the same 
hardware, platforms, and environments. The newly developed method utilizes the 
knowledge of the GORV information theory and the power of the neural network to 
classify a novel protein sequence in one of its three secondary structures classes. 
NN-GORV-I is developed and implemented to predict proteins secondary structure 
using the biological information conserved in neighboring residues and related 
sequences. The method is further improved by a filtering mechanism for the searched 
sequences to its advanced version NN-GORV-II. The newly developed method is 
rigorously tested together with the other methods and observed reaches the above 
80% level of accuracy. The accuracy and quality of prediction of the newly 
developed method is superior to all the six methods developed or examined in this 
research work or that reported in this domain. The Mathews Correlation Coefficients 
(MCC) proved that NN-GORV-II secondary structure predicted states are highly 
related to the observed secondary structure states. The NN-GORV-II method is 
further tested using five DSSP reduction schemes and found stable and reliable in its 
prediction ability. An additional blind test of sequences that have not been used in 
the training and testing procedures is conducted and the experimental results show 
that the NN-GORV-II prediction is of high accuracy, quality, and stability. The 
Receiver Operating Characteristic (ROC) curve and the area under curve (AUC) are 
applied as novel procedures to assess a multi-class classifier with approximately 0.5 
probability of one and only one class. The results of ROC and AUC prove that the 
NN-GOR-V-II successfully discriminates between two classes; coils and not-coils. 
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ABSTRAK 
 
 
 
 
Projek-projek genome yang berskala besar telah menghasilkan jujukan-

jujukan protein dalam bentuk struktur pertama yang sangat banyak bilangannya telah 
menyebabkan teknik-teknik biasa biologi sukar untuk menuntukan struktur 3D dan 
fungsinya. Peramalan struktur kedua protein diperlukan bagi menentukan struktur 3D 
protein dan fungsinya. Dalam tesis ini, satu kaedah untuk meramalkan struktur kedua 
protein telah dicadangkan dan dilaksanakan bersama-sama dengan kaedah-kaedah 
lain yang berkaitan. Kaedah itu telah dibincangkan dan ditunjukkan di dalam satu 
analisis perbandingan. Tujuh algoritma dan kaedah bagi peramalan struktur kedua 
protein telah dibangunkan dan dilaksanakan. Satu set data perbandingan digunakan 
untuk melatih dan menguji kaedah tersebut. Kaedah yang baru dibangunkan itu 
adalah menggunakan pengetahuan Teori Maklumat GORV dan Rangkaian Neural 
untuk mengkelaskan satu jujukan protein baru kepada salah satu daripada 3 kelas 
stuktur keduanya. NN-GORV-I dibangunkan dan diimplemenkan bagi meramal 
struktur kedua protein menggunakan maklumat biologi yang disimpan dalam bentuk 
keladak yang berhampiran dan jujukan-jujukan yang berkaitan. Seterusnya kaedah 
itu telah diuji dengan kaedah-kaedah lain dan telah mencapai lebih 80% ketepatan. 
Ketepatan dan kualiti peramalan bagi kaedah itu adalah melebihi 6 kaedah- kaedah 
lain yang juga telah dibangunkan dan diperiksa dalam penyelidikan ini. Pekali 
Korelasi Mathews (PKM) telah membuktikan struktur kedua yang telah diramalkan 
oleh NN-GORV-II adalah sangat berkait rapat dengan keadaan struktur kedua yang 
telah dicerapkan. Kaedah NN-GORV-II seterusnya diuji dengan menggunakan lima 
skema potongan DSSP dan disahkan kestabilannya dan boleh dipercayai 
kebolehannya untuk kerja peramalan tersebut. Satu penambahan ujian bagi jujukan-
jujukan yang tidak digunakan dalam prosedur melatih dan menguji dijalankan dan 
hasil-hasil eksperimennya menunjukkan bahawa peramalan NN-GORV-II adalah 
berketepatan tinggi, berkualiti dan stabil. Lengkungan Receiver Operating 
Characteristic (ROC) dan area under curve (AUC) itu telah diaplikasikan sebagai 
satu prosedur baru bagi menilai pengkelas pelbagai kelas dengan anggaran 
kebarangkalian adalah 0.5 bagi satu dan hanya satu kelas. Hasil-hasil bagi ROC dan 
AUC membuktikan bahawa NN-GOR-V berjaya memisahkan 2 kelas; lingkaran dan 
bukan lingkaran.  



 iv

 
 
 
 
 

TABLE OF CONTENTS 
 
 
 
 

   CHAPTER 
 

TITLE PAGE

 ABSTRACT ii

 ABSTRAK iii

 TABLE OF CONTENTS iv

 LIST OF TABLES x

 LIST OF FIGURES xii

 LIST OF ABBREVIATIONS xv

 LIST OF APPENDICES  xviii

  
1 INTRODUCTION 

 
1

 1.1 Introduction 1

 1.2 Protein Structure Prediction 2

 1.3 Prediction Methods 3

 1.4 The Problem 6

 1.5 Objectives of the Research 7

 1.6 The Scope of the Research 8

 1.7 Organization and Overview of the Report 8

 1.8 Summary 10

  

2 PROTEIN, SEQUENCES, AND SEQUENCE 
ALIGNMENT 
 

11

 2.1 Introduction 11

 2.2 Proteins 11

  2.2.1 Protein Primary Structure  15

  2.2.2 Secondary Structure 15



 v

  2.2.3 Tertiary Structure 17

  2.2.4 Quaternary Structure 18

 2.3 Methods of Determining Protein Structure 18

 2.4 Characteristics of Protein Structures 20

 2.5 Protein Homology 21

  2.5.1 Types of Homologies 22

  2.5.2 Homologues versus Analogues  22

 2.6 Molecular Interactions of Proteins  23

 2.7 Sequence Alignment Methods 24

  2.7.1 Threading Methods 24

  2.7.2 Hidden Markov Models 25

  2.7.3 Types of Alignment Methods  26

  2.7.3.1 Pairwise Alignment Methods 27

  2.7.3.2  Profile Alignment Methods 29

  2.7.3.3 Multiple Alignment Methods 30

  2.7.4 Comparative Modelling 32

  2.7.5 Overview of Alignment Methods and  
  Programs 

33

 2.8 Summary  35

  

3 REVIEW OF PROTEIN SECONDARY 
STRUCTURE PREDICTION: PRINCIPLES,  
METHODS, AND EVALUATION 
 

36

 3.1 Introduction 36

 3.2  Protein Secondary Structure Prediction 38

 3.3  Methods Used In Protein Structure Prediction 40

 3.4  Artificial Neural Networks 47

 3.4.1 Inside the Neural Networks 47

 3.4.2 Feedforward Networks 49

 3.4.3 Training the Networks 51

 3.4.4 Optimization of Networks 52

 3.5  Information Theory 54

 3.5.1 Mutual Information and Entropy  55

 3.5.2 Application of Information Theory to Protein 57



 vi

 Folding Problem 
 3.5.3 GOR Method for Protein Secondary Structure 

 Prediction 
59

 3.6 Data Used In Protein Structure Prediction 61

 3.7  Prediction Performance (Accuracy) Evaluation 63

 3.7.1 Average Performance Accuracy (Q3) 64

 3.7.2 Segment Overlap Measure (SOV) 65

 3.7.3 Correlation 65

 3.7.4 Receiver Operating Characteristic (ROC) 66

 3.7.5 Analysis of Variance Procedure (ANOVA) 67

 3.8 Summary 68

  

4 METHODOLOGY 
 

70

 4.1  Introduction 70

 4.2  General Research Framework 70

 4.3  Experimental Data Set 74

 4.4  Hardware and Software Used 75

 4.5  Summary 76

  

5 A METHOD FOR PROTEIN SECONDARY  
STRUCTURE PREDICTION  
USING NEURAL NETWORKS AND GOR-V 
 

77

 5.1 Introduction 77

 5.2 Proposed Prediction Method – NN-GORV-I 78

 5.2.1 NN-I 78

 5.2.2 GOR-IV 78

 5.2.3 Multiple Sequence Alignments Generation 79

 5.2.4 Neural Networks (NN-II) 81

 5.2.4.1 Mathematical Representation of 
 Neural Networks 

81

 5.2.4.2 Generating the Networks  86

 5.2.4.3 Networks Optimization 88

 5.2.4.4 Training and Testing the Network 89

 5.2.5 GOR-V 91



 vii

 5.2.6 NN-GORV-I 94

 5.2.7 Enhancement of Proposed Prediction Method 
- N-GORV-II 

100

 5.2.8 PROF 102

 5.3 Reduction of DSSP Secondary Structure States 103

 5.4 Assessment of Prediction Accuracies of the Methods  105

 5.4.1 Measure of Performance (QH, QE, QC, and 
Q3) 

105

 5.4.2 Segment Overlap (SOV) Measure 106

 5.4.3 Matthews Correlation Coefficient (MCC) 106

 5.4.4 Receiver Operating Characteristic (ROC) 107

 5.4.4.1 Threshold Value 109

 5.4.4.2 Predictive Value  109

 5.4.4.3 Plotting ROC Curve 110

 5.4.4.4 Area Under Curve (AUC) 110

 5.4.5 Reliability Index 112

 5.4.6 Test of Statistical Significance 112

 5.4.6.1 The Confidence Level (P-Value) 113

 5.4.6.2 Analysis of Variance (ANOVA)  
  Procedure 

114

 5.5 Summary 114

  

6 ASSESSMENT OF THE PREDICTION 
METHODS 
 

116

 6.1  Introduction 116

 6.2  Data Set Composition 117

 6.3  Assessment of GOR IV Method 118

 6.4  Assessment of NN-I Method 122

 6.5  Assessment of GOR-V Method 123

 6.6  Assessment of NN-II Method 126

 6.7  Assessment of PROF Method 128

 6.7.1 Three States Performance of PROF Method 130

 6.7.2 Overall Performance and Quality of PROF  
  Method 

132

 6.8  Assessment of NN-GORV-I Method 134

 6.8.1 Three States Quality (SOV) of NN-GORV-I 136



 viii

   Method 
 6.8.2 Overall Performance and Quality of NN- 

  GORV-I Method 
139

 6.9  Assessment of NN-GORV-II Method 140

 6.9.1 Distributions and Statistical Description of  
  NN-GORV-II Prediction 

140

 6.9.2 Comparison of NN-GORV-II Performance  
  with Other Methods 

143

 6.9.3 Comparison of NN-GORV-II Quality with  
  Other Methods 

148

 6.9.4 Improvement of NN-GORV-II Performance  
  over Other Methods 

151

 6.9.5 Improvement of NN-GORV-II Quality over  
  Other Methods 

155

 6.9.6 Improvement of NN-GORV-II Correlation  
  over Other Methods 

156

 6.10 Summary 158

  

7 THE EFFECT OF DIFFERENT REDUCTION 
METHODS 
 

160

 7.1  Introduction 160

 7.2  Effect of Reduction Methods on Dataset and  
  Prediction 

161

 7.2.1 Distribution of Predictions 162

 7.2.2 Effect of Reduction Methods on Performance 166

 7.2.3 Effect of Reduction Methods on SOV 169

 7.2.4 Effect of Reduction Methods on Matthews’s 
Correlation Coefficients 

171

 7.3  Summary 173

  

8 PERFORMANCE OF BLIND TEST  
 

174

 8.1  Introduction 174

 8.2  Distribution of CASP Targets Predictions 175

 8.3  Performance and Quality of CASP Targets   
  Predictions 

179

 8.4  Summary 183

  

9 RECEIVER OPERATING CHARACTERISTIC 
(ROC) TEST 
 

184

 9.1  Introduction 184



 ix

 9.2  Binary Classes and Multiple Classes 185

 9.3  Assessment of NN-GORV-II 189

 9.4  Summary 193

  

10 CONCLUSION 
 

194

 10.1 Introduction 194

 10.2 Summary of the Research 195

 10.3 Conclusions 197

 10.4 Contributions of the Research 199

 10.5 Recommendations for Further Work 199

 10.6 Summary 201

  

 REFERENCES 202

 APPENDIX  A (PROTEIN STRUCTURES ) 230

 APPENDIX  B (CUFF AND BARTON’S 513   

    PROTEIN DATA SET) 

233

 APPENDIX  C (DESCRIPTIVE STATISTICS) 244

 APPENDIX  D (SELECTED PUBLICATIONS) 246

  

   



 x

 
 
 
 
 

LIST OF TABLES 
 
 
 
 

TABLE NO.

 

TITLE PAGE 

2.1 The twenty types of amino acids that forms the proteins 12 

2.2 The standard genetic code 14 

3.1 Well established protein secondary structure prediction 

methods with their reported accuracies and remarks 

briefly describing each method. 

46 

5.1 The contingency table or confusion table for ROC curve 108 

5.2 ANOVA table based on individual observations (One 

way ANOVA) 

114 

6.1 Total number of secondary structures states in the data 

base 

118 

6.2 The percentages of prediction accuracies with the 

standard deviations of the seven methods 

120 

6.3 The SOV of prediction accuracies with the standard 

deviations of the seven methods 

121 

6.4 The Mathew’s correlation coefficients of predictions of 

the seven methods 

122 

6.5 Descriptive Statistics of the prediction accuracies of 

NN-GORV-II method 

142 

6.6 Descriptive Statistics of the prediction of SOV measure 

for NN-GORV-II method 

142 

6.7 Percentage Improvement of NN-GORV-II method over 

the other six prediction methods  

152 

6.8 SOV percentage improvement of NN-GORV-II method 

over the other prediction methods 

155 



 xi

6.9 Matthews Correlation Coefficients improvement of NN-

GORV-II method over the other six prediction methods 

157 

7.1 Percentage of secondary structure state for the five 

reduction methods of DSSP definition (83392 residues) 

162 

7.2 The analysis of variance procedure (ANOVA) of the Q3 

for the five reduction methods 

163 

7.3 The analysis of variance procedure (ANOVA) of SOV 

for the five reduction methods 

164 

7.4 The effect of the five reduction methods on the 

performance accuracy of prediction (Q3) the of NN-

GORV-II prediction method 

167 

7.5 The effect of the five reduction methods on the segment 

overlap measure (SOV) of the NN-GORV-II prediction 

method 

169 

7.6 The effect of reduction methods on Matthews’s 

correlation coefficients using NN-GORV-II prediction 

method 

172 

8.1 Percentages of prediction accuracies for the 42 CASP3 

proteins targets 

180 

8.2 Percentages of SOV measures for the 42 CASP3 

proteins targets 

181 

8.3 The mean of Q3 and SOV with and standard deviation, 

and Mathew’s Correlation Coefficients (MCC) of CASP  

182 

9.1 The contingency table or confusion matrix for coil states 

prediction 

187 

9.2 The cut scores for the NN-GORV-II algorithm 

considering coil only prediction  

189 

9.3 The cut scores, true positive rate (TPR), false positive 

rate (FPR), and area under ROC (AUC) for the NN-

GORV-II prediction algorithm considering coil state 

only prediction  

191 

   



 xii

 
 
 
 

LIST OF FIGURES 
 
 
 
 

FIGURE NO. 

 

TITLE PAGE 

 3.1 Basic graphical representations of a block diagram of a 

single neuron artificial neural networks.  

48 

 3.2 Representation of multilayer perceptron artificial neural 

networks. 

50 

 4.1 General framework for protein secondary structure 

prediction method 

72 

 4.2 An example of a flat file of CB513 data base used in this 

research, 1ptx-1-AS.all file. 

75 

 5.1 Basic representation of multilayer perceptron artificial 

neural network 

82 

 5.2 The sigmoidal functions usually used in the feedforward 

Artificial Network. (a) Hyperbolic tangent sigmoid 

transfer function or bipolar function (b) Log sigmoid 

transfer function or uniploar function 

83 

 5.3 A general model for the newly developed protein 

secondary structure prediction method. 

95 

 5.4 A detailed representation for the first version of the 

newly developed protein secondary structure prediction 

method (NN-GORV-I) 

96 

 5.5 A detailed representation for the second version of the 

newly developed protein secondary structure prediction 

method (NN-GORV-II) 

101 

 5.6 The 1ptx-1-AS.all file converted into a FASTA format 

(zptAS.fasta) readable by the computer programs. 

104 

 5.7 The 1ptx-1-AS.all file parsed into a format readable by 105 



 xiii

the Q3 and SOV program 

 5.8 A typical example of area under curve (AUC) for 

training data, test data, and chance performance or 

random guess 

111 

 6.1 The performance of the GOR-IV prediction method 

with respect to Q3 and SOV prediction measures 

119 

 6.2 The performance of the NN-I prediction method with 

respect to Q3 and SOV prediction measures 

123 

 6.3 The performance of the GOR-V prediction method with 

respect to Q3 and SOV prediction measures 

124 

 6.4 The performance of the NN-II prediction method with 

respect to Q3 and SOV prediction measures 

127 

 6.5 The performance of the PROF prediction method with 

respect to Q3 and SOV prediction measures 

129 

 6.6 The α  helices performance (QH) of the seven prediction 

methods 

130 

 6.7 The β strands performance (QE) of the seven prediction 

methods 

130 

 6.8 The coils performance (QC) of the seven prediction 

methods 

132 

 6.9 The performance of the NN-GORV-I prediction method 

with respect to Q3 and SOV prediction measures 

135 

 6.10 The helices segment overlap measure (SOVH) of the 

seven prediction methods 

137 

 6.11 The strands segment overlap measure (SOVE) of the 

seven prediction methods 

137 

 6.12 The coils segment overlap measure (SOVC) of the seven 

prediction methods 

138 

 6.13 The performance of the NN-GORV-II prediction 

method with respect to Q3 and SOV prediction measures 

141 



 xiv

 6.14 Histogram showing the Q3 performance of the seven 

prediction methods  

144 

 6.15 A graph line chart for the Q3 performance of the seven 

prediction methods. 

147 

 6.16 Histogram showing the SOV measure of the seven 

prediction methods  

148 

 6.17 A graph line chart for the SOV measure of the seven 

prediction methods 

150 

 7.1 Five histograms showing the Q3 distribution of the test 

proteins with respect to the five reduction methods 

165 

 7.2 Five histograms showing the SOV distribution of the 

test proteins with respect to the five reduction methods  

166 

 7.3 The performance accuracy (Q3) of the five reduction 

method on the test proteins 

168 

 7.4 The SOV measure of the five reduction method on the 

480 proteins using NN-GORV-II prediction method 

171 

 8.1 The distribution of prediction actuaries of the of the 42 

Casp targets blind test for the secondary structure states. 

176 

 8.2 The performance of the 42 CASP targets with respect to 

Q3 and SOV prediction measures 

177 

 8.3 The distribution of SOV measure of the of the 42 Casp 

targets blind test for the secondary structure states. 

178 

 9.1 An idealized curve showing the (TP, TN, FP, and FN) 

numbers of a hypothetical normal and Not normal 

observations  

188 

 9.2 The cut scores of the coils and not coils secondary 

structure states predicted by the NN-GORV-II algorithm 

using Method V reduction scheme. 

190 

 9.3 The area under ROC (AUC) for the NN-GORV-II 

prediction algorithm considering coil only prediction. 

192 

   

   
 



 xv

 
LIST OF ABBREVIATIONS 

 
 
 
 

1D - One Dimensional Protein Structure  

3D - Three Dimensional Protein Structure  

HGP - Human Genome Project  

GenBank - Gene Bank 

PDB - Protein Data Bank 

EMBL - European Molecular Biology Laboratory 

DNA - Deoxyribonucleic Acid 

RNA - Ribonucleic Acid 

mRNA - Messenger RNA 

NMR - Nuclear Magnetic Resonance 

GOR - Garnier-Osguthorpe-Robson  

BLAST - Basic Local Alignment Search Tool 

PSIBLAST - Position Specific Iterated Blast 

ROC - Receiver Operating Characteristic 

AUC - Area Under Curve  

NN-GORV-I - Neural Network GOR V Version 1 Prediction Method 

NN-GORV-II - Neural Network GOR V Version 2 Prediction Method 

Q3 - Prediction Accuracy of Helices, Strands, And Coils  

QH - Prediction Accuracy of Helix State  

QE - Prediction Accuracy of Strand State 

QC - Prediction Accuracy of Coil State 

SOV3 - Segment Overlap Measure Of Helices, Strands, And Coils 

SOVH - Segment Overlap Measure Of Helix State 

SOVE - Segment Overlap Measure Of Strand State 

SOVC - Segment Overlap Measure Of Coil State 

MCC - Matthews Correlations Coefficient 

NN - Neural Network 

CASP - Critical Assessment Of Techniques For Protein Structure 

Prediction  



 xvi

RF - Radio Frequency Pulses 

CE - Combinatorial Extension 

FSSP - Database F Families Of Structurally Similar Proteins 

SCOP - Structural Classification Of Proteins 

HMMs - Hidden Markov Models  

FASTA - Fast Alignment 

GenThreader - Genomic Sequences Threading Method 

MSA - Multidimensional Sequence Alignments  

PRINTS - Protein Fingerprints  

PRODOM - Protein Domain 

PROF - Profile Alignment 

PSSM - Position Specific Scoring Matrix 

PRRP - Prolactin-Releasing Peptide 

SCANPS - Protein Sequence Scanning Package 

PHD - Profile Network From Heidelberg 

DSSP - Dictionary Of Protein Secondary Structure Prediction 

SAM - Sequence Alignment Method 

MULTALIGN - Multiple Alignment  

MULTAL - Multiple Alignment 

HMMT - Hidden Markov Model Training For Biological Sequences

BAliBASE - Benchmark Alignments Database  

PIM - Protein Interaction Maps 

ITERALIGN - Iteration Alignment  

MLP - Multi-Layer Perceptron  

MI - Mutual Information  

H - α Helix 

E - β  Strand 

C - Coil 

CPU - Central Processing Unit 

RCSB - Research Collaboratory For Structural Bioinformatics  

PDB - Protein Data Bank  

NNSSP - Nearest-Neighbor Secondary Structure Prediction 

DSC - Discrimination Of Protein Secondary Structure Class 



 xvii

3Dee - Database Of Domain Definitions (DDD) 

CB513 - Cuff And Barton 513 Proteins 

TP - True Positive 

TN - True Negative 

FP - False Positive 

FN - False Negative 

ANOVA - Analysis Of Variance 

nr - Non Redundant Database 

PERL - Practical Extraction And Reporting Language 

RES - Residues  

LMS - Least Mean Square  

SNNS - Stuttgart University Neural Network Simulator 

ANSI - American National Standards Institute 

RI - Reliability Index  

FTP - File Transfer Protocol 

SPSS - Statistical Package For Social Sciences 

SAS - Statistical Analysis Software 

SE - Standard Error  

PIR - Protein Information Resource 
 



 xviii

 

 
 
 
 

LIST OF APPENDICES  
 
 
 
 

APPENDIX 
 

TITLE  PAGE 

A Protein Structures   230

B Cuff and Barton’s 513 Protein Data Set  233

C Descriptive Statistics  244

D Selected Publications  246

    
 



 
 
 
 
 

CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Introduction 
 
 

Advances in molecular biology in the last few decades, and the availability of 

equipment in this field have allowed the increasingly rapid sequencing of 

considerable genomes of several species. In fact, to date, several bacterial genomes, 

as well as those of some simple eukaryotic organisms (e.g. yeast) have been 

completely sequenced. The Human Genome Project (HGP), aimed to sequence all of 

the human chromosomes, is almost completed with a rough draft announced in the 

year 2000 (Heilig et al., 2003). Known sequencing databases projects, such as 

GenBank, PDB, and EMBL, have been growing significantly. This surge and 

overflow of data and information have imposed the rational storage, organization and 

indexing of sequence information. 

 

Explaining the tasks undertaken in Bioinformatics field in details might be far 

beyond this introductory chapter. However, they fall in the creation and maintenance 

of databases of biological information with nucleic acid or protein sequences cover 

the majority of such databases. Storage and organization of millions of nucleotides is 

essential portion in these databases. Designing, developing, and implementing 

databases access and exchange information between researchers in this field is 

progressing significantly.  

 

The most fundamental tasks in bioinformatics include the analysis of 

sequence information which involves the following the prediction of the 3D structure 
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of a protein using algorithms that have been derived from the knowledge of physics, 

chemistry and from the analysis of other proteins with similar amino acid sequences. 

Some researchers refer to this area with the name Computational Biology. 

 
 
 
 

1.2 Protein Structure Prediction 
 
 

Protein structure prediction is categorized under Bioinformatics which is a 

broad field that combines many other fields and disciplines like biology, 

biochemistry, physics, statistics, and mathematics. Proteins are series of amino acids 

known as polymers linked together into contiguous chains. In a living cell the DNA 

of an organism encodes its proteins into a sequence of nucleotides (transcribed), 

namely: adenine, cytosine, guanine and thymine that are copied to the mRNA which 

are then translated into protein (Branden and Tooze, 1991) 

 

Protein has three main structures: primary structure which is essentially the 

linear amino acid sequence and usually represented by a one letter notation. Alpha 

helices, beta sheets, and loops are formed when the sequences of primary structures 

tend to arrange themselves into regular conformations; these units are known as 

secondary structure (Pauling and Corey, 1951; Kendrew, 1960). Protein folding is 

the process that results in a compact structure in which secondary structure elements 

are packed against each other in a stable configuration. This three-dimensional 

structure of the protein is known as the protein tertiary structure. However, loops 

usually serve as connection points between alpha-helices and beta-sheets, they do not 

have uniform patterns like alpha-helices and beta-sheets and they could be any other 

part of the protein structure rather than helices or strands (Appendix A). 

 

In the molecular biology laboratory, protein secondary structure is 

determined experimentally by two lengthy methods: X-ray crystallography method 

and Nuclear Magnetic Resonance (NMR) spectroscopy method. 

 

Since Anfinsen (1973) concluded that the amino acid sequence is the only 

source of information to survive the denaturing process, and hence the structured 
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information must be somehow specified by the primary protein sequence, researchers 

have been trying to predict secondary structure from protein sequence. Anfinsen’s 

hypothesis suggests that an ideal theoretical model of predicting protein secondary 

structure from its sequence should exist anyhow. 

 
 
 
 
1.3 Prediction Methods 

 
 
There are two main different approaches in determining protein structure: a 

molecular mechanics approach based on the assumption that a correctly folded 

protein occupies a minimum energy conformation, most likely a conformation near 

the global minimum of free energy. Potential energy is obtained by summing the 

terms due to bonded and non-bonded components estimated from these force field 

parameters and then can be minimized as a function of atomic coordinates in order to 

reach the nearest local minimum (Weiner and Kollman, 1981; Weiner et al., 1984). 

This approach is very sensitive to the protein conformation of the molecules at the 

beginning of the simulation. 

 

One way to address this problem is to use molecular dynamics to simulate the 

way the molecule would move away from that initial state. Newton’s laws and 

Monte Carlo methods were used to reach to a global energy minima. The approach 

of molecular mechanics is faced by problems of inaccurate force field parameters, 

unrealistic treatment of solvent, and spectrum of multiple minima (Stephen et al., 

1990).  

 

The second approach of predicting protein structures from sequence alone is 

based on the data sets of known protein structures and sequences. This approach 

attempts to find common features in these data sets which can be generalized to 

provide structural models of other proteins. Many statistical methods used the 

different frequencies of amino acid types: helices, strands, and loops in sequences to 

predict their location. (Chou and Fasman, 1974b; Garnier et al., 1978; Lim, 1974b; 

Blundell et al., 1983; Greer, 1981; Warme et al., 1974). The main idea is that a 
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segment or motif of a target protein that has a sequence similar to a segment or motif 

with known structure is assumed to have the same structure. Unfortunately, for many 

proteins there is no enough homology to any protein sequence or of known structure 

to allow application of this technique.  

 

The previous review leads us to the fact that the approach of deriving general 

rules for predicting protein structure from the existing data sets or databases and then 

applies them to sequences of unknown structure appears to be promising. Several 

methods have utilized this approach (Richardson, 1981; Chou and Fasman, 1974a; 

Krigbaum and Knutton, 1973; Qian and Sejwaski, 1988; Crick, 1989).  

 

Artificial Neural networks have great opportunities in the prediction of 

proteins secondary structures. These methods are based on the analogy of operation 

of synaptic connections in neurons of the brain, where input is processed over 

several levels or phases and then converted to a final output. Since the neural 

network can be trained to map specific input signals or patterns to a desired output, 

information from the central amino acid of each input value is modified by a 

weighting factor, grouped together then sent to a second level (hidden layer) where 

the signal is clustered into an appropriate class.  

 

Artificial Neural Networks are trained by adjusting the values of the weights 

that modify the signals using a training set of sequences with known structure. The 

neural network algorithm adjusts the weight values until the algorithm has been 

optimized to correctly predict most residues in the training set. 

 

Feedforward neural networks are powerful tools. They have the ability to 

learn from example, they are extremely robust, or fault tolerant, the process of 

training is the same regardless of the problem, thus few if any assumptions 

concerning the shapes of underlying statistical distributions are required. The most 

promising is that programming artificial neural networks is fairly easy (Haykin, 

1999). 
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Thus, neural networks and specially feedforward networks have a fair chance 

to well suite the empirical approach to protein structure prediction. In the process of 

protein folding, which is effectively finding the most stable structure given all the 

competing interactions within a polymer of amino acids, neural networks explore 

input information in parallel style. 

 

The GOR method was first proposed by (Garnie et al., 1978) and named after 

its authors Garnier-Osguthorpe-Robson. The GOR method attempts to include 

information about a slightly longer segment of the polypeptide chain. Instead of 

considering propensities for a single residue, position-dependent propensities have 

been calculated for all residue types. Thus the prediction will therefore be influenced 

not only by the actual residue at that position, but also to some extent by other 

neighbouring residues (Garnier and Robson, 1989). The propensity tables to some 

extent reflect the fact that positively charged residues are more often found in the C-

terminal end of helices and that negatively charged residues are found in the N-

terminal end. 

 

The GOR method is based on the information theory and naive statistics. The 

mostly known GOR-IV version uses all possible pair frequencies within a window of 

17 amino acid residues with a cross-validation on a database of 267 proteins (Garnier 

et al., 1996). The GOR-IV program output gives the probability values for each 

secondary structure at each amino acid position. The GOR method is well suited for 

programming and has been a standard method for many years. 

 

The recent version GORV gains significant improvement over the previous 

versions of GOR algorithms by combining the PSIBLAST multiple sequence 

alignments with the GOR method (Kloczkowski et al., 2002). The accuracy of the 

prediction for the GOR-V method with multiple sequence alignments is nearly as 

good as neural network predictions. This demonstrates that the GOR information 

theory based approach is still feasible and one of the most considerable secondary 

structure prediction methods. 
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1.4 The Problem 
 
 
The problem of this research focuses on the protein folding dilemma. The 

question is how protein folds up to its three dimensional structure (3D) from linear 

sequences of amino acids? The 3D structure protein is the protein that interacts with 

each other 3D protein and then produces or reflects functions. By solving the protein 

folding problem we can syntheses and design fully functioning proteins on a 

computational machine, a task that may requires several years in the molecular 

biology labs. A first step towards that is to predict protein secondary structures 

(helices, strands, and loops). At the time of writing this chapter, the prediction level 

of protein secondary structures is still at its slightly above the 70% range (Frishman, 

and Argos, 1997; Rost, 2001; Rost, 2003). 

 

Prediction can not be completely accurate due to the facts that the assignment 

of secondary structure may vary up to 12% between different crystals of the same 

protein. In addition, β-strand formation is more dependent on long-range interactions 

than α-helices, and there should be a general tendency towards a lower prediction 

accuracy of β-strands than α-helices (Cline et al., 2002). 

 

To solve the above mentioned problems, or in other words to increase the 

accuracy of protein secondary structure prediction, the hypothesis of this research 

can be stated as: “construction and designing advanced well organized artificial 

neural networks architecture combined with the information theory to extract more 

information from neighbouring amino acids, boosted with well designed filtering 

methods using the distant information in protein sequences can increase the accuracy 

of prediction of protein secondary structure”. 

 
 
 
 
 

1.5 Objectives of the Research 
 
 
The goal of this research is to develop and implement accurate, reliable, and 

high performing method to predict secondary structure of a protein from its primary 
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amino acid sequence. However, the specific objectives of this research can be stated 

in the following points: 

 

a. To analyse and study existing methods developed in the domain of 

protein secondary structure prediction to help in the development and 

implementation of a new prediction method. 

 

b. To develop and implement a new accurate, robust, and reliable 

method to predict protein secondary structure from amino acid 

sequences. 

 

c. To assess the performance accuracy of the method developed in this 

research and to compare the performance of the newly developed 

method with the other methods studied and implemented in this 

research work. 

 

d. To study the differences between the secondary structure reduction 

methods and the effects of these methods on the performance of the 

newly developed prediction method. 

 

e. To carry out blind test on the newly developed method. That is to 

analyse the output of the newly developed method with respect to an 

independent data set. 

 

f. To study the performance of the coil prediction of the newly 

developed method using the ROC curve. This is also to examine the 

ability of ROC analysis to discriminate between two classes in a 

multi-class prediction classifier. 

 

1.6 The Scope of This Research 
 
 
Following the goal and objectives of this study is its scope. Since 

Bioinformatics is a multi-disciplinary science, the scope of each study must be stated 
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clearly. The protein sequence data is obtained from the Cuff and Barton (1999) 513 

protein database. The data is prepared from the Protein Data Bank (PDB) by 

Barton’s Group and considered as a benchmark sample that represents most PDB 

proteins. This study focuses on the neural networks and information theory since 

they are found to be effective for the prediction of protein secondary structure. The 

output results of the prediction methods are analysed and tested for performance, 

reliability, and accuracy. The limitation of this research work is the nature of the 

biological data which needs a great effort of pre-processing before the training and 

testing stages. 

 
 
 
 

1.7 Organization and Overview of the Report 
 
 
The organization and the flow of the contents of this report may be described 

as follows: 

 The report begins with Chapter 1 which we are reading now. The 

chapter explains key concepts, introducing the problem of this 

research, list the objectives, and determine the scope of this work.  

 

 Chapter 2 reviews and explains the proteins, sequences, and sequence 

alignments. It also examines amino acids and proteins in terms of 

their nature, formation, and their importance. The chapter reviews 

protein homology and homology detection and types of homologies 

proteins and then explains sequence alignment methods, pair-wise 

alignment, multiple alignments, as well as profile generation methods. 

 

 The following is Chapter 3 which discusses and overviews protein 

structure prediction. The generation of profiles that uses the 

evolutionary information in similar sequences and the multiple 

sequence alignment methods are thoroughly reviewed in this chapter. 

This chapter describes the benchmark data sets conventionally used to 

predict protein structure as well. The chapter also reviews the 

artificial neural networks and the information theory for prediction of 
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protein secondary structure with special emphasis to GOR theory. The 

tools and techniques used in this research as well as prediction 

performance evaluation procedures are introduced in this chapter.. 

 

 Chapter 4 represents a brief and comprehensive methodology of this 

research. The chapter outlines and represents the framework followed 

in this research to implement the method proposed and developed in 

this research. 

 

 Chapter 5 represents and explains the modelling of the methodology 

and algorithms used to develop the new method NN-GORV-I and its 

advanced version NN-GORV-II. The data set for training and testing 

the newly developed methods beside the other methods that are 

implemented in this work was described. The implementation of 

PSIBLAST program search of the nr database to generate multiple 

sequences which in turns are aligned by the CLUSTALW program is 

demonstrated in this chapter. The reduction methods used for the 

secondary structure data and the different statistical analysis and 

performance tests are demonstrated in this chapter.  

 

 Chapter 6 discusses the results of the seven different prediction 

methods developed or studied in this research. The Q3 , the segment 

overlap (SOV) measure and the Matthews correlations coefficients 

MCC are discussed and examined in this chapter. 

 

 Chapter 7 discuses the effect of the five eight-to-three secondary 

structure reduction methods on the newly developed method in this 

research and trying to judge the argument that the eight-to-three state 

reduction scheme can alter the prediction accuracy of an algorithm. 

 

 Chapter 8 explores the performance of an independent data set test on 

the NN-GORV-II method. Few protein targets of CASP3 are 
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predicted by the newly developed method to judge its performance 

and quality. 

 

 Chapter 9 introduces the Receiver Operating Characteristics (ROC) 

analysis and area under curve (AUC) to the newly method which is a 

multi-class classifier to estimate the prediction accuracy of the coil 

states. 

 

 Chapter 10 concludes and summarizes this research, highlights the 

contributions and findings of this work, and suggests some 

recommendations to further extend work. 

 
 
 
 

1.8 Summary 
 
 

This chapter introduces the problem of predicting protein secondary structure 

which is the core concern of this research. The chapter presents a brief introduction 

to bioinformatics, proteins, sequences, protein structure prediction. Known methods 

and algorithms in this domain are briefly introduced and presented. The problem of 

this research is clearly stated in this chapter and the objectives and scope of this 

research are thoroughly explained. The chapter ends with a description and overview 

of the organization of the report. 

 

 

 

 



 
 

 
 
 

CHAPTER 2 
 
 
 
 

PROTEIN, SEQUENCES, AND SEQUENCE ALIGNMENT 
 
 
 
 
2.1 Introduction 
 
 

To grasp a better understanding to this research, a molecular biology 

introductory concepts and facts are inevitable. This chapter reviews in a 

comprehensive style the protein definition, nature, and it’s important to life. The 

chapter also explains the composition of proteins and its building blocks, the amino 

acids. The sequences and their alignments are discussed thoroughly in this review 

chapter. The different structures of proteins, methods of determining protein 

structure, and methods for generating homologue sequences and sequence alignment 

methods are presented in this chapter. 

 
 
 
 

2.2 Proteins 
 
 
Proteins are composed of individual units called amino acids. Amino acids 

share a similar structure. The difference between them is the ‘R’ group which is the 

cluster of atoms that give an amino acid its particular characteristics. Amino acids 

are grouped together in particular sequences that naturally fold up into a specific 

structure. While an amino acid is a letter in the sequence of the protein, in the 

structure each amino acid letter is actually a piece of a 3D structural object. 

Appendix A illustrates the different structures of protein. 
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The importance of sequence data can be used to make predictions of the 

functions of newly identified genes, estimate evolutionary distance in phylogeny, 

determine the active sites of enzymes, construct novel mutations and characterize 

alleles of genetic diseases. Sequence data also facilitates the analysis of the 

organization of genes and genomes and their evolution with respect to species and 

the identification of mutations that cause the diseases. 

 

Multiple alignments of protein sequences are important tools in studying 

proteins. The basic information they provide is the identification of conserved 

sequence regions. This is very useful in designing experiments to test and modify the 

function of specific proteins, in predicting the function and structure of proteins, and 

in identifying new members of protein families (Durbin et al., 2002). 

 

Proteins can be considered as series of amino acids linked together into 

contiguous chains. The 20 amino acids are shown in Table 2.1 with their respective 

three letter and one letter codes conventionally used in molecular biology.  

 
 

Table 2.1: The twenty types of amino acids that forms the proteins 

No. 
 

Amino acid name Three letter code One letter code 

1 Alanine Ala A 
2 Arginine Arg R 
3 Asparagine Asn N 
4 Aspartic acid Asp D 
5 Cysteine Cys C 
6 Glutamic acid Glu E 
7 Glutamine Gin Q 
8 Glycine Gly G 
9 Histidine His H 
10 Isoleucine Ile I 
11 Leucine Leu L 
12 Lysine Lys K 
13 Methionine Met M 
14 Phenylalanine Phe F 
15 Proline Pro P 
16 Serine Ser S 
17 Threonine Tht T 
18 Tryptophan Trp W 
19 Tyrosine Tyr Y 
20 Valine Val V 
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In Bioinformatics research the one letter code is more commonly used than 

the three letter code. The training and testing protein sequences data used in this 

research adopts the one letter coding scheme. 

 

The production of proteins in a cell is governed by codes and information 

transferred to the DNA, and RNA of the organism. Proteins are synthesized in the 

cells of living organisms, Prokaryotes (single cell) or Eukaryotes (high order) by a 

structured mechanism. The DNA of an organism encodes its proteins in a sequence 

of nucleotides, namely: adenine, cytosine, guanine and thymine. These nucleotides 

considered as information which is copied to the mRNA (messenger RNA) that 

serves as an intermediate medium, which is then processed during protein synthesis.  

 

The codon (a non-overlapping triplet of nucleotides), specifies a 

corresponding subunit, or residue, to be added to the always growing polypeptide 

chain. The genetic code shown in Table 2.2 resembles the correspondence between 

the sequence of nucleotides of the codon and the amino acids which is constant in 

almost all organisms (Brian, 1998). 

 

Amino acids consist of a carbon as a central atom linked to hydrogen. The 

bonding of carbon and oxygen forms what is known as Carboxyl group, while the 

bonding of carbon with hydrogen forms what is known as Amino group. Molecules 

of amino acids connect with each other through a side chain. Table 2.2 shows the 

standard genetic code of living organisms, where there are 64 different amino acids 

but only twenty different types of amino acids work as basic building units of a 

protein as shown in Table 2.1. 
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Table 2.2: The standard genetic code 

  Second Position   

  T C A G   

T 

TTT Phe (F) 

TTC Phe (F) 

TTA Leu (L) 

TTG Leu (L) 

TCT Ser (S) 

TCC Ser (S) 

TCA Ser (S) 

TCG Ser (S) 

TAT Tyr (Y) 

TAC Tyr (Y) 

TAA Ter (end) 

TAG Ter (end) 

TGT Cys (C) 

TGC Cys (C) 

TGA Ter (end) 

TGG Trp (W) 

T 

C 

A 

G 

C 

CTT Leu (L) 

CTC Leu (L) 

CTA Leu (L) 

CTG Leu (L) 

CCT Pro (P) 

CCC Pro (P) 

CCA Pro (P) 

CCG Pro (P) 

CAT His (H) 

CAC His (H) 

CAA Gln (Q) 

CAG Gln (Q) 

CGT Arg (R) 

CGC Arg (R) 

CGA Arg (R) 

CGG Arg (R) 

T 

C 

A 

G 

A 

ATT Ile (I) 

ATC Ile (I) 

ATA Ile (I) 

ATG Met (M) 

ACT Thr (T) 

ACC Thr (T) 

ACA Thr (T) 

ACG Thr (T) 

AAT Asn (N) 

AAC Asn (N) 

AAA Lys (K) 

AAG Lys (K) 

AGT Ser (S) 

AGC Ser (S) 

AGA Arg (R) 

AGG Arg (R) 

T 

C 

A 

G 

 

F 

i 

r 

s 

t 

 

 

P 

o 

s 

i 

t 

i 

o 

n 

G 

GTT Val (V) 

GTC Val (V) 

GTA Val (V) 

GTG Val (V) 

GCT Ala (A) 

GCC Ala (A) 

GCA Ala (A) 

GCG Ala (A) 

GAT Asp (D) 

GAC Asp (D) 

GAA Glu (E) 

GAG Glu (E) 

GGT Gly (G) 

GGC Gly (G) 

GGA Gly (G) 

GGG Gly (G) 

T 

C 

A 

G 

 

T

h 

i 

r 

d 

 

 

P

o 

s 

i 

t 

i 

o 

n 

 
 
With the exception of proline, the amino acids described in Table 2.1 share 

the common feature of an amino and carboxyl group joined by a single carbon atom 

from which different side-chains are attached. However, glycine has no side-chain. 

Each type of amino acid has different side chain which gives it its distinguished 

characteristics. The peptide bond does not rotate freely, but the other two backbone 

bonds can rotate, allowing the polypeptide chain to fold in almost any direction.  

 

The sequence of amino acids in a protein chain forms the protein structure. 

Protein structures may be classified into four levels or classes: primary, secondary, 

tertiary, and quaternary structure. 

 
 
 

 



 15

2.2.1 Protein Primary Structure  
 
 

The amino acid sequence is the primary structure of a protein. It is usually 

represented by the one letter notation of the amino acids. Amino acids combine to 

form a protein through polypeptide bonds and here the protein could be considered 

as polypeptide chain and the amino acids as residues (Table 2.1). Anyhow the 

reaction here is complex and lengthy to be mentioned in detail. A protein could be 

formed out of 2000 amino acids or residues although short chain proteins are not 

unusual. Shorter chains are called peptides. The different physical and chemical 

properties of the side-chains determine both the local and global conformations 

adopted by polypeptide chains. Anyhow the sequence direction is very important and 

usually represented from the amino, (N) terminus to the carboxyl (C) terminus.  

 
 
 
 
2.2.2 Secondary Structure 
 
 

The three-dimensional structure of proteins is potentially determined by its 

primary structure (Anfinsen, 1973), although the folding process can be aided by 

other molecules (Hartl, 1996). Most proteins always fold into the same configuration 

(Branden and Tooze, 1991). 

 

Pauling and Corey (1951) predicted the existence of sheet-like structures of 

non-covalently cross-linked strands of extended polypeptide chain which they called 

beta-sheet and a helical arrangement. Studying the structures of myoglobin, Kendrew 

(1960) confirmed the existence of a regular helical arrangement, called alpha-helix. 

Alpha-helices and beta-sheets are the most common form of secondary structure in 

proteins. 

 

When the sequences of primary structures tend to arrange themselves into 

regular formations, these units are referred to as secondary structure. The angles and 

hydrogen bond patterns between the backbone atoms are determinant factors in 

protein secondary structure.  Secondary structure is subdivided into three parts: 

alpha-helix, beta-sheet, and loop. 
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Alpha-helix is spiral turns of amino acids while a beta-sheet is flat segments 

or strands of amino acids formed usually by a series of hydrogen bonds. As the 

polypeptide chain coils in, the CO and NH groups of residues form hydrogen bonds 

which stabilize the helix. Most of the residues in a helix are bonded in this way, 

making it somewhat a rigid unit of structure with a little free space in its core. A 

helix and can have 4 - 50 residues and makes a whole turn every 3.6 residues.  

 

Beta-strands are the most regular form of extended polypeptide chain in 

protein structures. Like alpha-helices, beta-sheets are stabilized by hydrogen bonds 

between CO and NH groups, but they are distantly separated along the chain. 

Because of the geometry of the peptide backbone, the amino acid side chains of beta-

strands alternate on either side of the sheet. 

 

Loops usually serve as connection points between alpha-helices and beta-

sheets, they do not have even patterns like alpha-helices and beta-sheets and they 

could be any other part of the protein structure. They are recognized as random coil 

and not classified as protein secondary structure. When the polypeptide chain makes 

very sharp changes in direction using as few as four residues by means of hydrogen 

bond, it forms turns. These secondary structures commonly contain proline or 

glycine or both residues (Hutchinson and Thornton, 1994).  

 

However, many researchers refer to anything which is not helix or strand as 

coil or random coil which is known as loop, and of course ignoring the existence of 

beta-turns. Anyhow, Chothia et al. (1989) proved that some protein structures 

(antibodies) have well defined conformations in a number of loops.  
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2.2.3 Tertiary Structure 
 
 

The three-dimensional structure of the protein, which is formed from the 

secondary structures as subunits elements, is known as the protein’s tertiary 

structure. Protein folding is the process that results in a compact structure in which 

secondary structure elements are packed against each other in a stable configuration. 

Dill (1990) reported that, the tendency for the burial of hydrophobic side-chains in 

the core of proteins has been observed in almost all structures discovered. It is 

believed this tendency is the driving force of tertiary structure formation.  

 

Hydrogen bonds, van der Waals forces, and oppositely charged amino acid 

side-chains are other interactions that help to stabilize the fold. Folds are considered 

as sets of connected secondary structure elements, so they are known as topologies. 

Longer polypeptide chains that are usually clearly distinguished by a naked eye as 

self-contained units of structure, and have distinct hydrophobic cores, are known as 

domains. Swindells (1995), Islam et al. (1995), Siddiqui and Barton (1995) argued 

that the definition of domains is in this way is unreliable. A covalent linkage made 

during the folding process between sulphur atoms from cysteine residues is known as 

the disulphide bond (Freedman, 1995). Examples of proteins that exhibit disulphide 

are snake and scorpion toxins.  

 

Levitt and Chothia (1976) grouped proteins into naturally four classes based 

upon the gross secondary structural content of their tertiary structures. These classes 

were: mainly-alpha, mainly-beta, alternating alpha-beta, and alpha and beta (not 

alternating). However, with the construction of a classified database of domains an 

automated approach to classification was developed (Michie et al., 1996).  

 

Different folds that often possess similar arrangements of a two to four 

consecutive recurring units of secondary structures are called super-secondary 

structures (Rao and Rossmann, 1973) and (Richardson, 1981; Richardson, 1986) or 

motifs (Sternberg and Thornton, 1976). 
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2.2.4 Quaternary Structure 
 
 

An individual protein that its independent fold or substructures form a three 

dimensional structure of the protein is known as quaternary structure. This is true for 

some proteins because they do not work in isolation; haemoglobin and RNA 

polymerase are examples of such proteins. 

 
 
 
 

2.3 Methods of Determining Protein Structure 
 
 

Three-dimensional structures of a protein can be determined by describing 

the relative position of a single atom within the protein using two laboratory 

methods: (i) X-ray crystallography and (ii) Nuclear Magnetic Resonance (NMR) 

spectroscopy. X-ray crystallography is the most popular method of protein structure 

determination. X-ray beams are applied to a crystal of proteins that has been grown 

by purifying a protein sample. The structure of the protein is then determined by 

studying the diffraction pattern of X-ray. Anyhow X-ray crystallography is a lengthy 

and complicated process; it requires a high level of technical ability in the laboratory 

reach to an inference of the x-ray diffraction patterns (Branden and Tooze, 1991). 

 

Nuclear Magnetic Resonance (NMR) spectroscopy requires a highly 

concentrated and purified and a lowered pH sample of a protein. The protein is then 

put in a strong magnetic field, and subjected to radio frequency (RF) pulses. This 

will force the protein to emit RF radiation. Then information of protein structure can 

be inferred from the frequencies and intensities of the emitted radiation. Practically, 

this process is not as easy as been described and there are many biochemical 

constraints in this process (Branden and Tooze, 1991). 

 

Protein structure determination methods mentioned above require several 

months or even years of laboratory work, and they are not viable for some proteins. 

This why introducing procedures or processes of protein sequence prediction can 

save a considerable amount of time and effort. 
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As far as hydrophobicity is concerned, many researchers identified the amino 

acids that commonly substitute with each other and categorized them with regard to 

their properties or structures and found that the most common clusters of a single 

column amino acid profiles were mostly hydrophobic or polar in nature (Han and 

Baker, 1995; Fiser et al., 1996; Ladunga and Smith, 1997). 

 

The scale to measure hydrophobicity is not standardized and since it depends 

on the physico-chemical properties of amino acids, it was opened to subjective 

interpretations. However, Nakai et al. (1988), and Tomii and Kanehisa (1996) 

constructed a database of reported amino acids that shows their hydrophobicity 

scales and substitution matrices. 

 

The distribution of disulphide bonds in cysteine residues stabilizes this amino 

acid and encodes important structural information since these bonds are mostly well 

conserved (Carrington and Boothroyd, 1996), while the distribution of cysteine 

residues does not encode important structural information in intracellular proteins 

interaction. However, pairwise interactions between distant homologues are not very 

well conserved (Russell and Barton, 1994).  

 

The hydrophobic core residues of proteins are more conserved than non-core 

residues (Taylor, 1997). Patterns of hydrophobicity and sequence conservation are 

widely used to predict secondary structure. This prediction typically encodes 

important information to fold recognition but cannot contain further information than 

is already available in multiple sequences (Taylor and Thornton, 1984; Fischer and 

Eisenberg, 1996; Defay and Cohen, 1996; Hubbard and Park, 1995; Rice and 

Eisenberg, 1997; Rost et al., 1997).  

 
 
 
 
 

 



 20

2.4 Characteristics of Protein Structures 
 
 

A protein could be subjected to denaturing forces like high temperature or 

low pH which force the protein to loose its original structure. Proteins tend to revert 

to their original structure, after the denaturing forces are removed. Anfinsen (1973) 

showed that the amino acid sequence is the only source of information to survive the 

denaturing process, so the structured information must be somehow specified by the 

sequence.  

 

Many proteins exist in an aqueous solution within the cell, and certain amino 

acid side chains tend to interact with the water molecules. These amino acids are 

known as hydrophilic which are polar. Their interaction with water often involves 

forming hydrogen bonds (Pace et al., 1996). On the other hand, hydrophobic amino 

acids, lack the atomic structure that enables them make hydrogen bonds with water. 

Protein folding is significantly affected by hydrophobic forces (Dill, 1990). 

 

Patterns of amino acids interaction of a protein is another characteristics of a 

protein. Pairwise interaction and disulfide bonds play a great role in protein stability. 

Natural or induced mutations turn a protein to unstable condition. Proteins interact 

with each other through only certain portions of them. This portion is known as the 

functional site, and residues within the functional site are called functional residues. 

Protein function usually depends on the three-dimensional structure of its functional 

site. Anyhow mutation has an adverse affects on protein function. However, recently, 

Lise and Jones (2005) investigated   two databases, one of disordered proteins and 

the other of globular proteins, in order to extract simple sequence patterns of amino 

acid properties that characterize disordered segments and concluded that the derived 

patterns provide some insights into the physical reasons for disordered structures. 

They are expected to be helpful in improving currently available prediction methods. 
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2.5 Protein Homology 
 
 

Proteins of the same family are known as homologous proteins or homologs. 

Proteins change conservatively through evolution and similar proteins express 

similar functions (Jacob, 1977). Comparing two different proteins homologs, one of 

the three states occurs: substitution which is the replacement of one or more residues, 

deletion which the removal of one or more residues, insertion which is the addition 

of one or more residues. This is known as protein sequence alignment. 

 

Sequence alignment is performed when different protein sequences are put in 

rows while columns represent regions of match or mismatch. When aligning two 

sequences, regions of mismatch in the other sequence are deleted and represented by 

dashes. These deleted regions are called gaps. 

 

Alignments that contain two protein sequences are known as Pairwise 

alignment, while those contain many sequences are known as multiple alignments. 

Researchers (Burkhard, 1999; Sander and Schneider, 1991) showed that similar 

protein sequences usually reflect similar functions. Although there are exceptions of 

the previous conclusion, it has been proved that two proteins may have very different 

structures but almost identical function (Gilbrat et al., 1996). However, Lichtarge et 

al., 1996 showed that functional regions residues are conserved within the same 

protein subfamilies but between different subfamilies. 

 

The terms homology and similarity should not be confused. Sequences either 

have or do not have a common ancestor. Thus, sequences can either be homologous 

or not, but they cannot be 75% homologous, for instance. However, sequences can 

be similar by different degree and therefore be 75% similar. Moreover, that is not 

informative enough unless we know what the significance of this similarity is. 

Proteins that have significant sequence similarity are most often homologous. The 

next sections explain homology in more detail. 
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2.5.1 Types of Homologies 
 
 

Gilbrat et al. (1996), Liisa and Chris (1996), and Hubbard (1997) enumerated 

instances of proteins with very similar structures but no or few sequence homology. 

These types of instances are known as structural homologs, on the other hand when 

these sequence similarities are week, such protein is referred to as remote homologs. 

Homology is estimated by percent identity (Burkhard, 1999; Julie et al., 1999). 

 

There are several systems that make Pairwise structural alignments or 

organize proteins structures into families and classes Examples of these systems are: 

Yale aligner (Mark and Michael, 1998), CE (Shindyalov and Bourne, 1998), FSSP 

(Liisa and Chris, 1996), VAST (Gilbrat et al., 1996), CATH (Orengo et al., 1997), 

SCOP database (Hubbard et al., 1997; Andreeva et al., 2004), and CASP2 which 

uses individual human knowledge (Michael, 1997). Anyhow, the number of distinct 

folds in proteins is very small compared to the huge number of proteins (Chothia, 

1992). 

 

Remote homologies were able to be detected by dynamic programming 

alignments methods using a 3x3 substitution matrix derived from database counts 

(Fischer and Eisenberg, 1996; Defay and Cohen, 1996; Hubbard and Park, 1995; 

Rice and Eisenberg, 1997; Rost et al., 1997). Most of these methods have included 

secondary structure prediction information. 

 
 
 
 
2.5.2 Homologues versus Analogues  
 
 

In classification of proteins, two main types or classes of pairs of protein 

structures could be distinguished: Homologues and analogues. Homologues are the 

pairs of proteins that have the same fold, more or less the same function, and 

common ancestry while analogous are the pairs of proteins that have the same fold, 

different functions, and unknown ancestry.  
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Doolittle (1981) and Sander and Schneider (1991) reported that some 

successfully aligned homologues shared sequence identity as less as up to 25% . This 

zone of sequence similarity is known as twilight zone. It also refer to pairs of 

analogues align with very low sequence identity. However, Homologues and 

analogues and protein folds have been used in the study evolution process of proteins 

and then species through million of years.  

 
 
 
 
2.6 Molecular Interactions of Proteins  
 
 

A protein function is highly affected by interaction occurring at the interface 

between solvent (typically water) and protein. The shapes of the protein, 

hydrophobic forces, and electrostatic attractive forces are among the most factors 

that affect protein functions although Chothia and Janin (1975) disagreed with that. 

 

Hydrophobicity of a folding chain is one of the major forces in ligand (other 

molecules rather than water) recognition. When two molecules come together there 

is an increase in the entropy of the system as the solvent molecules become 

disordered (Chothia and Janin, 1975; Jones and Thornton, 1996). Hydrogen bonds 

and van der Waals forces provide attractive forces between molecules. However, 

hydrogen bonds are considered conferring specificity to interactions because they 

depend on the location of participating atoms (Fersht, 1984; Fersht, 1987).  

 

Complementarity of two proteins interfaces is seen in electrostatic 

distributions and in three-dimensional shape. A computer generated methods have 

been developed to quantify Shape complementarity (Lawrence and Colman, 1993; 

Norel et al., 1994)  Predicting the location, orientation and conformation of protein 

molecules in their physiological interactions with proteins using knowledge of 

protein surfaces and interactions is known as docking technique. 
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2.7 Sequence Alignment Methods 
 
 
Needleman and Wunsch (1970) introduced the concepts and algorithms of 

dynamic programming to biological sequence alignment. Since this algorithm needs 

to include the termini of both or all sequences, it is known as global alignment. A 

modified type of this algorithm was developed by Smith and Waterman (1981) to 

locate the best local alignments between two sequences. 

 

The superposition methods which use iterative application of least-squares 

fitting techniques to optimize the definitions of residue equivalences between 

structures was then developed (Chothia and Lesk, 1986; Johnson et al., 1990; Russell 

and Barton, 1992; May and Johnson, 1994; May and Johnson, 1995; May, 1996) 

 

Other algorithms and methods of alignments include Falicov and Cohen 

method which uses a dynamic programming algorithm to generate the minimum 

soap-film area (Schulz, 1977) between arbitrarily superposed carbon-alpha 

backbones. Holm and Sander (1993) developed the DALI program which uses 

simulated annealing to generate alignments of structural fragments. DALI also can 

find alignments involving chain reversals and different topologies. The following 

section explores briefly some of the alignment methods.  

 
 
 
 
2.7.1 Threading Methods 
 
 

Jones et al. (1992) applied the double dynamic programming algorithm of 

Taylor and Orengo (1989) to solve the problem of misalignment of sequences when 

defining them in structural environments or residue classes. This is known as 

threading methods. A low level alignment is used to score the pairwise residue 

interactions (Sippl, 1990). 

 

Jones et al. (1992) alignment threading methods has a serious problem that 

the number of all possible sub-alignments at each equivalence is exponential with 
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respect to sequence length (Lathrop, 1994). However, the frozen approximation 

method of (Flockner et al., 1995) could speed up the alignment process by testing the 

suitability of pairwise distances between query residue k and library residues l. 

 

Branch-and-bound search (Lathrop and Smith, 1996), Monte Carlo (Madej et 

al., 1995) and exhaustive searches using heuristics (Russell et al., 1996).are among 

several methods that searches for the best alignment.  The statistics of threading 

scores has been studied by (Bryant and Altschul, 1995), and (Jones and Thornton, 

1996). However, Russell and Barton (1994) and Russell et al. (1997) showed that 

pairwise interactions are poorly conserved across large evolutionary distances  

 

The alignment of biological sequences occupies a central role in modern 

molecular biology. Fundamental to biological sequence alignment is the 

incorporation of gaps, which represent insertions or deletions of sequence characters 

as mentioned in this chapter. In an experiment to evaluate the type and quality of an 

alignment, Zachariah et al. (2005) reported that Evaluation of the alignment quality 

revealed that the generalized affine model aligns fewer residue pairs than the 

traditional affine model but achieves significantly higher per residue accuracy. They 

then concluded that generalized affine gap costs should be used when alignment 

accuracy carries more importance than aligned sequence length. 

 
 
 
 
2.7.2 Hidden Markov Models 
 
 

Hidden Markov models (HMMs) are statistical models that have been used in 

speech recognition problems HMMs construct a general profile of each word, in 

which the more salient or known characteristics are expected with high probability. 

Then, when a a person pronounces a word, the word is recognized by comparing its 

sequence of frames against the HMMs for various words to look for the best match. 

HMMs were first used in computational biology by (Krogh et al., 1994) and in for 

sequence analysis by (Baldi et al., 1994; Eddy et al., 1995). 
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In proteins sequence prediction, members of a protein family share certain 

characteristics, such as the presence of conserved motifs; there could be clear 

differences between members of the same family in this aspect. HMMs model each 

protein family in such a way that the distinguishing characteristics are expected with 

high probability while variation is permitted. So, when a new homologous sequence 

is presented or introduced, the model estimates the likelihood that the sequence is a 

new homolog. 

 

HMMs have been used successfully in different applications of protein 

sequence prediction (Kulp et al., 1996) used them in recognizing human genes in 

DNA, Grundy et al. (1997) in protein families detection, Francesco et al. (1997) in 

secondary sequence and protein topology. HMMs have been used effectively in 

protein structure prediction experiments in CASP (Kevin et al., 1997; Kevin et al., 

1999) and CASP2 (Bystroff and Baker, 1997). However, comprehensive and useful 

reviews of HMMs can be found in Eddy (1996) and Eddy (1998). 

 
 
 
 

2.7.3 Types of Alignment Methods  
 
 
Many threading methods use the dynamic programming algorithm in various 

forms, including local alignment (Jones et al., 1992), global alignment (Bowie et al., 

1990; Matsuo and Nishikawa, 1995), and the so-called global-local alignment 

(Fischer and Eisenberg, 1996; Rice and Eisenberg, 1997). These protocols basically 

differ in the scoring of terminal gaps and the extent of the alignment (Zachariah et 

al., 2005). The processing of scores in fold recognition is something of a black art. 

Theoretical proof exists to show that the scores from local alignments follow a 

Poisson-like distribution from which reasonable estimates of biological significance 

can be drawn (Henikoff, 1996; Bryant and Altschul, 1995). 

The widely used sequence database searching methods BLAST (Altschul et 

al., 1990), FASTA (Pearson, 1990) and Smith and Waterman’s algorithm (Smith and 

Waterman, 1981) all use local alignments. However, the distributions of global 

alignment scores are less well understood. Some methods use the global method to 
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generate the alignment, and then calculate an energy score based on mounting the 

query sequence onto the library structure(Matsuo and Nishikawa, 1995), thus 

avoiding the direct use of the global score. Using global or local scores, Z-scores for 

each query-library pair can be calculated independently using scores from the 

alignments of randomised sequences (Rice and Eisenberg, 1997).  

 

The global alignment algorithm (Needleman and Wunsch, 1970) gave the 

best results when combined with a simple score normalisation step. Before the 

calculation of Z-scores, the dynamic programming score is divided by the sum of the 

lengths of the two protein sequences. Without this correction, longer alignments 

(from longer library sequences) rank higher than they should.  

 

Sequence alignment methods are divided into two categories: pairwise 

methods, which use only two sequences, and multiple sequence methods, which can 

use more than two sequences. Moreover, multiple sequences methods are subdivided 

into two categories: profile methods and multiple alignment estimation methods. In 

his paper “the art of matchmaking”, Smith (1999) presented sequence alignment of 

proteins and discussed their implications. However, Apostolico and Giancarlo 

(1998), Eddy (1998), and Gotoh (1999) presented detailed review and discussion 

about sequence alignment methods.   

 
 
 
 
2.7.3.1  Pairwise Alignment Methods 
 
 

The famous Needleman -Wunsch (Smith, 1999) and Smith-Waterman (Smith 

and Waterman, 1981) algorithms are used in pairwise alignments. The Needleman-

Wunsch algorithm uses dynamic programming to find the lowest-cost global 

alignment of two sequences, while the Smith-Waterman algorithm (Smith and 

Waterman, 1981) finds the optimal local alignment of two sequences. The alignment 

is allowed to start and end in the middle of the sequences by deleting low-scoring 

regions. 
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As briefly discussed above, a well established method (Feng, 1985; Barton, 

and Sternberg, 1987) to measure the similarity between two protein sequences x and 

y is to align the proteins by a standard dynamic programming algorithm (Needleman 

and Wunsch, 1970) and obtain the score for the alignment . The order of amino acids 

in each protein sequence is then randomised and a dynamic programming alignment 

of the randomised sequences. This procedure is repeated typically several times and 

the mean and standard deviation of the scores for comparison of the randomised 

sequences is calculated. The standard deviation of the scores is better than the 

percentage identity since it corrects for bias due to the length and composition of the 

sequences. 

 

The most widely used FASTA (Pearson and Lipman, 1988) and BLAST 

(Stephen et al., 1990) use heuristic algorithms, which offer higher efficiency of 

pairwise alignments. However, when applied to the complete proteomes of some 

organisms (Fleischmann et al., 1995; Fraser et al., 1995; Bult et al., 1996), these 

methods find similar sequences between only 58% - 78% of the sequences. 

Increasing the coverage of Smith-Waterman sequence search methods will increase 

the accuracy of prediction (Brenner, 1996; Hubbard, 1997). 

 

Henikoff and Henikoff (1997) showed that simple embedding of consensus 

sequences from conserved regions of a multiple sequence alignment into a single 

representative sequence improves BLAST and FASTA searches. In order to align 

whole sequences, gap penalties can also be calculated on a position specific basis 

(Gribskov et al., 1990). Hidden Markov models (HMMs) similarly deal with position 

specific substitutions and gap penalties in the alignment of multiple sequences 

(Krogh et al., 1994; Eddy, 1996).  

 

Sequence database clustering requires high speed pairwise comparisons 

(Van-Heel, 1991; Wu et al., 1992). Ferran et al. (1994) and Hanke et al. (1996) have 

used non-linear mappings of sequence composition data to cluster large sets of 

sequences.   
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2.7.3.2  Profile Alignment Methods 
 
 

Profile alignment methods algorithms are more complex than the previous 

pairwise alignment algorithms. They were first used by Gribskov et al. (1987). This 

algorithm constructs a profile of the alignment under consideration. The profile 

consists of gap costs and a set of costs for aligning each of the twenty amino acids to 

each alignment column. The costs are derived from the amino acid probability 

distribution in each column. Sequence are given weights generally range between 0 

and 1, and is that due to the fact that biological databases are skewed toward the 

proteins most heavily studied (Sjolander et al., 1996; Smith, 1999.). 

 

Examples of systems that use profile information include TOPITS (Rost, 

1995), PSI-BLAST (Jones, 1999a; Altschul, 1997), GenThreader (Jones, 1999b), 

SAM-T98 (Kevin et al., 1998) and CLUSTALW (Julie et al., 1994; Higgins et al., 

1996; Durbin et al., 2002).  

 

Abagyan et al. (1994) calculated profiles based on the side-chain modelling 

energies of alternate amino acid substitutions in the library structure. Ponder and 

Richards (1987) were among the first researchers that conducted a side-chain 

replacement for fold recognition  

 

However, there is a considerable number of reported methods that use or 

encode 3D structural information into strings of symbols or profiles against which 

1D strings derived from the query sequence are aligned (Bowie et al., 1990; Bowie et 

al., 1991; Abagyan et al., 1994; Matsuo and Nishikawa, 1995; Hubbard and Park, 

1995; Fischer and Eisenberg, 1996; Defay and Cohen, 1996; Taylor, 1997; Rost et 

al., 1997; Rice and Eisenberg, 1997)  

2.7.3.3  Multiple Alignment Methods 
 
 

A more complicated estimation derived by several methods is the multiple 

alignment estimation methods which search for an alignment to maximize the overall 

homology in a pool of sequences. Multiple alignment methods use two-dimensional 

dynamic programming algorithms. The more complex method which is the K- 
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dimensional dynamic programming algorithms that seek to align K sequences 

simultaneously. The computational complexity of this task is proportional to K 

(2L)K, where K is the number of sequences to align and L is the length of the 

alignment. Because of the computational complexity, 3-4 sequences are used (Gotoh, 

1996; Gotoh, 1999); however, MSA (Lipman et al., 1989) which uses 

approximations can use up to 10 sequences only. 

 

BLOCKS (Henikoff and Henikoff, 1994), PRINTS (Attwood et al., 1997; 

Attwood et al., 2003), PRODOM (Sonnhammer and Kahn, 1994), PROFILES 

(Gribskov et al., 1987), PROSITE patterns (Bairoch et al., 1997) and (Barton, 1990; 

Krogh et al., 1994) are examples of multiple sequence alignment methods.  

 

It has been shown recently that simple embedding of consensus sequences 

from conserved regions of a multiple sequence alignment into a single representative 

sequence improves BLAST and FASTA searches, and outperforms PSSM based 

methods (Henikoff and Henikoff, 1997). In order to align whole sequences, gap 

penalties can also be calculated on a position specific basis (Gribskov et al., 1990). 

Hidden Markov models (HMMs) similarly deal with position specific substitutions 

and gap penalties in the alignment of multiple sequences (Krogh et al., 1994; Eddy, 

1996).  

 

Other methods are the progressive methods which calculate the alignment in 

a progressive mode, starting by aligning two sequences. Then, either profile methods 

are used to align a third sequence to the pair, or two other sequences are aligned. The 

process continues repeating until all sequences are aligned. Anyhow, the 

disadvantage of progressive method is that it can not correct mistakes made at earlier 

stages and so continue repeating aligning on incorrect estimations. This disadvantage 

suggested a need of refinement methods. However, iterative refinement methods 

generate high quality alignments, but require more computing resources than their 

predecessor progressive methods. Examples of progressive methods are 

CLUSTALW and PRRP (Notredame et al., 1998). 
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Stochastic alignment methods modify parts of the alignment according to a 

probability function, and then assessing the value of the modifications according to 

an objective function. The disadvantage of stochastic alignment methods is that they 

do not guarantee an optimal solution. However, they can build high quality 

alignments. The genetic algorithm for estimating multiple alignments SAGA- 

COFFEE (Notredame et al., 1998) is an example of stochastic methods. However, 

Hidden Markov models (HHM) for multiple alignment estimation are other examples 

of stochastic methods. It is worthy to mention that researchers reported that many of 

the best alignment results they achieved were supported significantly by involving 

manual refinements methods (Bates and Sternberg, 1999; Koretke et al., 1999; and 

Kevin et al., 1999).  

As far as practically generating the multiple sequence alignments for large 

numbers of proteins is concerned, researchers simplify this process by developing 

automatic procedures for that. Some researchers perform a BLAST (Altschul et al., 

1990)database search of the OWL or nr  databases (Cuff and Barton, 2000) The 

BLAST output is then screened by SCANPS, an implementation of the Smith 

Waterman dynamic programming algorithm(Smith and Waterman, 1981; 

Barton,1993) Sequences are rejected if their SCANPS probability score is higher 

than 1x10-4. Sequences are also rejected if they do not fit a length cut-off of 1.5. If 

sequences exceed the length criterion determine by SCANPS , they are truncated by 

removing end residues until the length of the sequence satisfies the cut-off value. 

Sequences that are shorter than the lower length limit are discarded. Although this 

method removes very long, very short and unrelated sequences, it allows sequences 

that are longer than the query, and are related, to be included after truncation. The 

sequence similar proteins selected by this method are then aligned by CLUSTALW 

(Thompson, 1994), with default or adjusted parameters.  

 

Gaps in aligned sequences must be carefully observed since they can affect 

alignment and hence accuracy of prediction significantly. In several methods, the 

multiple sequence alignments are modified so that they do not contain gaps in the 

query sequence.  The PHD (Rost and Sander, 1993; Rost and Sander, 1994; Rost et 
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al., 1994) uses a slightly different method whereby gaps at the end of the target 

sequence are removed.  

 

The reference secondary structure for the data set is usually defined using 

DSSP (Kabsch, and Sander, 1983), STRIDE (Frishman, and Argos, 1995) or 

DEFINE (Richards, and Kundrot, 1988) where all definitions are then reduced to 3 

state helix, strand, and coil. Care must be taken when using alternative reduction 

methods for the DSSP or other methods since this affect the prediction accuracies of 

different algorithms. 

 
 
 
 
2.7.4 Comparative Modelling 

 
 
Using either sequence-only or structure-based fold recognition techniques, 

one or more sequences of known structure are found to be related to a novel 

sequence under investigation  

Comparative modelling is building a model of the newly introduced protein 

sequence based upon known (parent) structures. The major steps of this model are: 

alignment of the newly introduced sequence with the parents and other homologous 

sequences, copying the core from the parent to the model, building the non-core 

regions into the model, and refining the side-chain geometry and packing (Sanchez 

and Sali, 1997).  

 
 
 
 
2.7.5 Overview of Alignment Methods and Programs 
 
 

Needleman-Wunsch pairwise alignment, CLUSTALW multiple alignment, 

and PRRP multiple alignment methods were compared according to their 

performance (Gotoh,1996). The test set consisted of about 50 protein families, each 

consisting of two to ten sequences. Gotoh found that PRRP performed better than 

CLUSTALW and Needleman-Wunsch, and  CLUSTALW performed better than 
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Needleman-Wunsch. Anyhow the gap penalties significantly affect the performance 

of each method. 

 

Notredame et al. (1998) compared CLUSTALW and PRRP together with 

SAM, PILEUP, SAGA-COFFEE and SAGA-MSA methods using their default 

parameters.  The test sets were selected with each having at least five sequences, and 

a consensus length of 50 or greater. Methods were scored according to the proportion 

of residue pairs in columns that they aligned accurately. Although all methods were 

close in score, PRRP and SAGA-COFFEE performed the best and in ten out of the 

eleven cases; SAM had the worst performance among all other methods while 

CLUSTALW, SAGA-MSA, and PILEUP showed similar performance estimates in 

most cases.  

 

Julie et al. (1999) compared CLUSTALX a CLUSTAL with X windows 

interface, PILEUP, PRRP, and SAGA-COFFEE with MULTALIGN (Barton and 

Sternberg, 1987), MULTAL (Taylor, 1998), PIMA (Smith and Smith, 1992) 

DIALIGN (Morgenstern et al., 1998) and HMMT (Sean, 1995) methods. The 

BAliBASE alignment benchmark set (Julie et al., 1999) database was used for this 

test which is divided into five subsets, with each subset representing a distinct class 

of alignment test. In this experiment, global methods generally performed better than 

local methods. PRRP, CLUSTALW, and SAGA-COFFEE achieved the best 

performance. Anyhow, PRRP performed better than the other two. In general, this 

test showed that iterative and stochastic refinement methods outperformed most 

progressive alignment methods.  

 

Briffeuil et al. (1998 ) compared the performance of MATCH-BOX server, a 

method they developed which uses a local multiple sequence alignment method 

(Depiereux et al., 1997) with CLUSTALW, MSA (Lipman et al., 1989), PIM (Smith 

and. Smith, 1992), MAP (Huang, 1994), Block Maker (Henikoff et al., 1995), and 

MEME (Timothy et al., 1994) servers. All methods were tested on their each own 

server using 20 families, each family included at least three sequences of well known 

structure.  
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Specificity which is the number of correctly predicted residue pairs compared 

to the number predicted, and sensitivity which is the number of correctly predicted 

residue compared the number of correct pairs were used in the scoring of this test. 

Results suggested that there were differences in specificity and sensitivity of local 

aligners and global aligners. However, among global aligners, MAP performed better 

and among local aligners, MATCH-BOX showed very high specificity and low 

sensitivity (Briffeuil et al., 1998). 

 

Hudak and McClure (1999) compared SAM (Richard and Anders, 1996), 

MATCH-BOX (Depiereux et al., 1997), PIMA (Smith  and. Smith, 1992), Block 

Maker (Henikoff, et al., 1995), and MEME (Timothy, et al., 1994), ITERALIGN 

(Brocchieri  and Karlin 1998), and PROBE (Neuwald et al., 1997). In contrary to a 

previous experiment conducted by Hudak and McClure(1999), who concluded that 

global alignment methods often perform better than local alignment methods 

(Marcella, 1994) and SAM performed much better (Marcella, 1996). Hudak and 

McClure (1999) found that while all methods could detect the conserved Motif IV, 

only ITERALIGN, MEME, SAM, and PROBE could detect the entire series of 

motifs, with PROBE outperformed all of them. 

 

Sauder, et al. (2000) studied the profile alignment methods in their work on 

homology modelling experiments (Dunbrack, 1999). They used SCOP (Hubbard et 

al., 1997) and CE (Shindyalov and Bourne, 1998) structures, and BLAST, PSI-

BLAST, CLUSTALW sequence alignment methods. In summary, the results showed 

that BLAST performed better with 28% sensitivity and PSI-BLAST did better with 

40% sensitivity. Although CLUSTALW aligned 100% of all structure pair, it was 

concluded that the results obtained in this range were not very good because 

CLUSTALW has no fold recognition component. 

 
 
 
 

2.8 Summary  
 
 

This chapter begins with a molecular biology definition and description 

proteins and amino acids with a brief review to the 20 amino acids that form proteins 
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and the standard genetic map of living entities. The different structures of proteins; 

primary, secondary, tertiary, and quaternary structures and the known methods of 

determine these structures are explained in details. Protein homology, the types of 

homology, and the difference between protein homology, analogy, and similarity are 

reviewed in this chapter. This chapter also reviews and discuses the different 

sequence alignment methods and the ways and procedures of automating the 

generation of multiple sequence alignments for large number of proteins. The 

generation of protein profiles to get the maximum possible distant biological 

information from related sequences is reviewed in this chapter. The chapter ends 

with an overview of the known alignment methods and programs. Some of these 

alignment methods and programs are used in this research to generate the necessary 

aligned sequences as discussed in the modelling of the methods in Chapter 5. 

 

 



 
 
 
 
 

CHAPTER 3 
 
 
 
 

REVIEW OF PROTEIN SECONDARY 
STRUCTURE PREDICTION: PRINCIPLES,  

METHODS, AND EVALUATION 
 
 
 
 
3.1 Introduction 
 
 

Protein secondary structure prediction essentially means the 

prediction of the formation of regular local structures such as α helices and 

β strands within a single protein sequence; of course the remaining non regular 

structures are coils. This is an essential intermediate step on the way to predicting the 

3D structure of a protein. If the secondary structure of a protein is known, it is 

possible to derive a quite small number of 3D structures using knowledge about the 

ways that secondary structural states formed. A good number of prediction methods 

and algorithms have been developed using the advances in algorithms and 

computational power and storage ability. 

 

Most probably solving the protein folding problem will pave the way to rapid 

progress in the fields of protein engineering and drug design. Moreover, since the 

number of protein sequences is growing much faster than our ability to solve their 

structures experimentally in the molecular biology laboratories; this will widen the 

gap between sequence and structure. The need for alternative methods to solve the 

protein folding problem becomes crucial.  

 

Artificial neural networks method is inspired from the mechanism of synaptic 

connections of neurons of the brain, where input is processed on several levels and 
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mapped to a final output. In protein secondary structure prediction, information from 

the central amino acid of each input is modified by a weighting factor and sent to 

another level of the network until it is passed to the output layer. The output layer 

then decides whatever this amino acid or residue will fold to helix, strand, or coil. 

The work of Qian and Sejnowski (1988) sparked the implementation of neural 

networks in the domain of protein secondary structure prediction. 

 

The information theory is a naive statistical method that is based on the 

conditional probabilities of variables. Garnier et al. (1978) implemented this 

approach to protein secondary structure prediction problem. This method calculates 

probability values for a specific amino acid based on the adjacent amino acids up to 

eight residues away using principles of the information theory mentioned above. The 

GOR method which is named after the first letters of its authors’ name was first 

developed in 1978 and has been updated many times since then until it reached a 

comparatively high accuracy of prediction. 

 

In this chapter the problem of predicting the secondary structure of a novel 

protein from its primary sequence will be addressed and reviewed. The different 

methodologies and algorithm used in this domain, collaborative programs and 

utilities, and data set exercised in this filed are presented and explained. The chapter 

also briefly reviews the contribution of many researchers and the advances in the 

domain of protein secondary structure prediction.  

 

The chapter introduces and presents the artificial neural networks, its 

concepts, applications, and implementation. The chapter also reviews the information 

theory with special reference to the GOR implementation of this approach to 

calculate propensities of proteins. Both artificial neural networks and information 

theory (GOR-V) constitute the basis of this research. The evaluation and assessment 

of such prediction methods and programs are presented and explained briefly. Full 

description and explanation of the protein secondary structure prediction accuracy 

assessment methods are presented in the methodology chapter. 

 
 

3.2 Protein Secondary Structure Prediction 
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The prediction of protein structure from amino acid sequence has become the 

target of of scientist since Anfinsen (1973) showed that the information necessary for 

protein folding resides completely within the primary structure. Researchers have 

then been considerate with the possibility of obtaining a complete three-dimensional 

structure of a protein by applying the proper algorithm to a known amino acid 

sequence. 

 

The appearance of rapid methods of DNA sequencing and the translation of 

the genetic code into protein sequences has boosted the need for automated methods 

of interpreting these linear sequences into terms of two or three-dimensional 

structure (Stephen et al., 1990). 

 

Although the development of advanced molecular biology laboratory 

techniques reduced the amount of time necessary to determine a protein structure by 

X-ray crystallography, a crystal structure determination may still require many 

months if not years. NMR techniques helped in determining protein structure, but 

NMR is also costly, time-consuming, requires large amounts of protein of high 

solubility and is severely limited by protein size (Stephen et al., 1990). The 

conclusion is that current experimental methods of determining protein structure will 

not suffice the present and future need for protein structure determination. 

 

There are two different approaches in determining protein structure. A 

molecular mechanics approach based on the assumption that a correctly folded 

protein occupies a minimum energy conformation, most likely a conformation near 

the global minimum of free energy. In this approach, predictions are based on a force 

field of energy parameters derived from a variety of sources including ab initio and 

experimental observations of amino acids. Potential energy is obtained by summing 

the terms due to bonded and non-bonded components estimated from these force 

field parameters and then can be minimized as a function of atomic coordinates in 

order to reach the nearest local minimum (Weiner and Kollman, 1981, Weiner, et al., 

1984) However, this approach is very sensitive to the protein conformation of the 

molecules at the beginning of the simulation. 
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One way to address this problem is use molecular dynamics to simulate the 

way the molecule would move away from that initial state. Newton’s laws and 

Monte Carlo methods were used to reach to a global energy minima. The approach 

of molecular mechanics is faced by problems of inaccurate force field parameters, 

unrealistic treatment of solvent, and spectrum of multiple minima (Stephen et al., 

1990).  

 

The second approach of predicting protein structures from sequence alone is 

an empirical one, based on the data sets of known protein structures and sequences. 

This approach attempts to find common features in these data sets which can be 

generalized to provide structural models of other proteins.  

 

Many statistically based methods use the different frequencies of amino acid 

types in sequences to predict their location in the secondary structure conformations: 

helices, strands, and coils (Chou and Fasman, 1974a; Chou and Fasman, 1974b; 

Garnier, et al., 1978; Lim, 1974a; Lim, 1974b, Blundell, et al., 1983; Greer, 1981; 

Warme, et al., 1974). The basic idea is that a segment or motif of a target protein that 

has a sequence similar to a segment or motif with known structure is assumed to 

have the same structure. Unfortunately, for many proteins there is not enough 

homology to any protein sequence or of known structure to allow application of this 

technique.  

 

Thus, the approach of deriving general rules for protein structure from the 

existing data sets or databases and then applies them to sequences of unknown 

structure appears to be promising for protein structure prediction. Various methods 

have been used for extracting rules from structural databases. Examples of these 

methods are: visual inspection of protein structures (Richardson, 1981), multivariate 

analyses methods (Chou and Fasman, 1974a; Krigbaum and Knutton, 1973), and 

artificial neural networks (Qian and Sejwaski, 1988; Crick, 1989).  

 
 

3.3 Methods Used In Protein Structure Prediction 
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Organizing proteins into classes and families made the protein structure 

prediction a viable process. In addition, the growth in precise, fast, computerized 

structure prediction algorithms turned predicted structures good alternatives to obtain 

actual structures. Researchers distinguish between two categories of protein structure 

prediction methods: fold recognition methods which assume that a given protein is 

similar in structure to known protein structure; ab-initio which is a term indicates 

first principles or basic facts. Ab-initio methods search for a conformation that brings 

biochemical and biophysical forces to minimum. Comparing these two methods, the 

fold recognition methods outperformed the ab-initio methods (Alexey, 1999), 

moreover ab-initio methods require complex computations and they work better in 

short proteins sequences (Moult et al., 1999). Fold recognition methods predict the 

structure of a protein by searching the protein structure databases for a fold family 

that best fits the protein, and then figure out which portions of the protein will adopt 

or match which portions of the fold (Daniel et al., 1999; Kevin et al., 1999). Ab-

initio methods focus on predicting the novel structure of a sequence from basic facts 

or principles. 

 

Homology modelling methods are usually applied to fairly close homologs, 

for which an accurate alignment can be predicted with high confidence (Srinivasan et 

al., 1996). Docking prediction algorithms study the protein under observation and 

the nucleic acid or proteins with which it interacts, and then predict the functional 

site of the protein, and predict the nature of the interaction. Eisenhaber et al., (1996) 

developed a secondary structural content prediction algorithm known as SSCP, 

which can indirectly be used to predict structural class defined using secondary 

structure composition cut-offs (Nakashima et al., 1986).  

 

The prediction of a protein tertiary or 3D structure however, begins with the 

prediction of its secondary structure elements as mentioned before. The reported 

accuracy of these methods is around 70-80% using differently constructed datasets 

with varying degrees of cross-validation. However, some researchers reported 

accuracy of nearly 100% (Zhou et al., 1992; Chou and Zhang, 1994; Chou and 

Zhang 1995), but their method had been criticized of neglecting the memorization 

effect of weighted vectors they have used. 

 



 41

 

The first experiments to predict secondary structure of proteins were 

restricted by the few numbers of available structures and limited computing 

resources available. Using simple statistical and mathematical estimates of helix and 

strand, predictions of 60-65% Q3 accuracy were reported (Periti et al., 1967; Ptitsyn, 

1969; Nagano, 1973; Chou and Fasman, 1974a; Garnier et al., 1978; Lim, 1974a; 

Lim, 1974b). Many researchers have used the increased availability of structural 

information in the analysis of sequence or structure correlations for pairs of amino 

acids (Gibrat et al., 1987; Rooman and Wodak, 1991; Han and Baker, 1995; Han and 

Baker, 1996). However, their prediction was not of significant improvement to the 

overall accuracy of secondary structure prediction.  

 

Garnier et al. 1978 used their own algorithm to show that aligned protein 

sequences could provide valuable evolutionary information relevant to secondary 

structure prediction. However, their work was not of practical use until recently 

when databases of sequences were built (Zvelebil et al., 1987). A linear 

discrimination function is used to determine the relative contributions of each 

sequence-based attribute to the final prediction (Weiss and Kulikowski, 1991; 

Michie et al., 1994), which is 70% accurate (Q3). Some researchers performed 

secondary structure predictions with a manual analysis of patterns of conservation 

and residue types (Benner and Gerloff, 1991; Benner et al., 1994).  

 

The nearest neighbour methods (Yi and Lander, 1993; Salamov and 

Solovyev, 1995; Salamov and Solovyev,1997; Frishman and Argos, 1996) have 

around 70% Q3 accuracy although there is redundancy in the mapping between local 

sequence and structure (Kabsch and Sander, 1984) For short fragments of query 

sequence, these methods search a database of sequences with known structure and 

allocate secondary structure according to that of the nearest neighbours. Many 

researchers reported that long-range contacts cannot be usefully predicted using 

statistics based methods (Thomas et al., 1996; Gobel et al., 1994; Olmea and 

Valencia, 1997). 

Using SWISS-PROT (Bairoch and Boeckmann, 1991; Bairoch and Apweller, 

1997) sequence database, Frishman and Argos (1997) tested their  PREDATOR 
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program which uses amino acid pair statistics to predict hydrogen bonds between 

neighbouring strands and other residues. They expected an increase in Q3 of 5-10% 

given a ten-fold increase in sequence database size. Since PREDATOR uses pairwise 

local alignments (Russell and Barton, 1993), there is expected further improvement 

of the accuracy of this method. 

 

As far as further improvements in secondary structure prediction are 

concerned, many researchers reported that may require more attention to specific 

sequential and structural motifs and turns (Han and Baker, 1996; Hutchinson and 

Thornton, 1994; Yang et al., 1996), termini of beta-sheets and alpha-helices 

(Jimenez et al., 1994; Aurora et al., 1994; Donnelly et al., 1994; Elmasry and Fersht, 

1994) and super-secondary structures of proteins (Taylor and Thornton, 1984). 

 

If we would like to simulate the folding process in detail in tertiary structure 

prediction, that might be impossible for the time being. However, Dill (1990) 

attempted to reduce the search space by using a simplified polypeptide representation 

and restrain atom or residue positions to a lattice (Dill et al., 1995). Folding or 

conformational search experiments are hard to succeed, even for small proteins. 

However, theoretical experiments using these algorithms may be informative 

(Thomas and Dill, 1996).  

 

Critical Assessment of Structure Prediction (CASP) is meeting sessions for 

evaluating prediction methods in a competitive environment. The first meeting 

experiment (CASP1) was held in 1994 and then being held every two years to 

compare between protein structures that are suggested by prediction methods and 

that are determined by X-ray crystallography or NMR spectroscopy The main benefit 

of this coordination is the evaluation of prediction results on the same targets using 

the same criteria (Lattman, 1995; Dunbrack et al., 1997; Marchler-Bauer and Bryant, 

1997). 

 

Nakashima et al. (1986) conducted experiment to predict structural classes of 

proteins from amino acid composition with small dataset. The results reported 

showed accuracies of around 70-80% (Nakashima et al., 1986; Klein and Delisi, 
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1986; Chou, 1989). Several researchers reported that the size and makeup of the 

dataset crucially affected the prediction accuracies; large and comprehensive datasets 

gave accuracies as low as 57% for three classes (helices, strands, and coils) 

implementing the jack-knifed method (Nakashima et al., 1986). 

 

The whole sequences or a collection of genes of an organism is known as the 

genome. The aim of sequencing a genome is to identify the genes and the proteins 

that they code for. Gene prediction systems can predict which sections of DNA code 

for genes with over 90% accuracy (Kulp et al., 1996). After genes have been 

predicted and identified, then the proteins that might be expressed or produced could 

be identified and characterized. 

 

Neural network models have the advantage of making complex decisions 

based on the unbiased selection of the most important factors from a large number of 

competing variables. This is particularly important in the area of protein structure 

determination, where the principles governing protein folding are complex and not 

yet fully understood (Stephen et al., 1990). 

 

At present, the largest application of feedforward neural networks has been 

used in the prediction of protein secondary structure. As secondary structures (alpha-

helices, beta-strands, and coils) are by definition the regions of protein structure that 

have ordered, locally symmetric backbone structures. Many researchers have sought 

to predict secondary structure from the sequence of contributing amino acids (Bohr 

et al., 1988). 

 

Qian and Sejnowski (1988), Holley and Karplus (1989), Bohr et al. (1990), 

and McGregor et al. (1989) have applied neural network models to extract secondary 

structural information from local amino acid sequences and have achieved improved 

secondary structure prediction levels over that derived by statistical analysis (Chou 

and Fasman,1974a; Chou and Fasman, 1974b). 

Qian and Sejnowski (1988) used a fully connected multilayer perceptron with 

a single hidden layer of 40 units for this purpose. A sliding window consisting of 13 

consecutive residues was used as the input to the network to predict the secondary 
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structure of the residue in the middle of the window. The window is used to 

incorporate neighbourhood influence into the prediction. The network employed 

three output nodes, each representing a class of the secondary structure. The 20 

distinct residues were represented using what is termed orthogonal encoding in 

which each residue is assigned a unique binary vector (100, 011,001, for alpha, beta, 

and coil, respectively).Therefore, for the network, the input dimension was of size 

(20 binary bits) × (13 residues) = 260. After training the network with the standard 

back-propagation algorithm, it scored 64.3% correct predictions. The Qian and 

Sejnowski’s work pioneered the work of artificial neural networks in predicting 

protein secondary structure and now become almost the standard method in this 

domain. 

 

Maclin and Shalvik  (1994) for example, combined the Chou and Fasman 

(1978) residue statistics into the design of their Artificial Neural Networks to 

improve the prediction accuracy. However, Rost and Sander (1993) incorporated 

distant or what they called evolutionary information into their neural network. It was 

the very first work that introduced the long range effects using a profile of 

evolutionary information (Rost and Sander, 1996).  

 

Baldi and co-researchers designed a bidirectional recurrent neural networks 

(BRNN) in different architectures to intelligibly utilize evolutionary information 

without over-fitting by rolling them along the multiple aligned sequences in both 

directions (i.e like wheels) until they reach the residue under consideration. The final 

prediction is computed by using a simple averaging scheme to form an ensemble of 

all the networks (Baldi et al., 1999;  Baldi et al., 2001) 

 

Rost and Sander’s Artificial Neural Networks reached 71.9% accuracy and 

then being called the PHD (Profile network from HeiDelberg), (Rost and Sander, 

1994). However, it has been reported recently that the latest version of the SSpro 

server has an accuracy of 74.5% (Pollastri et al., 2002). 

Because the neural networks are effective they have produced the most 

accurate secondary structure predictions for the majority of the past few years. 

However, criticism to neural networks falls in that they are black boxes. Neural 
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networks may be effective classifiers but they cannot explain why a given pattern has 

been classified as a rather than b. People defend this criticism by proving that many 

things in our life give good results without explanations and we do not reject these 

results. 

 

The content of secondary structural classes can be estimated experimentally 

by spectroscopy (Woody, 1995), or secondary structure predictions, from which the 

class can be derived (Rost and Sander, 1994; Eisenhaber et al., 1996). Nishikawa and 

Ooi, (1982), Nishikawa et al., (1983), and Nakashima et al., 1986 reported that the 

amino acid composition of a protein is correlated with the structural class. Artificial 

neural networks have also been used to predict structural classes by representing 

proteins in 20 dimensional amino acid composition space (Muskal and Kim, 1992; 

Metfessel et al., 1993; Rost and Sander, 1994). Variations on distance measures and 

multivariate analysis methods have used for the same prediction too (Nakashima et 

al., 1986; Chou, 1989; Metfessel et al., 1993; Klein and Delisi, 1986; Chou and 

Zhang, 1995; Boberg et al., 1995; Eisenhaber et al., 1996).  

 
Methods of protein secondary structure prediction improved significantly in 

the past few years through the use of information contained in neighbouring residues 

and accumulated databases. Recently, the evolutionary information resulting from 

improved searches and larger databases has boosted prediction accuracy to the 77% 

level of prediction. There are bundles of methods that predict protein secondary 

structure and they reported prediction accuracies ranging from the 65% to the 75% 

level. Table 3.1 lists the names of several well established methods of protein 

secondary structure prediction with their reported accuracies and remarks about each 

method. 

 

 

 

 

Table 3.1: Well established protein secondary structure prediction methods with their 
reported accuracies and remarks briefly describing each method. 
 

Method 
Name 

Accuracy % Remarks 
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PROF  77.0 Cascade multiple classifier that uses quadratic and 
linear discrimination combiners (Ouali and King, 
2000)  
 

PSIPRED  76.6 Neural networks uses PSI-BLAST profiles (Jone, 
1999) 
 

SSpro  76.3 Based on an ensemble of 11  bidirectional recurrent 
neural networks (BRNNs).(Baldi, 1999) 
 

JPred2 75.2 based on a consensus from several methods (Cuff 
and Barton, 1999) 

PHD  71.9 Neural network systems of a sequence-to-structure 
level and structure-to-structure level (Rost and 
Sander, 1993) 
 

PHDpsi  75.1 PSI-BLAST based predictor. Like NN-II (Rost and 
Sander, 1993) 
 

PHDsec:  72.2 Multiple alignment-based neural network system 
focuses on hydrogen bond (Rost and Sander, 1993) 
 

NSSP 71.0 Multiple alignment-based nearest-neighbour 
method.  
 

GOR-IV 64.5 GOR IV uses all possible pair frequencies within 
the window of 17 amino acid residues. There is no 
defined decision constant.  (Garnier et al., 1996) 
 

GOR V 73.5 Uses different sizes of sliding windows and 
multiple sequence alignments. 
 

SOPM 70.0 combining various other prediction programs. 
Based on the homologue method of Levin et al. 
 

DSC  70.0 Based on residue conformation propensities (King 
and Sternberg, 1996) 
 

SSPRED:  70.0 Multiple alignment-based program using statistics. 
 

NNPREDICT 65.0 Single-sequence based neural network prediction. 
Like NN-I  

3.4 Artificial Neural Networks 
 
 

Artificial neural networks or neural networks are parallel, distributed 

information processing structures. The feed-forward net is the most widely used 

neural network architecture in solving problems and accomplishing pattern 
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classification and regression tasks. The feed-forward network is also known as multi-

layer perceptron (MLP). One of the most important trends in neural computing over 

the past few years has been dealing with the neural networks as approach derived 

from statistical pattern recognition theory or probabilistic model (Baldi, 1995; 

Bishop, 1996; Devroye, et al., 1996; Baldi and Brunak, 2002)  

 

Neural networks have a fair chance to well suit the empirical approach to 

protein structure prediction. Like the process of protein folding, which is effectively 

finding the most stable structure given all the competing interactions within a 

polymer of amino acids, neural networks explore input information in parallel style. 

 
 
 
 
3.4.1 Inside the Neural Networks 

 
 

Inside the neural network as shown in Figure 3.1, many types of 

computational units exist; the most common type sums its inputs (xi) and passes the 

result through a nonlinear approximation or activation function (a sigmoid function 

is used in this research) to yield an output (yi). In artificial neural networks 

architecture generally, all the units in the same layer have the same transfer function 

and thus the total input is a weighted sum of incoming outputs from the previous 

layer. A transfer function may be a linear function like the function of the regression 

analysis, and hence the unit i is a linear unit. This is usually occurs in a network 

architecture that has no hidden units (Baldi and Brunak, 2002). However, in 

Artificial Neural Networks most of the time the transfer functions are non linear; 

examples of non linear transfer or activation functions are: hard limiters, sigmoid, 

and threshold logic elements.  

 

Activation functions are often known as squashing functions. These functions 

simulate a dual state or binary decision. These threshold gates functions are 

discontinuous functions; this why sigmoid transfer functions are often used. The 

sigmoid transfer function of type logistic transfer function can estimate the 

probability of binary event.  
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An equivalent to logistic activation function is the softmax equation or 

normalized exponential unit which computes the probability of an event with n 

possible outcomes is also often used in classification tasks (Riis and Krogh,1996). 

 

 
 

y 

Figure 3.1: Basic graphical representations of a block diagram of a single neuron 
artificial neural networks.  
 
 

One of the most important properties of artificial neural networks is that they 

can approximate any reasonable function to any degree of precision (Hornik et al., 

1990, Hornik et al., 1994). 

 

For neural networks models that classify an input into two classes (for 

example coil/not-coil), the target output can represented as 0 or 1. This model is a 

binomial model and can be estimated by a sigmoid transfer function. In consequence, 

in a binomial classification model, the output transfer function is logistic transfer 

function (Baldi, 1995). 

If the classification task of the neural networks has n possible classes for a 

given input x, the target out put y is a vector with a single 1 and (n-1) zeros.  The 

probabilistic model for this task is the multinomial or polynomial (multi-class 

classification) model (Farago and Lugosi, 1993). 

 

w  

x v ϕ

Input layer Output layer 
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One of the frequently used Artificial Neural Networks is the feedforward 

artificial neural networks trained with back-propagation for rule extraction purposes. 

It is termed feedforward because information is provided as input and propagated in 

a forward manner. The most well known artificial network is the feedforward neural 

networks will be reviewed in the following section. 

 
 
 
 
3.4.2 Feedforward Networks 
 
 

Feed-forward neural networks are the most widely used architecture of neural 

networks. The popularity of these networks originates from the fact that they have 

been applied successfully to a wide range of information processing tasks in many 

fields like financial prediction, speech recognition, image compression, medical 

diagnosis and of course protein structure prediction (Lisboa,1992). 

 

In common with all neural networks, feed-forward networks are trained, 

rather than programmed, to carry out the chosen information processing tasks. 

Training a feed-forward network involves adjusting the network so that it is able to 

produce a specific output for each of a given set of input patterns. Since the desired 

inputs are known in advance, training a feed-forward net is an example of what is 

called supervised learning.  

 

Feed-forward networks are characterized by “layers” architecture, with each 

layer comprising one or more simple processing units called neurons or nodes. Each 

node is connected to one or more other nodes by parameters values or weights to the 

nodes in other layers. All feed-forward networks are characterized by having at least 

ingle input layer and a single output layer. A network with only an input and an 

output layer is called a single layer network or single layer perceptron

 

Feedforward networks are often composed of visible and hidden units. The 

visible units are those in contact with the outside world such as input and output 

layers while invisible units are those called hidden layer or layers (Baldi and Brunak, 

2002) Each network has connections between every node in one layer and every 
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other node in the layer above. Two layer networks, or perceptrons, are only capable 

of processing first order information and consequently obtain results comparable to 

those of multiple linear regression.  

 

Hidden node networks, however, can extract from input information the 

higher order features that are ignored by linear models. Feedforward networks are 

trained to map a set of input patterns to a corresponding set of output patterns (Figure 

3.2). In general, a network containing a large number of hidden nodes can always 

map an input pattern to its corresponding output pattern (Rumelhart and McClelland, 

1986; Baldi, 1995).  

 
 

 
Figure 3.2: Representation of multilayer perceptron artificial neural networks. 
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3.4.3 Training the Networks 
 
 

Feed-forward networks are trained using a set of patterns known as the 

“training set” for which the desired outputs are known in advance. This process is 

known in the neural network training as “supervised learning”. In this type of 

learning, every pattern holds the same number of elements as the network input 

nodes, and every target pattern holds the same number of elements as the network 

output nodes (Rumelhart et al., 1986). 

 

The network weights (wij) are initialised to small random values prior to 

training. A training algorithm is used to continuously reduce the total network error 

by iteratively adjusting the weights. There are two types of training; batch or offline 

training and stochastic or online training. With offline training, the whole set of 

patterns is repeatedly presented to the network, with the weights updated after each 

complete presentation. With online training, the weights are updated after the 

presentation of a subset of one or more training patterns. Online training is often 

more effective than offline training in practice since it performs fewer calculations if 

the training set contains redundant information, and is less likely to be trapped in the 

local minima (White, 1992; Swingler, 1996; Haykin, 1999, ) which will be explained 

in the network optimization section. 

 

While many algorithms exist for training, clearly the most frequently used 

technique is the method of back-propagation (Rumelhart, Hinton and Williams, 

1986). Back-propagation involves two passes through the network, a forward pass 

and a backward pass. The forward pass generates the network output activities and is 

generally the least computation intensive. The more time consuming backward pass 

involves propagating the error initially found in the output nodes back through the 

network to assign errors to each node that contributed to the initial error (Qian and 

Sejnowski, 1988; Haykin, 1999). When all errors are assigned, the weights are 

changed so as to minimize these errors. Regardless of the training steps or equations, 

the main goal of the network is to minimize the total error of each output node over 

all training examples.(Haykin, 1999). 
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The time the neural networks learn this mapping for a set of training patterns, 

they are tested on examples that are usually different from those patterns used in 

training. While most feedforward networks are designed to maximize generalization 

from training examples to testing examples, some networks tend to memorize their 

training examples and hence over-fitting occurs in such networks 

 
 
 
 
 
3.4.4 Optimization of Networks 

 
 

Because the rules in most input-output mappings are complex and often 

unknown, a series of architecture optimizing simulations are required when testing 

each assumption. Examples of such optimizing experiments include varying input 

representation, numbers of hidden nodes, numbers of training examples, and others. 

In each case, some measure of network performance is evaluated and tabulated for 

each network architecture or training condition. The best performing network is 

chosen as that which performs the best on both the training and testing sets 

(Swingler, 1996).  

 

With networks containing hidden nodes, training algorithms face the problem 

of multiple-minima when minimizing the output error across all training patterns. If 

the error space is uneven or rough, as is often the case in hidden node networks, the 

multiple-minima problem can be a serious one.  

 

To solve the problem of local minima, researchers often permute their 

training and testing sets and train a number of times on each set (cross validation), 

while reporting the best performing network for each simulation. The variance 

between training and testing sets as well as between training sessions helps to 

describe the complexity of the weight space as well as the input-output mapping. 

 

Usually smooth trends in performance levels point to optimal network 

architectures. Memorization or over-fitting is one of the main nuisances to the 

network where the network learns the training examples, rather than the general 
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mapping from inputs to outputs. Memorization reduces the accuracy of the network 

generalization to untrained examples. Clear signs of undesired memorization become 

apparent when the network performs much better on its training set than on its 

testing set; and typically, these results when the network contains far more weights 

than training examples. When undesired memorization results, the researcher is 

forced to increase the numbers of training examples, reduce node connectivity, or in 

more difficult situations, reduce the number of input, hidden, and/or output nodes. If 

it is not possible to increase the dataset of training examples, the next best choice is 

to reduce the network connectivity. Choice must be careful when deciding which 

connection to be removed. This process is known as network pruning, that often 

slows the already lengthy training process of the network. 

 

Finally, reducing the number of network nodes is the least desirable of all 

approaches since it often results in losing important information from the network, 

especially if the number of input nodes is reduced. Similarly, reducing the number of 

hidden nodes often results in unacceptable input-output mappings; while reducing 

the number of output nodes, often results in mappings that are no longer useful. 

Anyhow, undesired memorization is one of the main drawbacks of Artificial Neural 

Networks solutions. Anyhow, the design and representations of Artificial Neural 

Networks should be smart and augmented. 

 

Feedforward neural networks are powerful tools. They have the ability to 

learn from example, they are extremely robust, or fault tolerant, the process of 

training is the same regardless of the problem, thus few if any assumptions 

concerning the shapes of underlying statistical distributions are required. 

 

All the above mentioned characteristics and advantages of the artificial neural 

networks made it a powerful and promising tool in the area of protein structure 

prediction. Many researchers applied the neural networks to solve the problem of 

prediction protein secondary structure successfully (Qian and Sejnowski, 1988; Rost, 

and Sander, 1994; Riis and Krogh, 1996; Chandonia and  Karplus, 1999). 

 
3.5 Information Theory 
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Information theory is a branch of the mathematical theory of probability and 

mathematical statistics that quantifies the concept of information. Shannon (1948) 

explained the information theory which considered communication as a strictly 

stated mathematical problem in statistics for the very first time. It concerns with 

information entropy, communication systems, data transmission and rate distortion 

theory, cryptography, data compression, error correction, and other related fields.  

 
Possibly there is no review or explanation for the information theory without 

understanding quantum mechanics and physics, deliberate mathematical notations, 

and probabilities representation. In this review we present the information theory and 

entropy with minimal involvement in such diverged fields. The aim of this section is 

to give a general overview and understanding of the information that forms the basis 

of GOR algorithm. In the methodology chapter, more relevant details will be 

explained and mathematically represented. 

 

The continuously increasing amount of protein structural information has 

urged researchers to develop several approaches that use this information for 

developing new ideas to predict protein structure and function. The most essential 

information applied here is to include statistical potentials to study and predict 

protein folding problem. Researchers in the past few years have used a variety of 

physical, chemical and biological measures of varying degrees complexities to 

understand the problem of protein folding. This concept was essentially applied by 

describing a protein representation by breaking up the amino acids atoms into 

functionally similar atom groups (Mintseris and Weng, 2004).  

 
To adopt a quantitative measure for the information contained in an event, the 

proposed measure should have some perceptive properties; the following properties 

help forming such measure:  

 Information contained in events has to be defined in terms of some 

measure of uncertainty of the events.  

 Less certain events should contain more information than more certain 

events.  
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 The information of independent events taken as a single event should 

equal the sum of the information of the unrelated. 

 
 
 
 
 
3.5.1 Mutual Information and Entropy  

 
 
Researchers used the information theory approach to analyze the 

contributions of several traditional amino acid alphabets (residues) using mutual 

information (Cline et al., 2002).  

 

Shannon(1948) arguments for entropy H(X) that it quantifies how much 

information is conveyed, on the average, by a letter drawn from the ensemble X; that 

is, it tells how many bits are required  to encode such information.  

 

The mutual information I(X; Y) quantifies how much correlated two bits are. 

How much do we know about an event drawn from Xn when we have read an event 

drawn from Yn ? This can be explained by an example from signal communication 

field. Let a message sent from a transmitter to a receiver, given that the 

communication channel is noisy, so that the message received (y) might differ from 

the message sent (x). Then the noisy channel can be characterized by the conditional 

probabilities p(y|x) which the probability that y is received when x is sent. Let us 

assume that the letter x is sent with a priori probability p(x). We would like to 

quantify how much we learn about x when we receive y? Or simply how much 

information or entropy we gain to describe x in the process of learning more about x. 

Bayesian statistics is usually used to update the probability distribution for x; that is: 

 

p(x|y) = p(y|x).p(x)/ p(y)  

 

However, if for any reason x and y are absolutely not correlated, the 

information contained in x is zero, and the whole formula in this concept evaluates to 

nothing. 
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The following logarithmic definition of mutual information (MI) is similar 

and some time more convenient compared to the statistical definition: 

 
MI =Xi; j P(i; j) log P(i; j) P(i)P(j) 
 
Where P(i; j) is the probability that an atom of type i forms a contact with an atom of 

type j, and 

P(i) and P(j) are the marginal probabilities. 

 

Interpretation of the reduced representation problem in information theory 

terms is straightforward. Mutual information between two variables I and J 

(representing a grouping of the protein atom types) is a measure of how much 

information one variable reveals about the other (Kullback et al., 1987). If i and j are 

instances of I and J, where the number of such instances is governed by the size of 

the atom type alphabet, we want to define i and j such that the mutual information is 

maximized. Each instance i or j is a grouping of protein atoms of one type. It is easy 

to see from the equation that if i and j are chosen randomly, the probability of the 

joint distribution would be equal to the product of marginal distributions resulting in 

zero mutual information. On the other extreme, the maximum possible mutual 

information for a given alphabet size can be determined if we consider: 

 

P(i; j) = P(i) = P(j).  

 

This reduces to: 

MI  = P(i) log P(i)/P(i)P(j) = log(size)  ∑ ji,

 

Another way to think about this is to realize that grouping atoms with similar 

biochemical properties; atoms that are commonly found in protein structures in 

similar environments, tends to increase mutual information by increasing the 

certainty that a specific atom type will occur in a given protein environment. Thus 

mutual information is a rigorous and intuitive measure suitable for optimization. It 

can be noticed that mutual information is also a measure of independence. If the 

variables i and j are randomly distributed, they reveal no information about each 

other, as shown above. Assuming under a null hypothesis (H0) that i and j are 
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independent and an alternative hypothesis (H1) that they are not, it can be shown that 

a log likelihood ratio test is exactly equivalent to the definition of mutual information 

(Shannon, 1948). 

 

In the statistical context of the test of independence, the objective of finding 

the representation with maximum mutual information is equivalent to maximizing 

the significance of the test of independence between the atom types. The problem of 

finding such an optimal reduced protein representation for a given target alphabet 

size is essentially equivalent to maximum likelihood estimation.  

 
 
 
 
3.5.2 Application of Information Theory to Protein Folding Problem 
 
 

The application of the information theory to the problem of protein folding 

dates back to the 1970s of previous century (Chou and Fasman, 1974; Lim, 1974a; 

Lim, 1974b). The early versions of GOR method which was named after the first 

letters of its authors (Garnier et al., 1978; Gibrat et al., 1987) was based on single 

sequences and scored an accuracy of prediction below the 60% level. 

 

Early works on the prediction of the secondary structure using information 

contained in residues based on the single residue statistics in various structural 

elements.  The predictions were done by using a sliding window of a certain size and 

only single residue statistics for each residue within such a window were calculated 

for the prediction. A window of width of four residues, a characteristic length for 

helical contacts, was used in the Chou and Fasman method, and a width of 17 

residues in the GOR-I method. 

 

The pair-wise statistics for blocks of residues in secondary structure segments 

within the window was then used in GOR-III and GOR-IV which yielded in a 

significant improvement in protein secondary prediction and pushed it towards the 

65% accuracy level. The implementation GOR algorithm is based on a window of a 

certain width, which is moved along the protein chain. Then the statistics of the 
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residues within the window are used to predict the conformational state of the 

residue at the centre of the window. The prediction process goes while the window 

moves along the chain, the secondary structure states of all residues from the N-

terminal to the C-terminal along the chain (Garnier and Robson, 1989; Garnier et al., 

1996). 

Significant progress has been made during the past few years in the accuracy 

of the prediction of secondary structure from sequence (Nishikawa and Nogughi, 

1995). The improvement has been obtained by using multiple sequence alignments, 

instead of a single sequence. The multiple sequence alignments proved to contain 

distant and evolutionary information about protein structure.  

 

Naderi et al. (2001) simple method based on information theory is introduced 

to predict the solvent accessibility of amino acid residues in various states defined by 

their different thresholds. Prediction is achieved by the application of information 

obtained from a single amino acid position or pair-information for a window of 

seventeen amino acids around the desired residue. Results obtained by pairwise 

information values are better than results from single amino acids. This reinforces 

the effect of the local environment on the accessibility of amino acid residues. The 

prediction accuracy of this method in a jack-knife test system for two and three states 

is better than 70 and 60 %, respectively. A comparison of the results with those 

reported by others involving the same data set also testifies to better prediction 

accuracy (Chen and Rost, 2002). 

 
Rost (2003) and Przybylski and Rost (2002) argued that the main reason that 

information from the multiple sequence alignments improves the prediction accuracy 

is attributable to the fact that during evolution protein structure is more conserved 

than sequence, which consequently leads to the conservation of the long-range 

information. Many researchers suggest that some of this long-range information is 

exposed by multiple alignments (Kloczkowski et al., 2002).  

Protein function is more fundamental for evolutionary information survival, 

than sequence conservation. Mutation on the other hand is important to the sequence 

that may destroy its function and usually cause the mutant sequence to be eliminated 

during evolution and hence change the conformation of the sequence (Branden and 

Tooze, 1991). 
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3.5.3 GOR Method for Protein Secondary Structure Prediction 
 
 

The GOR method is one of the first major methods proposed for protein 

secondary structure prediction from sequence. GOR method fundamentally uses the 

information theory and naive Bayesian statistics. The method has been continuously 

modified and improved during the last two decades (Gibrat et al., 1987; Garnier et 

al., 1996). The first version of the method (GOR-I), used a rather small database of 

proteins which consisted few residues. GOR-II used database of 75 proteins 

containing about 13000 residues (Garnier and Robson, 1989). 

 

GOR-I and GOR-II predicts four conformations rather than the three 

conventional states now predicted (helix (H), strand (E), and coil(C)), since turns (T) 

was used as the fourth confirmation. Both GOR-I and GOR-II algorithms use singlet 

frequency information within the window; this known in GOR literature as the 

directional information.  

 

The advanced version GOR-III method utilized additional information about 

the frequencies of pairs (doublets) of residues within the window, based on the same 

database as the earlier GORs (Gibrat et al., 1987). In GOR-III, the number of 

predicted conformations was brought to the now currently used (H, E, and C) three 

confirmations. The recently applied version of GOR methods is GOR-IV which uses 

267 protein chains containing 63,566 residues (Garnier et al., 1996) and available on 

the internet at http://abs.cit.nih.gov/gor/.  

 

The GOR algorithm is a naive method based on the information theory 

combined with the Bayesian statistics. The information function I(S,R) which will be 

fully represented in mathematical notation together with other functions and formula 

in the methodology chapter, forms the basis of the information theory. The 

information function is described as the logarithm of the ratio of the conditional 

probability P(S|R) of observing conformation S, -where S is one of the three states: 

 



 60

helix (H), extended (E), or coil (C)- for residue R -where R is one of the 20 possible 

amino acids) and the probability P(S) of the occurrence of conformation S. 

 

As mentioned above, GOR-IV uses a window of 17 residues, which means 

for a given residue, eight nearest neighbouring residues on each side are included in 

the calculations. The conformational state of a given residue in the sequence depends 

on the type of the amino acid R as well as the neighbouring residues along the 

sliding window. The information function of a complex event can be decomposed 

into information of simpler events and then summed up, according to the 

manipulation of the information theory. The GOR-IV method calculates the 

information function as a sum of information from single residues (singlets) and 

pairs of residues (doublets) within the width of the sliding window. 

 

In GOR-IV, the first summation is over doublets and the second summation 

is over singlets within the window centred round the ith residue. The pair frequencies 

of residues occurring in corresponding conformations are calculated from the 

database used for the GOR method. Using the above frequencies calculated from the 

databases, the GOR-IV algorithm can predict probabilities of conformational states 

for a new sequence. 

 

A major advantage of the GOR method over other methods is that it 

obviously identifies all factors that are included in the analysis and calculates 

probabilities of all three conformational states. Another advantage of GOR algorithm 

over other algorithms is that it is computationally fast utilizing less CPU memory. It 

is possible to perform the full jack-knife procedure here where every single protein is 

removed from the database in turn and the frequencies is recalculated. 

 

The GOR algorithm reads a protein sequence and predicts its secondary 

structure. For each residue i along the sequence, the program calculates the 

probabilities for each confirmation state, and the secondary structure prediction for 

such states (H, E, or C). Except in very few cases, the predicted conformational state 

usually corresponds to that with the highest probability. 
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GOR-V version applies the GOR-IV algorithm to the multiple sequence 

alignments. The gaps in the alignments are usually skipped by the GOR algorithm 

during the calculation of probabilities of conformation for each residue in the 

multiple alignments matrix but the information about position of gaps is kept 

(Kloczkowski et al., 2002). The main improvement made to GOR-IV was the 

systematic study of the GOR methods and the utilization of multiple sequence 

alignments to increase the accuracy of the secondary structure prediction. A full 

description of GOR-V will be presented in the methodology chapter. 

 
 
 
 
3.6 Data Used In Protein Structure Prediction 
 
 

The implementation of a practical approach to protein structure prediction is 

entirely dependent on the availability of experimental databases. The Protein Data 

Bank (PDB) is an archive of experimentally determined three-dimensional structures 

of biological macromolecules (Berman et al., 2002). The archives contain atomic 

coordinates, bibliographic citations, primary and secondary structure information, as 

well as crystallographic structure factors and NMR experimental data. It is produced 

and maintained at the Research Collaboratory for Structural Bioinformatics (RCSB). 

Other information included in the Protein Data Bank entries like protein name, 

relevant references, the resolution to which the structure was determined, the amino 

acid sequence, atomic connectivity, the researcher’s judgement of secondary 

structure and disulfide bonding pattern, and other useful information 

 

The PDB or Brookhaven Protein Data Bank database is updated 

continuously, at the year 2002 it contained 16,500 experimentally determined 

structures; and now (January 2005), the current holding of PDB is 28,992 structures. 

The PDB database is at http://helix.nih.gov/apps/bioinfo/pdb.html at the time of 

writing this report. The rate of adding structure to the current holdings is 

exponentially high. 

 

Another database which is the SCOP (Murzin, 1995) classification of protein 

structure superfamilies are defined from careful analysis of structure, evolution and 
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function. The SCOP superfamilies contain protein domains that have the same fold 

and are likely to have evolved from a common ancestor. This database is also used 

by many researchers to generate their training sequences. 

 

Rost and Sander (1994) defined non-redundancy to mean that no two proteins 

in the set share more than 25% sequence identity over a length of more than 80 

residues. They presented 126 proteins set with which to train and test secondary 

structure prediction algorithms. Many well known algorithms and programs like 

PHD (Rost and Sander, 1994), NNSSP (Salamov and Solovyev, 1995), DSC (King  

and Sternberg, 1996), and PREDATOR (Frishman and Argos, 1997) have been 

trained on the Rost and Sander set of 126 proteins. 

 

Cuff and Barton (1999) used sequences from the 3Dee (Siddiqui et al., 2001) 

database of structural domain definitions where a non-redundant sequence set was 

created by the use of a sensitive sequence comparison algorithm and cluster analysis, 

rather than a simple percentage identity cutoff. They then derived a set of 1233 

domains where no pair shared obvious sequence similarity. 

 

Using a more rigorous and stringent procedure which also included the 126 

proteins of Rost and Sander, Cuff and Barton (1999) derived three non-redundant 

datasets suitable for cross-validation training and testing of secondary structure 

prediction methods. Finally they derived the sets CB396, CB497 and the then widely 

used in various experiments CB513 proteins data set which will be used in this 

research. These datasets, including secondary structure definitions and automatically 

generated multiple sequence alignments are available at http://barton.ebi.ac.uk.

 
 
3.7 Prediction Performance (Accuracy) Evaluation 
 
 

With the advances of computer methods in bioinformatics and other 

related fields, researchers are always confronted with the problem of evaluating the 

accuracy of the prediction algorithms. It is of important to make sure that, for any 

type of prediction algorithm, the method or algorithm will be able to perform well on 

novel data that have not been used in the process of training the algorithm. Simply, 
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the method should be able to successfully generalize to new examples from the same 

data type. 

 

Most secondary structure prediction methods include a set of parameters that 

must be estimated. Values for the parameters are obtained by statistical analysis or 

learning from a set of proteins data for which the 3D or tertiary structure. This set is 

known as the training set. Testing predictive accuracy on the training set leads to 

overestimated high accuracies. A practical test of a secondary structure prediction 

method should predict the structures of a test set of proteins that are not in the 

training set and show no sequence similarity with the training set. 

 

An obvious problem facing methods of evaluating the performance of 

prediction methods is the redundancy of the data: if the sequence examples used for 

training and testing a particular algorithm are very similar the apparent predictive 

performance may be overestimated, reflecting the ability of the method to reproduce 

its own input rather than its ability to interpolate and extrapolate. Thus, the actual 

level of prediction accuracy is intimately related to the degree of similarity between 

the training and test sets, or in a cross-validated study, to the average degree of pair-

wise similarity in a data set. 

 

The most accurate method of predicting the secondary structure of a protein 

is to align the sequences by standard dynamic programming algorithms (Boscott et 

al., 1993) when the protein sequence shows clear similarity to a protein of known 

three dimensional structure. On the other hand, when sequence similarity to a protein 

of known structure is not found, secondary structure prediction methods become the 

choice. It is therefore very important that there is no existence of sequence similarity 

between the training and testing sets of secondary structure prediction methods. 

(Sander and Schneider, 1991; Hobohm et al., 1992) 

 

There are two empirical techniques to develop secondary structure prediction 

methods: cross-validation techniques, or full jack-knife or leave-one-out technique. 

Cross-validation techniques are less time consuming and use limited data. The full 

jack-knife test of n proteins, one protein is removed from the set, the parameters are 
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developed on the remaining n-1 proteins, then the structure of the removed protein is 

predicted and its accuracy measured. This process is repeated n times by removing 

each protein in turn. However, care must be taken when using cross-validation since 

unrealistic high accuracies may be obtained for some methods if the set of proteins 

used in the cross-validation show sequence similarity to each other. (Nielsen et al., 

1999). 

 

In this chapter, more emphasis will be given to definition of relevant 

techniques and principles for the performance evaluation, and not on topics that 

relate to the selection of data The mathematical notation, graphical representation, 

and relevant illustrations for the following measures of performance are not 

presented here since they will be elaborated and explained in more details with 

mathematical notations in the methodology chapter. 

 
 
 
 
3.7.1 Average Performance Accuracy (Q3) 
 
 

The estimation of the global accuracy of a protein is usually conducted by a 

measure known as Q3. The Q3 is a measure of the overall percentage of predicted 

residues, to observed (Schulz and Schimer, 1979) and represented as: The 

summation of the number of residues identified in the (helix, strand, and coil) state, 

effectively observed in the state divided by the total number of residues  

 
 
 
 
3.7.2 Segment Overlap Measure (SOV) 

 
 
Segment overlap measure (Rost et al., 1994) was performed for each data set. 

Segment overlap values attempt to capture segment prediction, and vary from an 

ignorance level of 37% (random protein pairs) to an average 90% level for 

homologous protein pairs.  
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The advanced version of SOV (Zemla et al., 1999) is a measure for the 

evaluation of secondary structure prediction methods that is based on secondary 

structure segments rather than individual residues. The algorithm is an extension of 

the segment overlap measure SOV, originally defined by Rost et al. (1994). The new 

definition of SOV corrects the normalization procedure and improves SOV ability to 

discriminate between similar and dissimilar segment distributions. SOV method has 

been comprehensively tested during the second Critical Assessment of Techniques 

for Protein Structure Prediction  

 

SOV is a set of segment-based heuristic evaluation measures, where a 

correctly predicted segment position can give maximal score even though the 

prediction is not identical to the assigned segment. The score punishes broken 

predictions strongly, such as two predicted helices where only one is observed 

compared with one, too small, unbroken helix. In this manner the uncertainty of the 

assignment's exact borders is reflected in the evaluation measure (Baldi et al., 2000).  

 
 
 
 
3.7.3 Correlation 

 
 

One of the standard measures used by statisticians is the correlation 

coefficient also called the Pearson correlation. In the framework of secondary 

structure prediction, this is also known as the Matthews correlation coefficient in the 

literature since it was first used by Matthews (1975). The correlation coefficient is 

always between -1 and + 1 and can be used with non-binary variables. It is a measure 

tends to have the same sign and magnitude. A value of -1 indicates total 

disagreement and + 1 total agreement. The correlation coefficient is 0 for completely 

random predictions. Therefore, it yields easy comparison with respect to a random 

baseline. If two variables are independent, then their correlation coefficient is 0. The 

converse in general is not true.  

 

Baldi et al. (2000) argued that the correlation coefficient has a global form 

rather than being a sum of local terms. The correlation coefficient uses all four 
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numbers used to compare between predicted and observed classes which are: true 

positive (T P), true negative (TN), false positive (FP), and false negative (FN). These 

four numbers will be explained in details in the next section.  

 
 
 
 

3.7.4 Receiver Operating Characteristic (ROC) 
 
 

The Receiver Operating Characteristic (ROC) curve is a method for 

visualizing, organizing and selecting classifiers based on their performance. ROC 

graphs have long been used in signal processing and detection theory to depict the 

tradeoff between hit rates and false alarm rates of classifiers (Egan, 1975; Swets et 

al., 2000). ROC analysis has been extended for use in visualizing and analyzing the 

behavior of diagnostic systems (Swets, 1988). The ROC techniques are then used 

extensively in biological sciences and specifically clinical medicine (Zweig and 

Campbell, 1993; Hand, 1997; Zou, 2002).  

 

The ability of a test to discriminate abnormal cases from normal cases is 

evaluated using Receiver Operating Characteristic (ROC) curve analysis (Hand, 

1997; Zweig and Campbell, 1993). ROC curves can also be used to compare the 

performance of two or more classifiers. ROC becomes popular in assessing a two-

class or binary classifier and comparing many binary classifiers efficiently. 

 

ROC can be explained when you consider the results of a particular test in two 

populations, one population with abnormal cases, the other population with normal 

cases. For every possible cut-off point or criterion value you select to discriminate 

between the two populations, there will be some cases with the abnormal cases 

correctly classified as positive (TP), but some cases with the abnormal cases will be 

classified negative (FN). On the other hand, some cases without the abnormal cases 

will be correctly classified as negative (TN), but some cases without the abnormal 

cases will be classified as positive (FP). 

 

Sensitivity and Specificity are two important terms in the ROC literature which 

are defined as: Sensitivity is probability that a test result will be positive when the 

 



 67

abnormal cases is present (true positive rate) while Specificity is probability that a 

test result will be negative when the abnormal cases is not present (true negative 

rate).  

 
To measure the performance accuracy of a binary classifier, a common 

method is to calculate the area under the ROC curve, which is known as AUC 

(Bradley, 1997). The AUC is a portion of the area of the unit square and hence its 

value will always be between 0 and 1.0 (Hand and Till, 2001). 

 

Since the random guess produces the diagonal line between (0; 0) and (1; 1), 

which has an area of 0.5, no practical classifier have an AUC less than 0.5. The AUC 

has an important statistical property that the AUC of a classifier is equivalent to the 

probability that the classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance (Hand and Till, 2001).  

 
 
 
 
3.7.5 Analysis of Variance Procedure (ANOVA) 
 
 

The hypothesis that the means of two groups are equal can be fairly assessed 

by an appropriate t-test. Analysis of variance or ANOVA is the technique that is 

employed when there are more than two groups to compare. There are several 

versions of ANOVA. The corresponding version of the unpaired t-test is one-way 

ANOVA and this is the technique that is mostly used. The two-way ANOVA is the 

corresponding version of the paired t-test. In fact ANOVA is a very powerful 

technique to analyses variances and differentiate between means of random sample 

observations. As will be seen, mostly ANOVA assumes that the data or observations 

under analyses have a Normal or Gaussian distribution although it can be applied to 

other not Gaussian distributed data (Agresti, 2002). 

 

The concept of combining models to improve the performance has long been 

established in statistical framework. The theoretical and background of this idea 

existed since (Bates and Granger, 1969; Dickinson, 1973; Jordan and Jacobs, 1994). 

Many well accurate methods are currently available to perform protein secondary 
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structure prediction. Since these methods are usually based on different principles, 

and different knowledge sources and approaches, significant benefits can be 

expected from combining them. However, the choice of an appropriate combiner 

may be a difficult task. However, up to the date of submitting this research work 

there is no work which combining involves the proposed GOR-V method with the 

neural network architecture. 

 
 
 
 

3.8 Summary 

 
 

To predict a protein 3D structure from its one dimensional amino acid 

sequence is one of the most major problems in the field of molecular biology. The 

conventional laboratory methods to solving this problem are extremely slow to rap 

the gap between the fast growing numbers of sequences and their predicted 

structures. Successful prediction of protein secondary structure is the right way to 

arrive at the 3D structure and possibly solve the protein folding problem. With the 

advances in computer methods and algorithms the possibility of designing and 

developing powerful methods and programs to predict protein secondary structure 

becomes practical. 

 

In this chapter the theories, concepts, and implantation of protein secondary 

structure prediction algorithms and methods are presented. The methods that 

evaluate the prediction accuracies of the mentioned algorithms are briefly presented 

in this chapter without much details and elaboration of mathematical formula and 

notations. Full description of these methods will be found in the methodology 

chapter.  

 

The chapter also presents a brief review of the artificial neural networks is 

presented. The biological inspiration of the neural networks and the theories and 

concepts underlying them are explained. The feedforward neural networks 

architecture is explained in a more details since they will be adopted in this research. 
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A thorough look inside the networks is presented with explanation of the networks 

training and optimization. 

 

The information theory which delves to the quantum mechanics, physics, 

entropy, and mutual information is briefly explained in this chapter. The information 

function is explained in more details since it forms the basis for the GOR algorithms 

that uses this theory and Bayesian statistics. A brief presentation of the successive 

GOR algorithms which use information theory is shown due to its importance to this 

research. 

 

The artificial neural network and the information theory are deliberately 

presented in this chapter without involving many mathematical representations since 

this will be explained in more empirical details in Chapter 5. Both the artificial 

neural network and the information theory form the basis for the new method that is 

developed and tested in this research.  

 

The evaluation of the protein secondary structures prediction methods and 

algorithms is a vital task, since it shows how accurate a prediction method is. Most 

important in the evaluation procedure is to test the ability of a prediction algorithm to 

perform well on new test set of data. There are several measures that evaluate the 

performance, the quality, and the stability of a prediction algorithm which are 

discussed and explained in this chapter. 

 



 

 
 
 
 
 

CHAPTER 4 
 

 
 
 

METHODOLOGY 
 
 
 
 
4.1 Introduction 
 
 

Secondary structure prediction methods are of great use when a homologue to 

the sequence under consideration is not detected. If a complete homologue sequence 

is detected then the prediction accuracy is 100%. Several methods are proposed and 

implemented to predict protein secondary structure from the protein primary 

sequences. 

 

This chapter describes the framework used in developing and implementing a 

method to achieve a better prediction method for the protein secondary structure 

from its primary sequence. The data set that is used in the experiments of this 

research is presented and discussed as well as the hardware and software utilized to 

implement the prediction method. This is an abstracted chapter that is presenting a 

brief description of the methodological framework followed in this research. Further 

details of the methodology are discussed and elaborated in the following Chapter 5. 

 
 
 
 

4.2 General Research Framework 
 
 

The general framework for predicting protein secondary structure from the 

amino acid sequences is presented in this section. Applying the conventional 

methods of machine learning approaches including neural networks without 

augmentation, to biological data bases does not achieve good performance. That is 
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true due to the nature of biological data which is dynamic rather than static data 

conventionally used in pattern recognition problem solving domain. The method 

used in this research combines the artificial neural network approach with the 

information theory to include more biological information to achieve a better and 

more accurate prediction method for protein secondary structure. Figure 4.1 

elucidates the general framework for prediction of protein secondary structure from 

its amino acid sequences in this research. The following text of this section is an 

explanation of Figure 4.1 to elaborate the framework in more details. 

 

The prediction framework is initiated by studying and investigating the 

protein secondary structure prediction problem by outlining a technique to solve this 

problem. The discussion of the literature in the previous chapters was the main 

motivation to adopt the approaches and developing the techniques to solve the 

problem of protein secondary prediction. 

 

In order to understand the function of a protein and how it carries out this 

specific function, we need to understand its structure. Structural biology involves the 

study of the structure of biological molecules. Its 3D arrangement of atoms gives 

each protein a specific and unique structure. By understanding how atoms are 

arranged to produce an active binding site for a protein, we can understand how, 

why, and when a protein works (i.e. folds). Thus, the protein data that will be used in 

training and testing the method developed in this work is the amino acid sequences 

and their corresponding secondary structures that are determined by X-ray 

crystallography and NMR laboratory techniques.  

 

The choice of the data set is discussed in more details in the next section. 

However, Cuff and Barton’s 513 protein data set (CB513) is chosen to train and test 

the prediction method developed in this research. CB513 is a benchmark data that is 

used by several researchers to develop prediction methods. The data is found in flat 

files with most secondary structure assignment schemes or methods included as well 

as some aligned sequences. PERL programming language is used to develop 

programs to extract and parse necessary data portion. 
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Study and Investigate the Prediction 
Technique 

Study and Understand the Nature of 
Biological data 

Prepare the Data Set for the Prediction 
Method 

Develop the Prediction Method 

Verify the Prediction Method 

Compare the Performance of the Method 
with other Existing Methods 

Study the Effect of Reduction Scheme on the 
Method  

Study the Performance of the Method on an 
Independent Test Data Set (Blind Test) 

View the Multi-Class Method as a Binary 
Classifier Method for Specific Data Set 

 
 
Figure 4.1: General framework for protein secondary structure prediction method 
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The prediction method is designed by combining neural networks model with 

a modified version of GOR-V information theory. This combination is based on 

strong statistical background which states that classification models which use 

different concepts and approaches may produce a better classification model. This 

assumption is only true when the errors of classification models are not correlated. 

The detail of the method is described in the next chapter. 

 

The prediction method is verified during the training and testing stages. The 

seven fold cross validation is used where the CB513 data base is divided into almost 

equal seven sets. One set is used for verification and testing while the other six sets 

are used for the training procedure.  

 

After developing and verifying the method, the performance of the method is 

compared with the other known methods investigated and implemented in this 

research to study the improvement achieved by the newly developed method. 

Comprehensive statistical analysis and test of significance is carried out. 

 

The five well known DSSP eight-three reduction methods or schemes are 

obtained using PERL programming to study the effect of the different reduction 

methods on the performance and reliability of the newly developed prediction 

method.  

 

The method is then tested using an independent data set that has not being 

used in training or testing. This is known as the blind test which is used to robustly 

test a newly developed classifier. The independent test set is the CASP3 which is 

found in the CASP and other Bioinformatics research groups’ web sites. 

 

Observing carefully the reduction methods, some methods assign almost half 

of the data set (48%) into the coil secondary structure states. This fact suggested the 

ROC curve to be used to assess the prediction methods and considering it as binary 

classifier instead of a multi-class classifier. This test can partially but accurately give 

another assessment procedure for the newly developed prediction method. 
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4.3 Experimental Data Set 
 
 

Cuff and Barton’s 513 non redundant proteins which contain 84,107 residues 

(Appendix B) are used for these series of experiments (Cuff and Barton, 1999). The 

CB513 data sets were selected by a stringent definition of sequence similarity or non 

redundancy, where no two proteins in the set share more than 25% sequence identity 

over a length of more than 80 residues. The sequences in the CB513 test set were 

developed from the 3Dee database of structural domain definitions where a non-

redundant sequence set in this data base was created by the use of a sensitive 

sequence comparison algorithm and cluster analysis, rather than a simple percentage 

identity cutoff. This lead to a set of 1233 domains; the multi-segment domains were 

first removed to reduce the set size from 1233 to 988 sequences. The sequences were 

then filtered only to permit X-ray crystal structures with resolutions of less than or 

equal to 2.5 Angstroms which in turns reduced set of 554 domain sequences 

(CB554).  

 

The Rost and Sander’s (1993) 126 protein data set (RS126) was mostly used 

to develop early prediction methods and was used in the famous predictor PHD. The 

CB554 domain set and the RS126 set were combined and all pairs of both sequences 

were compared by  BLOSUM62 matrix, and gap penalty of 10, in addition to 

alignments with SD score of >= 5  graded as similar sequence (Cuff et al 1999, 

2000). With this stringent definition of sequence similarity, the 513 protein data set 

(CB513) was produced as shown in Figure 4.2. This data set was downloaded from 

web site http://barton.ebi.ac.uk/ and then extracted to LINUX RED HAT 9 platform. 

 

During the preparation of data set for the experiments, among the CB513 

proteins, few proteins did not generate valid PSIBLAST alignment profiles and 

others were not manipulated easy during the first stages of the experiment to translate 

them into codes readable by the neural networks or GOR-V C programs. However, 

the remaining proteins are 480 for training and testing of the seven prediction 

algorithms or methods. All the methods studied here are trained and tested on the 

same multiple sequence alignments data sets. This will allow a valid and reliable 

comparison of performance of the methods. In this experiment the data is split into 

seven more or less equal sets to perform seven folds cross validation. While the 
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seven fold cross validation is not as accurate as the full jackknife cross validation, it 

is not feasible to perform full Jackknife cross validation due the number of methods 

implemented, and the moderately huge size of the data set, and the very long CPU 

processing time. 
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align2:K,R,D,G,Y,I,V,Y,P,N,N,C,V,Y,H,C,V,P,.,.,P,C,D,G,L,C,K,K,N,G,G,S,S,G,S,C,S,F,L,V,
P,S,G,L,A,C,W,C,K,D,L,P,D,N,V,P,I,K,D,R,K,.,C,T, 
align3:A,R,D,A,Y,I,A,K,P,H,N,C,V,Y,E,C,Y,N,G,S,Y,C,N,D,L,C,T,E,N,G,A,E,S,G,Y,C,Q,I,L,
G,K,Y,G,N,A,C,W,C,I,Q,L,P,D,N,V,P,I,R,.,G,K,.,C,H, 
. 
. 
. 
align32:G,R,D,G,Y,I,A,Q,P,E,N,C,V,Y,H,C,F,P,S,S,G,C,D,T,L,C,K,E,K,G,A,T,S,G,H,C,G,F,L,
P,G,S,G,V,A,C,W,C,D,N,L,P,N,K,V,P,I,V,V,E,K,.,C,H, 
align33:V,R,D,G,Y,I,A,Q,P,H,N,C,A,Y,H,C,L,K,S,S,G,C,D,T,L,C,K,E,N,G,A,T,S,G,H,C,G,H,
K,S,G,H,G,S,A,C,W,C,K,D,L,P,D,K,V,G,I,I,V,E,K,.,C,H, 
align34:V,R,D,G,Y,I,A,Q,P,H,N,C,V,Y,H,C,F,P,S,G,G,C,D,T,L,C,K,E,N,G,A,T,Q,G,S,S,C,F,I,
L,G,R,G,T,A,C,W,C,K,D,L,P,D,R,V,G,V,I,V,E,K,.,C,H, 

Figure 4.2: An example of a flat file of CB513 data base used in this research, 1ptx-
1-AS.all file. 
 
 
 
 
4.4 Hardware and Software Used 

 
 

The data in bioinformatics field is usually diverse and huge and continuously 

increasing. In this research, ANSI C and PERL programming languages under Linux 

operating system are designed and developed to, implement, build, and run the 

prediction methods of this research. In addition to that, several hardware and dozens 

of systems and applications software are used to manipulate data and deploy the 

prediction methods or algorithms. To mention few, Cygwin, Linux Red Hat 9.0, 
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Fedora Core1, Windows 98, Windows XP, GNU gcc compiler, PERL interpreter, 

VIM editor, and a variety of FTP and Telnet utilities. 

 

For statistical analysis several software are utilized including MS Excel 

application, SPSS, and SAS packages. To handle the matrices manipulations and the 

several curves, charts, and graphs representations the powerful Matlab package is 

exercised extensively in this work 

 
 
 
 
4.5 Summary 

 
 
This chapter explains a detailed framework of the methodology followed in 

this research in an attempt to solve the problem of protein secondary structure 

prediction. A benchmark data set is used in this work to allow a fair comparison with 

other published prediction methods.  

 

The newly developed secondary structure prediction method framework is 

outlined and graphically represented. The chapter ends with a brief description of the 

environments and platforms used for the series of the experiments in this research 

with the bundles of software and hardware implemented in this research. This 

chapter presents a comprehensive framework methodology followed to solve the 

protein secondary structure prediction problem; however, a detailed step by step 

explanation for the whole method will be discussed in Chapter 5. 

  



 

 
 
 
 
 

CHAPTER 5 
 

 
 
 

A METHOD FOR PROTEIN SECONDARY  
STRUCTURE PREDICTION  

USING NEURAL NETWORKS AND GOR-V 
 
 
 
 
5.1 Introduction 
 
 

Secondary structure prediction methods are useful when we are unable to 

detect a homologue to the sequence under investigation. When a protein sequence 

shows clear similarity to a protein of known three dimensional structures, which is 

determined by laboratory methods, then the most accurate methods of predicting the 

secondary structure is sequence alignment methods. These methods of sequence 

alignments usually use dynamic programming algorithms in a process known as 

homology modeling. Sequence alignment methods are much more accurate than 

other secondary structure prediction methods (Cuff and Barton, 2000; Rost, 2003).  

 

This chapter describes the techniques and methods used in developing and 

implementing algorithms and programs to achieve a better prediction method for the 

protein secondary structure from its primary sequence. The process of obtaining and 

generating the multiple sequence alignments that adds distant information to the 

prediction methods is explained in this chapter. The newly developed method 

combines neural networks with GOR-V (NN-GORV-I), and further improved by a 

filtering mechanism (NN-GORV-II). The framework of these experiments and all the 

methods studied and implemented in this research are discussed in this chapter. 
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5.2 Proposed Prediction Method – NN-GORV-I 
 
 
Two newly developed protein secondary structure prediction methods (NN-

GORV-I and NN-GORV-II) are described in details in this chapter. Other five well 

established prediction methods are studied in this research work and briefly 

described here. The seven methods are experimentally implemented in this research. 

This chapter mainly extends and explains the previous methodology chapter. 

 
 
 

5.2.1 NN-I 
 
 
Through the decades, the desire of people to produce artificial systems 

capable of sophisticated, intelligent computations similar to that of the human brain 

inspired the field of Artificial Neural Networks research (Wu and McLarty, 2000; 

Feraud and Clerot, 2002). However, most people agree on that Artificial Neural 

Networks is a network of many simplified unit or processors each have small amount 

of local memory. The units are connected by communication channels or 

connections which usually carry numeric and symbolic encoded data. These units 

operate only on their local data and input data they receive through the connections.  

 

The neural network used for NN-I is the same as described by (Qian and 

Sejnowski, 1988). The NN-I uses no multiple alignments sequences in this 

experiment but it formed the basis for the NN-II when multiple sequence alignment 

is included. A detailed description of the network architecture, coding, training, and 

optimization is described in the NN-II section in this chapter. 

 
 
 
 

5.2.2 GOR-IV 
 
 

GOR method is based on information theory and is developed by (Garnier, et 

al., 1978). GOR-IV uses all possible pair frequencies within a window of 17 amino 

acid residues Garnier et al. (1996) tested on a data base of 267 protein chains 

containing 63,566 residues. The GOR-IV algorithm is based on the information 
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theory combined with the Bayesian statistics. The theory behind GOR algorithm is 

described in details in the review chapters while the explanation and implementation 

of GOR method are described in details in the GOR-V section in this chapter. A 

fundamental difference between NN-I and GOR-IV against the other methods 

described in this chapter is that they use no multiple sequence alignment as explained 

earlier. 

 
 
 
 
5.2.3 Multiple Sequence Alignments Generation 
 
 

To automate the process of generating the multiple sequence alignment for 

large number of protein sequences in the experiments, a PSIBLAST search of the nr 

database (release 2004) which contains 198,742 entries is conducted. The method 

removes very long, very short and unrelated sequences. However it does allow 

sequences that are longer than the query, and are related, to be included after 

truncation. The sequence similar proteins selected by this method are then aligned by 

CLUSTALW (version 1.83) with default parameters.  

 

The nr database is described by NCBI as "All non-redundant GenBank CDS 

translations + PDB + SwissProt + PIR + PRF" protein. The nr contains essentially all 

the protein entries that there are. The same sequence may be present with different gi 

numbers as a GenBank entry, an EMBL entry, a SwissProt entry, etc. The "non-

redundant" aspect of the organization is that the actual sequence for redundant entries 

is only represented once, hence only searched once. If there is a match in a BLAST 

search, links to all the entries corresponding to that sequence are then given 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein ).  

 

The multiple sequence alignments are modified so that they do not contain 

gaps in the first or query sequence, since with the current BLAST algorithms, gaps in 

the first sequence tend to reduce the accuracy of the prediction, or cause the program 

to fail to execute. This is slightly different method compared to the PHD (Profile 

network from HeiDelberg). This is why the gaps at the end of the target sequence are 

removed.  
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The reference secondary structures for the CB513 database is defined by 

DSSP (Kabsch and Sander, 1983), STRIDE, and DEFINE definitions. The DSSP 

(Dictionary of Secondary Structure Prediction) definition is reduced to 3 state models 

as will be shown later in this chapter. Cuff and Barton (1999) have shown that the 

exact mapping of DSSP output to three states secondary structure may have a 

significant effect on the estimated secondary structure prediction accuracy. 

Therefore, a consistent assignment or mapping of 3 states is used to test or to test and 

train all the methods used in this research. 

 

Multiple sequence alignment is performed for all the training dataset 

sequences. The nr data base is formatted using the formatdb program form NCBI to 

generate sequences that could be searched by blastpgp program of PSI-BLAST 

(Altschul et al., 1997) to generate homologous sequences. Both formatdb and 

blastpgp are used with their default parameters.  

 

CLUSTALW (version 1.83) (Thompson et al., 1994) is applied to generate 

multiple sequence alignments. CLUSTALW is implemented using Gonnet matrix 

and BLOSUM62 (Henikoff and Henikoff, 1994) matrix keeping other parameters as 

its default parameters. 

 

The alignments are represented as profiles for input to the neural networks. 

The profiles are either presented to the networks as simple frequency counts for each 

amino acid through the column in the alignment and this is resemble a PHD like 

algorithm (Rost and Sander, 1994), or as each residue in an alignment column is 

scored by it corresponding BLOSUM62 matrix score and this is resemble a 

PSIPRED like algorithm (Jones et al., 1992; Jones, 1999a). 

 

Since PSIBLAST is an iterative searching method, during iterations, it is 

possible for the searching profile to be populated with sequences of low similarity to 

the query sequence, or on the other hand sequences with high or significant similarity 

to the query sequence not to be included in the profile. This can be caused by 

matching sequences of biased composition. pfilt (Jones et al., 1999a; Jones and 

Swindells, 2002) and trimmer (Saqi et al., 1992) programs are used to filter the 
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searched database and to mask out regions of low complexity sequence and coiled 

coil regions and transmembrane helices. 

 

The profiles generated from the multiple sequence alignment process are used 

in the prediction process for all the five remaining methods as will be explained in 

the following sections. 

 
 
 
 
5.2.4 Neural Networks (NN-II) 

 
 

NN-II represents the neural networks that have been described earlier in this 

report using the multiple sequence alignment. The mathematical representation, 

generation of the networks, optimization, training and testing the networks are 

described in this section. 

 
 
 
 

5.2.4.1 Mathematical Representation of Neural Networks 
 
 
A brief mathematical and logical description and representation of what is 

done in the NN experimental work is shown through this section. As shown in Figure 

5.1, if the inputs (xi) and the output (yi); (yi) which is a function of the inputs (xi). 

That is   (yi) = fi (xi) is estimated as shown in equations (5.1) and (5.2). 
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Where, wi  is the bias or threshold of the unit i.
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Input Layer Hidden Layer Output Layer 

Figure 5.1: Basic representation of multilayer perceptron artificial neural network 
 
 

Non linear transfer or activation functions (Figure 5.2) like sigmoid transfer 

function (Equation 5.4), logistic activation function (Equation 5.6), tanh or softmax 

functions (Equation 5.5 ) are used in the optimization process at the very beginning 

to observe which one contributes to better results. When f is a threshold or bias 

function, then 
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Figure 5.2: The sigmoidal functions usually used in the feedforward Artificial 
Network. (a) Hyperbolic tangent sigmoid transfer function or bipolar function (b) 
Log sigmoid transfer function or uniploar function 
 
 

Considering equation (5.6) in a probabilistic model (Devroye et al., 1996), 

any probability distribution (pi) where (1<=i <=n) can be represented in normalized 

exponential equation from a set of variables xj (1<=j<=m) as shown in equation 

(5.7). 
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One of the most important properties of Artificial Neural Networks is that 

they can approximate any reasonable function to any degree of precision (Hornik et 

al., 1990; Hornik et al., 1994). If we have a continues function y = f(x) where both y 

and x are one dimensional units and if x changes in the interval [0,1], thus the value 

of x within a precision ε , where f is continuous over the compact interval [0,1], then 

there exists an integer n such that: 
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ε≤−⇒≤− )()(1
1212 xfxf

n
xx       (5.8) 

 

Then f can be approximated with a the function g(x)=f(k/n)  for any x in the interval 

[(k-1/n, k/n)] and any unit representing k=1,…,n. 

 

If the data of our Artificial Neural Networks is assumed to be consisting of a set of 

independent input-output pairs Di = (di , ti) where di is the  input for unit i and  ti is 

the output for unit i. The Artificial Neural Networks operation is then a deterministic 

one as seen in equation (5.9). 
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Hence inputs d could be assumed as independent of the parameter w, using the 

Bayesian inference, equation (5.9) can be transformed into  
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In the case of Gaussian regression, the probabilistic model assuming that the 

covariance matrix is diagonal and that there are n output units indexed by j, then 
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With standard devotions as additional parameters assumed to be constant, then the 

negative log likelihood for this input is: 
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The derivative of the log likelihood E with respect to an output yi is shown in 

equation (5.13) which represents the regular least mean square (LMS) error function. 
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For Artificial Neural Networks that classify an input into two classes 

( and ) like Helix or not Helix, the target output can represented as 0 or 1. This 

model is a binomial model and can be estimated by a sigmoid transfer function as 

shown in equation (5.14). 

a
−
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The relative entropy (the amount of information to describe a variable) between the 

output distribution and the observed distribution is expressed by: 
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Where d is data t is target. 

 

If the output transfer function is the logistic function, then: 

 

)1( yy
yt

y
E

−
−

−=
∂
∂         (5.16) 

 

)( yt
x
E

−−=
∂
∂          (5.17) 

 

Consequencely, in binomial classification, the output transfer function is 

logistic; the likelihood error function is the relative entropy between the predicted 

distribution and the target distribution.  

 

If the classification task of our Artificial Neural Networks has n possible 

classes (a1,…,an) for a given input d, as it is in our case here three classes, the target 

output t is a vector with a single 1 and n-1 zeros.  The probabilistic model for this 

task is a multinomial (polynomial) model. Thus the equations governing this 

classification task are shown in Equations (5.18-5.21). 

 

  



 86

∏
=

=Ρ
n

j

t
j

jywdt
1

),|(         (5.18) 

 

∑
=

−=Ρ−=
n

j
jj ytwdtE

1
log),|(log       (5.19) 

 

j

j

j y
t

y
E

−=
∂
∂          (5.20) 

 

)( jj
j

yt
x
E

−−=
∂
∂         (5.21) 

 

In general, a network containing a large enough number of hidden nodes can 

always map an input pattern to its corresponding output pattern (Rumelhart & 

McClelland, 1986). A number of different hidden layers are attempted in this study 

to reach an optimal mapping of the data set to the required classes.  

 
 
 
 

5.2.4.2 Generating the Networks  
 
 

The Stuttgart University SNNS neural network simulator program version 4.2 

downloaded from the site: ftp://ftp.informatik.uni-stuttgart.de (Zell et al., 1998) is 

used in this experimental work. SNNS for UNIX X Windows is used to generate 

many rapid prototypes of neural networks. SNNS’s snns2c program is used to 

convert the simulated networks into ANSI C functions codes that are included in the 

main C program. 

 

At the end of the experiments, several neural networks are generated using 

several coding and teaching methods: 

i- The conventional method of Quian and Sejnowski (1988) where 

binary coding is adopted. The 20 amino acids and the three secondary 

structures are given binary codes to be fed to the neural network. The 

three target secondary structure outputs are coded as (1 0 0) for α  

helices, (0 1 0) for β strands and (0 0 1) for coils. 

 

  



 87

ii- The architecture and coding used in the PHD (Rost and Sander, 1994) 

is followed here with minor modification. 

 

iii- The profile generated by PSI-BLAST is used in this experiment as 

explained earlier. This method uses the prior knowledge of amino-

acid relationships embodied in the substitution BLOSUM matrix to 

generate residue pseudo-count frequencies, which are averaged with 

the observed frequencies to estimate the probability that a residue is at 

specific position in the query sequence (Henikoff and Henikoff, 

1992). The different sequences are weighted accordingly to the 

amount of information they carry. (Altschul et al., 1997; Tatusov et 

al., 1994).  

 

Sliding windows of 17 and13 for both the profiles and single sequences are 

used. This means that to predict a residue, eight (for windows of 17) and six (for 

windows of 13) previous residues and eight and six following residues are taken into 

consideration to predict the residue at the central position of the window. Then the 

window is shifted residue by residue through the protein (Qian and Sejnowski, 1988; 

Rost and Sander, 1993). 

 

Many Artificial Neural Networks architectures with varying parameters are 

used in this work. The output of some neural networks is fed to other networks that 

classified this output into the three structures of protein (H, E, and C), and here the 

networks followed a polynomial model as explained in this chapter. Sigmoid transfer 

function and tanh function are attempted to optimize the networks. The artificial 

neural networks parameters are varied continuously in an attempt to arrive at a 

conclusion of a better if not a best optimized model(s). 
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5.2.4.3 Networks Optimization 
 
 

Optimizing the Artificial Neural Networks that are designed includes varying 

the input representation, the numbers of hidden nodes, and the number of training 

examples, the biases, and the activation functions. In each case, the network 

performance is evaluated and tabulated for each network architecture or training 

condition. The best performing network or networks which performed best on both 

the training and testing sets is chosen for further network architectures or final 

evaluation (Siegelmann, 1998; Siegelmann and Sontag, 1999). 

 

Cross validation which is the permutation of training and testing sets and 

train a number of times on each set, while reporting the best performing network for 

each simulation is used. This occurs when the error space is uneven or rough which 

leads to the local minima problem. Seven Cross validation is used in this 

experimental work. 

 

Memorization or over-fitting is one of the main nuisances to the network 

where the network learns the training examples, rather than the general mapping 

from inputs to outputs. This problem is tackled by reducing node connectivity 

(network pruning), reducing the number of input nodes, and/or reducing the number 

of hidden nodes.  

 

In addition, the training process of Artificial Neural Networks is not a one 

time event; it takes several rounds of training in order to arrive at a good parameter 

size and configuration. Several very powerful machines using LINUX platforms are 

used through a period of three years of this experimental work.  

 
In this experiment, there are two levels of neural networks;  a sequence to 

secondary structure network, with a window of 17 amino acids and  a structure to 

structure network, with a window of 17 amino acids. The structure to structure 

network, improves prediction of the final length distributions of secondary structures. 

The training applied in this method is the unbalance training, where percentage of 

amino acid composition, sequence length, and insertions and deletions are not 

considered here.  
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The artificial neural network consisted of several networks. The first is a 

network with a sliding window of 17 residues over each amino acid in the alignment 

as input layer. The input layer is connected with nine nodes as hidden layer which in 

turn is connected to three nodes as output layer. The  neural network used in this 

method  is the standard three-layered fully connected feed-forward networks with the 

back-propagation having momentum learning rule in order to avoid oscillation 

problems. The width of the gradient steps is set to 0.05 and the momentum term is 

0.2 (Rost and Sander, 1993). The initial weights of the neural networks are chosen 

randomly in the range of [-0.01, 0.01]. The learning process consists of altering the 

weights of the connections between units in response to a teaching signal which 

provides information about the correct classification in input terms. The difference 

between the actual output and the desired output is minimized. 

 

All the neural networks have been trained on the 480 proteins set. The 

network outputs can be seen as estimated probabilities of correct prediction, and 

therefore they can indicate the confidence level of each predicted residue. (Riis and 

Krogh, 1996). 

 
 
 
 
5.2.4.4 Training and Testing the Network 

 
 
Seven-fold cross-validation is used on the 480 data sets to test the methods 

efficiencies. The whole data set is randomly divided into 7 subsets of equal size. In 

each validation, one subset is used for testing while the rest is used for training. 

Several parameters are regulated to optimize the training. Back-propagation with 

momentum networks which used the (0.05 -0.05) is implemented for this network. 

 

The process of training the designed network involves presenting the network 

with an input pattern which is protein sequence data set, propagating the pattern 

through the architecture, comparing the network output to the desired output, and 

altering the weights in the direction so as to minimize the difference between the 

actual output and the desired output  
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Back-propagation algorithms which involve two passes through the network, 

a forward pass and a backward pass, are used in this training process. The online 

version of the back-propagation algorithm is simulated using gradient descent 

function. For each training pattern, if we have any weighted parameter wij, then  
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If n is the learning rate, y  is the output of the unit from which the connection 

originated (presynaptic activity), and E is the back-propagation error (postsynaptic 

activity), the gradient descent learning equation is a product of  these three terms (n, 

y, and E) as shown in equation (5.23). 

 

ji
ij

ij y
w
Ew ∈−=

∂
∂

−=∆ ηη        (5.23) 

 

Then the back-propagation error is estimated by: 

 
'( / ) (i i iE y f x∈= ∂ ∂ )         (5.24) 

 

A recursive implementation of this back-propagation error can be written as shown 

in equation (5.25). 
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Regardless of the training steps or equations, the main goal of the network is to 

minimize the total error of each output node over all training examples. 

 

Pearson’s correlation coefficient that measures the degree how much the input ( X ) 

is normalized with output (Y ), is used as shown in equation (5.26):  
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5.2.5 GOR-V 
 
 

The idea of GOR-V was an experimental study to improve the existing GOR 

algorithms. It depends mainly on some important suggested modifications and 

improvements to the previous GOR algorithms to predict protein secondary 

structures from amino acid sequences (Kloczkowski et al., 2002).  

 

For understanding of GOR-V, it is better to introduce an accuracy matrix 

[Aij] of the size 3 x3 (where i and j stand for the three states H, E, C) to measure the 

quality of protein secondary structure prediction. The ijth element Aij of the accuracy 

matrix is then the number of residues predicted to be in state j, which according to 

the DSSP data are actually in state i. Then the sum over the columns of matrix A 

gives the number of residues nj that are predicted to be in state j3: 
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This equation can be written as: 
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This can be viewed as that the diagonal elements of A count the correct 

predictions for each of three structural states, and the off-diagonal elements contain 

the information about wrong predictions (Kloczkowski et al., 2002). 
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The Q3 is the main parameter measuring the accuracy of the protein 

secondary structure prediction; it is calculated by the following equation which 

estimates the percentage of all correctly predicted residues within the three-state (H, 

E, C) classes. 
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N is the total number of residues in the sequence which also can be written as: 
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The correctness of prediction for each of the structural classes (H,E,C) are 

measured by the following parameters: 
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where i=H,E,C 
 

The first GOR work was based on the information theory and naive Bayesian 

statistics. The information function I(S,R), is one of the basic mathematical tools of 

the information theory, which is written as:   

 

)](/)|(log[);( SPRSPRSI =        (5.32) 
 

The information function here is defined as the logarithm of the ratio of the 

conditional probability P(S|R) of observing conformation S, where S is one of the 

three states: helix (H), extended (E), or coil (C)] for residue R, where R is one of the 

20 possible amino acids, and the probability P(S) of the occurrence of conformation 

S.  

 

The data base used to calculate this information and naive probabilities is the 

480 proteins of the CB513 proteins, where the secondary structure is known for each 

amino acid. The conformation state of a given residue (i.e. in which state (H, E, or C) 
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this residue will be) in the sequence depends not only on the type of the amino acid R 

but also on the neighboring residues along the chain within the sliding window.  

 

The GOR algorithms used windows of 17 residues. This indicates that for a 

given residue R, eight immediate nearest neighboring residues on each side are 

analyzed. If R is considered as R0, then R+8     and   R-8 are the immediate neighboring 

residues. GOR-IV method calculates the information function as the sum of the 

logarithmic  information from single residues  which is known as singlets and pairs 

of residues which is known as  doublets within a window of width 2d +1,  where d = 

8, for the window of 17 residues.

 

Using the data base the first summation is calculated over doublets and the 

second summation is over singlets within the window centered around the j-th 

residue. The pair frequencies of residues Rj and Rj+m with Rj occurring in 

conformations Sj and n-Sj are calculated from the database. Thus, using the 

frequencies calculated from the databases, the algorithm can predict probabilities of 

conformational states for any new sequence. The prediction of secondary structure is 

performed by either predicting the secondary structure having the highest difference 

information functions, or computing the probability that the residue is in state Sj from 

the difference information.  

 

GOR-V depends mainly on the fact that the objective study of the prediction 

of the secondary structure of the GOR method is by using multiple alignments. 

Several improvements have been applied to the GOR-IV algorithm to increase the 

accuracy of the secondary structure prediction from a single sequence and from the 

multiple alignments. In training this process, the seven fold cross-validation is used. 
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5.2.6 NN-GORV-I 
 
 

The algorithms of the GOR-V and neural networks (NN) described above are 

combined in this method to attain a good performance predictor. NN-GORV-I 

depends on the assumption that combining information in prediction may increase 

the prediction accuracy. Up to date of writing this report there is no method 

implemented combining GORV with neural networks. NN-GORV-I is further 

implemented in slightly different way called NN-GORV-II which will be described 

in the next section. The general model for the newly developed method is shown in 

Figure 5.3. A general model for this method and its advanced version NN-GORV-II 

is shown in the next sections. 

 
GOR-I to GOR-IV used windows of 17 residues. This indicates that for a 

given residue R, eight immediate nearest neighboring residues on each side are 

analyzed. If R is considered as R0, then R+8     and   R-8 are the immediate neighboring 

residues. The information theory allows the information function of a complex event 

to be decomposed into the sum of information of simpler events, which can be 

written as:

 
),...,|;(...),|;()|;();(),...,;( 12121312121 −∆++∆+∆+∆=∆ nnn RRRRSIRRRSIRRSRSIRRRSI (5.33) 

 
Where how much information difference is written as: 
 

),...,;(),...,;(),...,;( 212121 nnn RRRSnIRRRSIRRRSI −−=∆    (5.34) 
Where n-S are the confirmations that are not S, i.e if S is happened to be E then n-S 

is the others two states H and C. 

 
The previous GOR-IV method calculates the information function as the sum 

of the logarithmic  information from single residues  which is known as singlets and 

pairs of residues which is known as  doublets within a window of width 2d +1,  

where d = 8, for the window of 17 residues: 

 

),(
),(

log
12
12

),,(
),,(

log
12

2
),(

),(
log

, mjj

mjj
d

dmnjmjj

njmjj
d

dmnj

j

RSnP
RSP

d
d

RRSnP
RRSP

dLSeqSnP
LSeqSP

+

+

−=++

++

−= −+
−

−
−+

=
− ∑∑   (5.35) 

 
 
 

  



 95

 

Profile from PSI-BLAST 
(Multiple Sequences) 

GOR-V method First Neural Network (NN) 
(in an NN like architecture) (Window of 17 rows x 20 amino 

acids=357 input matrix) 

Second Neural Network 
Uses output from both NN and GOR-V 

(Window of 17 rows x 6= 119 input matrix) 

Final Output 
(H, E, or C) 

 
 
Figure 5.3: A general model for the newly developed protein secondary structure 
prediction method. 

 
 
A detailed representation for the NN-GORV-I method is shown in figure 5.4. 

From the detailed figure it is elucidated that there is no filtering mechanism used in 

this version, unlike the advance version NN-GORV-II which uses the pfilt program 

to mask low complexity regions of the nr database sequences. The NN-GORV-II is 

explained in the next section. 
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Blastpgp 
program 

Query Sequence 

Figure 5.4: A detailed representation for the first version of the newly developed 
protein secondary structure prediction method (NN-GORV-I) 
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Optimal Model Information Theory 

GOR-V (Sequence to Structure) 

Second Neural Networks Optimal Model 
(Structure to Structure) 

Final Secondary Structures (H, E, and C) 
prediction 

SOV and Q3 evaluation of 
prediction accuracy 

Comparison of the seven different 
prediction methods and algorithms  
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From the data base, the first summation is calculated over doublets and the 

second summation is over singlets within the window centered around the j-th 

residue. The pair frequencies of residues Rj and Rj+m with Rj occurring in 

conformations Sj and n-Sj are calculated from the database. Thus, using the 

frequencies calculated from the databases, the algorithm can predict probabilities of 

conformational states for any new sequence. The prediction then either to predict the 

secondary structure having the highest difference information function, or compute 

the probability that the residue is in state Sj from the difference information as 

follows: 
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( ) ( )];exp[1
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RSI
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=      (5.36) 

 

The GOR algorithm reads a protein sequence in the FASTA format and then 

predicts its secondary structure. For each residue Ri along the sequence, the 

algorithm calculates the probabilities pH, pE, and pC of the secondary structure 

prediction (H, E, or C). The probabilities are then normalized to be in the range 

between 0 and 1 by the following formula: 

 
1=++ CEH ppp         (5.37) 

 
GOR-V depends mainly on the fact that the objective study of the prediction of the 

secondary structure of the GOR method is by using multiple alignments. Several 

improvements have been applied to the GOR-IV algorithm to increase the accuracy 

of the secondary structure prediction from a single sequence and from the multiple 

alignments. Here the seven fold cross-validation is used. 

 

The modifications and improvements to the original GOR algorithms are 

explained as follows:  

 

1. The data base has been increased to 480 proteins, a manipulated set of CB513 

proteins, compared to the previous GOR database of 267 sequences. The 

properties and source of this data base is explained previously in this chapter. 

The use of this database allows an objective and unbiased calculation of the 
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accuracy of the prediction, as well as easy comparison with results of other 

prediction algorithms that use similar non-redundant database sequences in 

their prediction methodologies. 

 

2. The latest version of the GOR-IV algorithm used a window with a fixed 

width of 17 residues as explained earlier; with eight residues on both sides of 

the central residue or amino acid. A resizable window for the GOR-V 

algorithm is used here according to the length of the sequence. Studies 

showed that the accuracy of the prediction is slightly better for a smaller 

window of width of 13 residues. The number of triplets within a window of 

size N is: 

 
( )( ) 6/21 −− NNN       (5.38) 

 
According to this formula the conventional window of size 17 has 680 

triplets, while and the window of size 13 has 286 triplets. The smaller sliding 

window of 13 will facilitate the computations compared to that of 17. More 

over the window of size 13 is expected to increase the accuracy of shorter 

sequences. 

 

Different window sizes are used for different sequences lengths in the 

database as follows: 

i. Sequences 25 residues or shorter length, a sliding window size of 

seven residues is used. 

ii. Sequences greater than 25 and less than or equal to 50 residues 

length, a sliding window of nine residues is used. 

iii.  Sequences greater than 50 residues long and less than 100 

residues, a sliding window of 11 residues is used. 

iv.  Sequences greater than 100 residues long and less than 200 

residues, a sliding window of 13 residues is used. 

v. Sequences greater than 200 residues long, a window size of 17 

residues is used.  

 
3. The previous GOR algorithm had a tendency to over-predict the coil state (C) 

at the cost of the beta-strands conformation (E), and to a lesser extent at the 
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cost of alpha-Helical confirmation (H).These parameters haven optimized by 

introducing decision parameters. The idea of decision constant (adjustable 

weights) had been applied successfully in PSIPRED algorithm (Jones, 1999). 

The predicted probability of the coil (C) conformation was set to a value 

greater by some determined margins than the probability of either the (H) or 

(E) states to accept C as the predicted confirmation. 

If the secondary structure of the jth residue is assigned to the conformation 

with the largest (winning) probability value:  

 
( ) ( ) ( ){ }jPjPjP CEH ,,max   (5.39) 

 
The above assignment equation (Equation 5.39) is modified by introducing 

decision constant thresholds, such that: 

 
( ) ( ) ( ){ }jPjPjP CEH ,15.0,075.0max −−  (5.40) 

 
According to the above equation, the coil state will be selected as the 

predicted state only if the calculated probability of the coil conformation is 

greater than the probability of the other states by (0.15 for strands (E) and 

0.075 for helices (H)) 

 

4.  The previous versions of the GORs algorithms used only single residue 

statistics or combination of the single residue and pair residue statistics within 

the window. GOR-V algorithm estimates singlets, doublets, and triplets 

statistics of the secondary structure prediction. However, in this experiment, 

the triplet statistics complicated the optimization of the prediction and did not 

increase the prediction accuracy significantly. The triplet statistics within the 

sliding window had not been included in this experiment. 

 

5. Unlike the previous GOR methods, PSIBLAST multiple sequence alignments 

for each protein sequence in the database had been used here for the 

secondary structure prediction. PSIBLAST program is executed as described 

earlier in this chapter using the nr database with default parameters. In cases 

where there is no convergence for the alignment process; that is the blastpgp 

program of PSIBLAST is unable to find any hits or alignments, the original 
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single sequence is used for the prediction algorithm. The alignments 

produced by PSIBLAST that are too similar to the query sequence are 

removed using trimmer program. Sequences in the alignment with sequence 

identity threshold greater than 97% to the query sequence are removed from 

the alignment.  

 
 
 
 
5.2.7 Enhancement of Proposed Prediction Method - NN-GORV-II 
 
 

The prediction of NN-GORV-I algorithm is further improved by 

implementing the pfilt program. The pfilt program is a filter that masks trans-

membrane regions, coiled-coil and compositional bias in a query sequence (Jones 

and Swindells, 2002). The implementation of the pfilt program developed a different 

or advanced version of the prediction method called NN-GORV-II. 

 

To portray a clear picture of the development and implementation of these 

algorithms and methods, the general framework of Figure 5.3 is extended and 

explained as shown in Figure 5.5. The process of predicting secondary structure of a 

protein (amino acid sequence) begins with the sequence in a FASTA format which is 

here is the query sequence. The prediction process is simply how to assign a given 

amino acid residue (there are 20 residues) one of the three secondary structure states 

or confirmation (helix, strand, or coil).  

 

The query sequence will then be checked against a search database of very 

big number of non redundant sequences to find any homologue. If an exact 

homologue is found, the sequence is then predicted from the first step. The NCBI nr 

data is used as a searched non redundant database in these experiments. 

 
The pfilt program is then implemented to mask the nr database sequences. 

CLUSTALW will then be implemented to perform multiple sequence alignment. The 

PSI-BLAST is the program used to find homologous sequences and to generate a 

profile for the query sequence. At the end of this step a profile and a matrix file that 
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contain information from other homologue sequences (evolutionary information) will 

be obtained. 

 
 

 
 

Database Search 
nr database 

Pfilt to mask sequence of low identity 

Blastpgp 
program 

Figure 5.5: A detailed representation for the second version of the newly developed 
protein secondary structure prediction method (NN-GORV-II) 
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The GOR-V and the neural network uses the multiple sequence alignment to 

be fed to a second neural network and use all the information from the first network 

and GOR-V. The final prediction says this residue belongs to one of the three 

secondary states as shown in Figure 5.5. 

 

The framework of the experiment continues to evaluate the resultant 

prediction of each of the seven methods. The Q performance and SOV measure is 

used to evaluate the prediction. The seven methods are then analyzed and compared 

using a variety of estimates and statistical measure to elucidate the power and 

weaknesses of each method. 

 
 
 
 
5.2.8 PROF 

 
 
PROF is a cascade multiple classifier combing many algorithms using 

quadratic and linear discrimination functions to group predictors in one classifier 

(Ouali and King, 2000). PROF is the advanced version of DSC (King and 

Sternberg, 1996) which applies GOR residue attributes in a quadratic model, with 

the addition of hydrophobicity and amino acid position, which are combined with 

information from the multiple sequence alignment. Optimal weights are deduced 

by linear discrimination, with filtering applied to remove erroneous predictions. 

This method is described as having an advantage that the prediction method is both 

implicit and effective.  

 

PROF used a set of 496 non homologous domains that is part of the CB513 

developed by Cuff and Barton (1999) described earlier. The original data base of 

PROF contains 82847 residues: 28678 in helix confirmation, 17741 in β  strands 

and 36428 in coils. The secondary structure is assigned using the DSSP program 

(Kabsch and Sander, 1983) and assignment of DSSP eight states to three states is 

made using conservative mapping which corresponds to Method I in this work. 

 

In this research experimental work PROF is tested using the 480 domains 

described earlier in this chapter. The 480 domains data set is almost the same as the 
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496 proteins that the original PROF is trained and tested on. The files of the 480 

protein domains are renamed to other names since CLUSTALW may not read file 

names with dash ‘-’ character as part of the file name. Separate RED HAT LINUX 

machines are dedicated for PROF and to the other methods implemented in this 

research to reduce the processing time of the experiments. 

 
 
 
 
5.3 Reduction of DSSP Secondary Structure States 
 
 

The predicted secondary structure is usually assigned to the experimentally 

determined tertiary or 3D structure by the DSSP (Kabsch and Sander, 1983), 

STRIDE (Frishman and Argos, 1995), or DEFINE (Richards and Kundrot, 1988) 

definitions. The 513 data set contains all these definitions. In this experiment, DSSP 

definition is used since it has been the most widely used secondary structure 

definition by researchers in this field. DSSP has eight secondary structure classes: H 

(α-helix), G(310-helix), I(π-helix), E(β-strand), B(isolated β-bridge), T(turn), 

S(bend), and - (coil).  

 

The adopted reduction schemes of the mentioned eight classes to three states 

of helix (H), strands (E), and coil (C) is usually performed by using one of the 

following methods or schemes.  

 

1. Method I: H,G and I to H ; E to E ; all other states to C  

(Riis  and Krogh, 1996). 

 

2. Method II: H,G to H ; E,B to E ; all other states to C  

Compared to the other reduction methods, this method is known as harder to 

predict. ( Rost and Sander, 1994; Moult et al., 1997; Moult et al., 1999; Lesk 

et al., 2001;Pollastri et al., 2002). 

 

3. Method III: H,G to H ; E to E ; all other states to C 

(Kim and Park H., 2003). 

 

  



 104

4. Method IV: H to H ; E,B to E ; all other states to C 

(Kim and Park H., 2003). 

 

5. Method V: H to H ; E to E ; all other states to C 

(Frishman and Argos, 1997; Salamov and Solovyev, 1995). 

 

In this research, all the above mentioned schemes are attempted to study their 

effect on prediction performance and quality, while Method II is adopted for 

evaluating all the prediction algorithms. The 8-to 3-state reduction scheme can alter 

the prediction accuracy of an algorithm in a range of 1-3% (Cuff and Barton, 1999). 

In this experiment scheme 3 is adopted for the three states assignments because it is 

considered to be the stringent definition, which usually results in lower prediction 

accuracy than other definitions or reduction schemes. Scheme 5 is used to compare 

the affect of reduction schemes on prediction accuracy. 

 

PERL (Practical Extraction and Reporting Language) is used to extract and parse 

the amino acids sequences or residues (RES) into corresponding files that contain 

standard FASTA format that in turn can be read for the seven methods to undergo 

predictions (Figure 5.6).  

 

 
 
 
 
 

> 
V K D G Y I V D D V N C T Y F C G R N A Y C N E E C T K L K G E S G Y C Q W A S P Y 
G N A C Y C Y K L P D H V R T K G P G R C H 

Figure 5.6: The 1ptx-1-AS.all file converted into a FASTA format (zptAS.fasta) 
readable by the computer programs. 

 
 
The corresponding laboratory determined DSSP predictions of the residues 

are extracted and parsed into other files that contain the predicted sequences from the 

seven algorithms. The resulting final files are files that contain the amino acid 

sequence, the predicted secondary structure, and the observed secondary structure 

(DSSP) after being assigned into a three state scheme (Figure 5.7). PERL is used to 

make these files in format that is readable by SOV program (Zemla et al., 1999). 

PERL is also used to convert the names of these files into format that is readable by 

CLUSTALW and PSIBLAST. 

  



 105

 
 

 

 

 

 
 

>OSEQ  
C E E E E E E C C C C C E C C C C C H H H H H H H H H H C C C C E E E E E E E E C C E E E 
E E E E E E C C C C C E C C C C C C C  
>PSEQ 
C C C C E E E C C C C C E E E C C C C C C C C C H H H H C C C C E E E E E C C C C C C E E 
E E E E C C C C C C C E E C C C C C C  
>AA 
V K D G Y I V D D V N C T Y F C G R N A Y C N E E C T K L K G E S G Y C Q W A S P Y G N 
A C Y C Y K L P D H V R T K G P G R C H 

Figure 5.7: The 1ptx-1-AS.all file parsed into a format readable by the Q3 and SOV 
program 
 
 
 
 
5.4 Assessment of Prediction Accuracies of the Methods  
 
 

Several measures and methods are used in this work to estimate the 

prediction accuracy of the algorithms developed and studied in this research. The 

methods and measures used to assess the accuracy are further analyzed statistically to 

observe the significance of each. The methods implemented to assess the accuracy 

and significance of the predictions in this work are discussed in this section. 

 
 
 
 

5.4.1 Measure of Performance (QH, QE, QC, and Q3) 
 
 
The Q3 accuracy per residue which measures the expected accuracy of an 

unknown residue is computed as the number of residues correctly predicted divided 

by the total number of residues. The Q3 per the whole protein is computed too using 

the same definition. The QH is defined as the total number of α helix correctly 

predicted divided by the total number of α helix. The same definitions are applied to 

QE ( β strands) and QC (coils). The Q3 is expressed as: 

100
),,(

3 x
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predicted

Q
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i∑
=

=        (5.41) 
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5.4.2 Segment Overlap (SOV) Measure 
 
 
Segment overlap calculation (Rost et al., 1994; Zemla et al., 1999) is 

performed for each data set. Segment overlap values attempt to capture segment 

prediction, and vary from an ignorance level of 37% (random protein pairs) to an 

average 90% level for homologous protein pairs. In more details, the SOV aims to 

assess the quality of a prediction by taking into account the type and position of 

secondary structure segment, the natural variation of segment boundaries among 

families of homologous proteins, and the deviation at the end of each segment. 

Segment overlap is calculated by:  

∑ ×
+

=
s predobs

predobs slen
SSmxov

SSmnov
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Sov )(
);(

);(1
1

δ
     (5.42) 

Where: 

 N :  is the total number of residues, 

 mnov :  is the actual overlap, with mxov is the extent of the segment. 

len s1 :  is the number of residues in segment s1. 

δ is :  the accepted variation which assures a ratio of 1.0 where there are only 

minor deviations at the ends of segments.  

 

The Q3 and SOV are implemented using the Q3 and SOV ANSI C program 

downloaded from the web site: http://PredictionCenter.llnl.gov/ 

 
 
 
 
5.4.3 Matthews Correlation Coefficient (MCC) 

 
 
As defined in the review chapter, the correlation is a measure of how strong 

two variables are related. Reconsidering the accuracy matrix [Aij] mentioned before, 

the general form of Matthews’s correlation (Matthews, 1975) can be written as: 
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Matthews’ correlation coefficient is performed for each of the three states. 

Calculating the four numbers (TP, FP, TN, and FN) discussed before, the formula of 

Matthews’s correlation can be rewritten as: 

 

( )( )( )( )iiiiiiii

iiii
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++++

−
=      (5.44) 

Where: 

ip  number of correctly predicted residues in conformation. 

ir  number of those correctly rejected. 

iu  number of the incorrectly rejected (false negatives). 

io  number incorrectly predicted to be in the class (false positive) 

i  = is one of the confirmation states H, E, or C. 

 
 
 
 
5.4.4 Receiver Operating Characteristic (ROC) 
 
 

The Receiver Operating Characteristic (ROC) is typically used in a binary 

prediction or classification model like presence or absence, disease or normal. There 

are two possible prediction errors: false positives (FP) and false negatives (FN). The 

performance of a binary prediction model is normally summarized in a confusion or 

contingency matrix that cross-tabulates the observed and predicted patterns as shown 

in Table 5.1(Fielding and Bell,1997). 

 

  



 108

Table 5.1: The contingency table or confusion table for ROC curve 
 

 Classified as 
 - +

- TN 
 

FP 

R
eference 

+ FN TP 

 
 

The confusion matrix accuracy measures assume that data is real counts. The 

sensitivity of a test can be described as the proportion of true positives it detects of 

all the positives. All positives are the sum of (detected) true positives (TP) and 

(undetected) false negatives (FN). Sensitivity therefore can be rewritten as: 

 
)/( FNTPTP +      (5.45) 

 
While the specificity of a test can be described as the proportion of true 

negatives it detects all the negatives. It is thus a measure of how accurately it 

identifies negatives. All negatives are the sum of (detected) true negatives (TN) and 

(miss-predicted) false positives (FP). Specificity can therefore be rewritten as: 

 
)/( FPTNTN +      (5.46) 

 
As it can be seen from Table 5.1, the sensitivity and specificity do not use all 

information from the above confusion matrix. An ideal confusion matrix-based 

measure should meet four requirements and obey six additional constraints. In 

particular, it should measure agreement and not association. A classifier that yielded 

everything wrong would have a highly significant association but no agreement 

(Marzban, 2004). 

Finally, sensitivity and specificity represent the measures of accuracy of a 

certain diagnostic test or classification. In fact, the measurements have to be sensitive 

in order to detect differences that are important to the research question, and specific 

enough to show only the feature of interest. Sensitivity describes how well a 

classification task classifies those observations in the right corresponding class (say 

coils). Similarly, specificity describes how well a classification task classifies those 

observations that are not coils. The definitions of sensitivity and specificity and can 

be depicted from the equations 5.45 and 5.46, respectively.  
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5.4.4.1 Threshold Value 
 
 
Since a typical classifier generates a variable that has values within the range 

0 -1, and all of the measures described in this section depend on the values in the 

confusion matrix, these values are obtained by application of a threshold criterion to 

a continuous variable generated by the classifier. A mid value between 0-1 which 0.5 

is the threshold applied here. Thus, a continuous variable is converted into 

dichotomy variable in this case. If the threshold criterion is altered the values in the 

confusion matrix will change. Often, the raw scores are available so it is relatively 

easy to examine the effect of changing the threshold. FN errors are more serious than 

FP errors; the threshold can be adjusted to decrease the FN rate at the expense of an 

increased FP error rate.  

 

The effect of the threshold on error rates can be explained by a cut-point of 0 

where every case assigns as positive, while a cut-point of 1 assigns every case as 

negative. Therefore, as the cut-point is moved from 0 to 1 the false positive 

frequency falls while the false negative frequency increases. The point where these 

two curves cross is the point with the minimum overall error rate Thresholds can be 

amended to reflect different TP and FP rates according to different objectives. 

 
 
 
 
 
 
5.4.4.2 Predictive Value  

 
 
A certain test that may have high accuracy in terms of sensitivity and 

specificity values; it may yet perform poorly and have low positive predictive value. 

The predictive value of a test is an important index of actual test performance. The 

positive predictive value of a test indicates the probability that a (coil) is actually 

present when the test is positive, and can be calculated as:  

 
Positive predictive value = TP/ TP + FP   (5.47) 
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The negative predictive value of a test indicates the probability that a (coil) is 

actually absent if the test is negative, and also can be calculated by the formula: 

 
Negative predictive value = TN/ TN + FN   (5.48) 

 
 
 
 
5.4.4.3 Plotting ROC Curve 
 
 

An efficient way to display the relationship between sensitivity and 

specificity and the cut-off point for positive and negative tests is with receiver 

operating characteristic (ROC) curves (Obuchowski, 2000; Gur et al., 2003). The 

receiver operating characteristic (ROC) curve describes the performance of a test 

used to discriminate between normal and abnormal cases based on a variable 

measured on a continuous scale.  

 

The ROC curve is a plot of the sensitivity and the 1-specificity. Each point on 

the curve represents a different cut-off value for the test indicated. Each cut-off value 

results in a true positive (y-axis) and false positive (x-axis) ratios. The test that yields 

the greatest number of true positives with the smallest number of false positives, 

representing a curve, which tends upwards and to the left, is good test. A perfect test 

has a curve of area equal to one. A poor diagnostic test has a low ROC curve 

approaching the diagonal with area of 0.5. Under the diagonal, true positives and 

false positives are equal at every cut-off points where the test is indifferent. 

 
 
 
 
5.4.4.4 Area Under Curve (AUC) 

 
 
The area under the ROC function (AUC) is usually taken to be an important 

index because it provides a single measure of overall accuracy that is not dependent 

upon a particular threshold (Hand, 1997; Hand and Till, 2001). With reference to 

Figure 5.8, the value of the AUC is between 0.5 and 1.0. If the value is 0.5, as in the 

diagonal line on the plot, the scores for two groups do not differ. A score of 1.0 

indicates no overlap in the distributions of the group scores.  
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Typically, values of the AUC will not achieve these limits. A value of 0.8 for 

the AUC means that for 80% of the time a random selection from the positive group 

will have a score greater than a random selection from the negative class (Hand and 

Till, 2001). Usually the AUC for the training data is higher than that for the testing 

data. This is expected since most classification methods will perform best on the data 

used to generate the classification rule which the training data set, and less on the 

testing data set. 
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Figure 5.8: A typical example of area under curve (AUC) for training data, test data, 
and chance performance or random guess 

 
 
Researchers argued that some caution is necessary when using ROC methods 

with biological data since biological cases may not be directly equivalent to the 

original definition. In particular, the original ROC model assumes that the group 

allocation is absolutely reliable and each signal is homogeneously presented and 

processed (Hanley and McNeil, 1983). 
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5.4.5 Reliability Index 
 
 

The prediction reliability index (RI) offers an excellent tool for focusing on 

key regions having high prediction accuracy (Rost and Sander, 1993). It has been 

shown that prediction accuracy varied largely between different proteins. The RI is 

usually used to assess the effectiveness of the methods for the prediction of the 

secondary structure of a new sequence.  

 

According to Rost and Sander, (1993), the value of RI can be normalized to 

be an integer between 0 and 9. The prediction accuracy of residues with higher RI 

values is much better than those with lower RI values. Therefore, the definition of RI 

reflects the prediction reliability and its index correlated with its accuracy. 

 

In this research, the histograms and distribution of prediction analysis are 

considered as measures of reliability as well as accuracy. In fact, the representation, 

analysis, and discussion of the line graphs in the next chapter carry the same concept 

of the reliability index of Rost and Sander. 

 
 
 
 
5.4.6 Test of Statistical Significance 
 
 

It is commonplace that the probability principle is of utmost importance in 

statistics. A normal or gausian distribution of values is a bell-shaped curve with its x-

axis representing the measurement of frequency of measurements and the y-axis 

representing the relative number of repetitions with the individual x values. The area 

under a portion of the curve is the probability that the true value is at or greater than 

the value of  at the line. In the normal distribution measurements, which occur with 

the greatest frequency occur at the center of the distribution and are known as the 

central tendency (Anderson, 2003). 

v

 

Confidence intervals express the variation around the mean of a 

measurement, or a frequency. If a series of identical studies are performed on 

different samples from the same populations and a 95% confidence interval for the 
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difference between the sample means existed, then 95% of these confidence intervals 

would include the population difference between means. The researcher may select 

the degree of confidence, with 95% being the most common choice just as 5% level 

of statistical significance is widely used. The probability level of 0.01 is not 

uncommon too (Anderson, 2003). 

 
 
 
 

5.4.6.1 The Confidence Level (P-Value) 
 
 

One of the most commonly used statistical terms is the null hypothesis (Ho), 

which states that there is no difference between study groups except the one that is 

attributable to random phenomena. The alternate hypothesis (Ha) is the statement 

that there is a difference that cannot be explained by chance. The alternate hypothesis 

is proved by the exclusion of Ho. The p-value is the probability on the assumption 

that Ho is true of obtaining a measurement equal to or more extreme than that 

actually observed. In the graph of the normal distribution the p-value is represented 

by the area under the curve at and above the observed value marked by the line on 

the x-axis (Hand, 1977).  

 

The level of statistical significance, also called type I error or false-positive 

result is the probability of rejecting Ho when Ho is actually true. It has been 

arbitrarily set at 0.05 as the threshold for statistical significance to distinguish 

whether an observed change in a set of measurements or frequencies may have arisen 

by chance or it represented something other than random variation. A type II error or 

false-negative result is the probability of accepting Ho as true when Ho is actually 

false, and as such missing a clinically significant difference. It is set at 0.1-0.2 as 

acceptable by most researchers. Practically, small p-values mean p-values of 0.05, 

which represent moderate evidence against to strong evidence; and those less than 

0.001 represent strong to very strong evidence. (Lijmer et al., 1999; Hand, 1997). 
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5.4.6.2 Analysis of Variance (ANOVA) Procedure 
 
 
The analysis of variance or ANOVA tests the significant differences among 

the means of observations in an experiment (Anderson, 2003). The mathematical 

model for an observation   in the experiment is can be written as in equation 5.49. ijX

 

ijiij evuX ++=       (5.49) 

 

Where: 

 
u = the mean effect 

iv = effect of  ijth  entry 

ije = experimental error effect 

 

Then the ANOVA table will then look as illustrated in Table 5.2. 

 
 

Table 5.2: ANOVA table based on individual observations (One way ANOVA) 
Source of variation Degree of freedom 

observations d - 1 

Error d (n - 1) 

Total dn - 1 

 
 
 
 
5.5 Summary 

 
 
This chapter explains in details the methodology and models followed in this 

research in an attempt to solve the problem of problem of protein folding. 

Collaborative programs in Bioinformatics like PSI-BLAST and CLUSTALW are 

utilized in this work to generate homologues sequences and conduct multiple 

sequence alignment. This provides standard procedure to incorporate evolutionary 

information in related sequences. Filtering programs are used to mask the data set 

and boost the prediction ability of NN-GORV-II method. Five DSSP eight-to-three 
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states secondary structure reduction methods or schemes are discussed and explained 

to be used in the series of the experiments of this research. 

 

The newly developed secondary structure prediction algorithms, NN-GORV-

I and NN-GORV-II together with other standard prediction methods are 

comprehensively explained. Emphasis is directed towards the explanation of the 

information theory and the neural networks since the newly developed methods (NN-

GORV-I and NN-GORV-II) combine these two machines. To assess and evaluate the 

prediction accuracy and quality of the methods studied in this work, many algorithms 

and procedures are explained in this chapter, varying from Q3, SOV measure, MCC, 

and ROC. Test of significance between means of the output of these algorithms using 

the ANOVA procedure is also explained. 

  



 
 
 
 
 

CHAPTER 6 
 
 
 
 

ASSESSMENT OF  
THE PREDICTION METHODS 

 
 
 
 
6.1 Introduction 
 
 

Different measures and methods are used to assess the accuracy of newly 

developed methods for protein secondary structure prediction. There are four 

assessment methods used in this study, namely: Q3, SOV, MCC, ROC, and AUC, in 

addition to the ANOVA to test the significance of the prediction methods. 

 

The Q3 accuracy per residue and per the whole protein is used to calculate the 

percentage performance of the two methods developed in this research together with 

the other five methods investigated. Unlike the Q3, the Segment overlap measure 

(SOV) is used as a measure of quality rather than performance. The third measure 

used in this research is the Matthews Correlation Coefficient (MCC) to measure the 

strength of the relation between the predicted and observed protein structure in a 

range between 0-1. After observing that the data set used in this research contains 

about 50% coils, the Receiver Operating Characteristic (ROC) and Area Under 

Curve (AUC) are used to partially assess the newly developed methods taking only 

the coil states in consideration. Finally, the test of the statistical significance of the 

prediction methods is conducted using the analysis of variance (ANOVA) procedure. 

 

In the past few decades the prediction accuracy is oscillating slightly around 

or above 60% prediction accuracy. The reason for this low level of prediction is that 

all these algorithms used only local information to predict the secondary structure of 
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proteins. Researchers noticed and realized that information contained in multiple 

alignments can improve prediction accuracy (Kabsch, and Sander, 1983); However, 

the combination of large scale databases with more advanced algorithms and the use 

of distant or evolutionary information raised the level of prediction accuracy to the 

range of 70% ( Rost, 2001; Chandonia and Karplus 1999). 

 

Information from the position-specific evolutionary exchange is also 

recognized earlier that a profile of a particular protein family enhances discovering 

more distant members of that family (Kabsch and Sander, 1983). Automated 

database search methods successfully used position-specific profiles for searching 

(Frishman and Argos, 1996). The significance of high gain in prediction accuracy is 

achieved with the development of scoring matrices methods like PSIBLAST and 

probabilistic models like hidden Markov models (Krogh et al., 1994). In particular, 

the gapped profile-based and iterated search tool PSI-BLAST continue to add to the 

field of protein sequence analysis due to its high speed and accuracy capabilities. 

 

In this chapter the strength and weaknesses of the seven algorithms or 

methods of prediction are analysed and compared with respect to the newly 

developed two methods in this project experimental work. Several tests are used to 

assess the efficiency and accuracy of each method. Stringent statistical and 

procedures, tabular comparison, and graphical representation are used to enhance the 

discussion. 

 
 
 
 
6.2 Data Set Composition 

 
 

The set of 480 proteins that comprises a sub set of the CB513 proteins of 

Cuff and Barton (1999)is used in training and testing the seven algorithms. The set 

composed of 83392 residues as shown in Table 6.1. Alpha helices composed 35% of 

this set, beta sheets composed 21%, and coils constitute 44% of this data set. As 

discussed in the methodology chapter, the CB513 proteins of Cuff and Barton (1999) 

use the eight states DSSP secondary structure assignments beside others. Five 
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reduction methods are used in this research to assign the DSSP eight secondary 

structure states into three. The figures in Table 6.1 use reduction method I. These 

figures will differ when using another reduction method. The five reduction methods 

are used to study the effect of these reduction methods in the prediction process. 

 

 

Table 6.1: Total number of secondary structures states in the data base 
 

 
Structure Total number Percentage 

Helix 
 

28881 35 

Sheet 
 

17810 21 

Coil 
 

36701 44 

ALL 83392 100 
 
 
 
 
6.3 Assessment of GOR-IV Method 

 
 

GOR-IV method is fully described in both the literature and methodology 

chapters of this report. It is further implemented in the series of experiments 

conducted in this work and also described in the methodology chapter. It is important 

to conduct GOR-IV method (and of course all the seven methods) on the same 

training and testing data, the same search database, and the same environments of the 

experiments.  

 

Figure 6.1 shows the results of GOR-IV prediction. The figure shows a 

histogram that elucidates clearly the Q3 which is a combination of the performance of 

helices, strands, and coils; less than 20 amino acids (proteins) scored the range of 20-

30% and 30-40%. However, around 20 proteins of the 480 scored 80% accuracy. 

About 160 proteins scored between 60-70% and 140 proteins reached between 70-

80% Q3 accuracy. However, very few proteins (less than 5) scored a 100% Q3   

accuracy. 
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Figure 6.1: The performance of the GOR-IV prediction method with respect to Q3 
and SOV prediction measures 
 
 

Table 6.2 shows the detailed results of GOR-IV predictions. The estimated 

accuracy for the alpha helices (QH) and beta strands (QE) are in the range of 57% and 

51% with standard deviations as high as 29% and 27%, respectively. The coil states 

(QC) are estimated with higher accuracies that reached around 71% as expected. 

However, the standard deviation for coils is small (12.98) which indicate more even 

prediction estimates than the other two previous states. The overall Q3 of GOR-IV is 

63.19% with standard deviation of 10.61%. This results is slightly lower than which 

is reported in the original GOR-IV experiments (64.4%) and higher than that 

reported in the PROF experiments which is 61.3% (Ouali and King, 2000).   
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Table 6.2: The percentages of prediction accuracies with the standard deviations of 
the seven methods 
 
Prediction Method 
 

Q3 QH QE QC

NN-I  
 

64.05±12.68 57.29±30.64 57.39±28.49 74.10±13.36 

GOR-IV 
 

63.19±10.61 57.02±29.68 51.86±27.36 71.95±12.98 

GOR-V 
 

71.84±19.63 68.40±33.98 63.68±33.02 78.92±15.08 

NN-II 
 

73.58±17.82 70.77±31.62 68.72±30.01 78.33±15.18 

PROF 
 

75.03±14.74 70.65±31.39 68.29±28.09 79.38±13.68 

NN-GORV-I 
 

79.22±10.14 76.56±27.17 68.54±28.22 79.44±12.65 

NN-GORV-II  80.49±10.21 77.40±26.53 77.12±24.19 79.99±11.75 
Calculations are estimated from 480 amino acids (proteins) 
Q3  accuracy for amino acid 
QH  accuracy for α helices 

QE  accuracy for β strands 
QC  accuracy for coils 

 
 

The GOR-IV segment overlap measure (SOV) showed that about 140 

proteins scored between 55-65% and about 120 proteins scored between 65-75% 

SOV measure (Figure 6.1). The SOV measure is always considered as more reliable 

than Q3 measure. Anyhow, both measures showed that the 480 proteins are 

distributed normally regarding GOR-IV method. However, this is not the case if each 

state (helices, strands, coils) is taken separately (histograms not shown for this part). 

 

Table 6.3 shows the SOV prediction accuracies for the GOR-IV method. 

Prediction estimates are brought up to the level of 60% prediction accuracy for 

helices (SOVH) and brought down to the level of 62% for coils (SOVC). The SOV 

measure for strands (SOVE) remained as low as 56%. The overall SOV measure for 

the three states is 62.07 % with standard deviation of 13.77. The SOV measure for 

GOR-IV method is higher than that reported by PROF method (56.9) which reflects 

good correlation between adjacent residues. 

 

The SOV measure should be used to assess the quality of a prediction method 

rather than its performance since the SOV can be improved by applying a second 
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different structure network (Rost and Sander,1993) or sort of smoothing filters (King 

and Sternberg, 1996; Cuff and Barton, 2000).  

 
 
Table 6.3: The SOV of prediction accuracies with the standard deviations of the 
seven methods 
 
Prediction Method SOV3 SOVH SOVE SOVC

NN-I  
 

60.94±16.22 59.50±30.55 57.61±29.12 61.53±16.26 

GOR-IV  62.07±13.77 60.81±29.47 56.01±29.36 62.34±14.89 
 

GOR-V 69.33±22.96 
 

70.87±32.51 
 

64.00±33.94 
 

66.63±21.16 
 

NN-II 70.37±18.35 
 

71.05±30.21 
 

68.47±30.67 
 

67.29±18.02 
 

PROF 72.74±20.51 
 

73.49±30.62 
 

69.80±30.53 
 

69.75±18.95 
 

NN-GORV-I 76.55±14.39 
 

76.93±27.82 
 

70.76±29.33 
 

72.90±14.47 
 

NN-GORV-II 76.27±17.50 77.96±26.92 79.94±24.57 74.35±15.53 
Calculations are estimated from 480 amino acids (proteins) 
SOV3  is the segment overlap measure per amino acid 
SOVH  is the segment overlap measure for α helices 

SOVE  is the segment overlap measure for β strands 
SOVC  is the segment overlap measure for coils 

 
 

Matthews’s correlation coefficients (MCC) are shown in Table 6.4.  The 

Matthews’s correlation coefficient measures the predictive accuracy of an 

association between classes. A value that is near 0.1 indicates loose association 

between observed and predicted classes and hence less accurate prediction while a 

value that is near 0.9 indicates a tight association between observed and predicted 

classes and hence more accurate prediction.  GOR-IV scored less than 0.5 MCC for  

β  strands and coils which indicates less accurate prediction of these residues while 

it scored a value that greater than 0.5 for α helices which indicates that the 

prediction of the α helices is more accurate than the other two residues. 
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Table 6.4: The Mathew’s correlation coefficients of predictions of the seven methods 
 
Prediction Method MCCH MCCE MCCC

NN-I  
 

0.4906 0.4124 0.4448 

GOR-IV  
 

0.5283 0.3756 0.4382 

GOR-V 
 

0.6859 0.5994 0.5675 

NN-II 
 

0.6503 0.5641 0.5304 

PROF 
 

0.7102 0.6291 0.5743 

NN-GORV-I 
 

0.7736 0.6959 0.6494 

NN-GORV-II 0.7744 0.6958 0.6501 
Calculations are estimated from 480 amino acids (proteins) 
MCCH  is the Mathews correlation coefficient for α helices 

MCCE  is the Mathews correlation coefficient for β strands 
MCCC  is the Mathews correlation coefficient for coils 

 
 
 
 
6.4 Assessment of NN-I Method 
 
 

The NN-I prediction method is a neural network predictor that does not use 

the multiple sequence alignment. NN-I uses single sequences to predict novel 

proteins. PSI-BLAST or CLUSTALW are not utilized here which made this 

predictor looks like the early work of Quian and Sejnowski (1988). The network is a 

three layers network trained in an unbalanced way as mentioned in the methodology. 

 

Figure 6.2 shows that the Q3 and SOV for NN-I. Less than 20 proteins or 

amino acids scored a Q3 of 10%, 20%, 30%, and 40% for each. Around 140 of the 

480 protein scored Q3 of 60% and more than 170 proteins scored 70%. This 

histogram revealed that NN-I performed almost similar or slightly better than GOR-

IV. 

 

SOV histogram for NN-I (Figure 6.2) shows that more proteins scored less 

than 20% accuracy unlike the case of Q3. Less than 120 proteins scored 60% while 
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about 150 scored 70%. This revealed that NN-I method is better than GOR-IV 

method as far as SOV is concerned. 
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Figure 6.2: The performance of the NN-I prediction method with respect to Q3 and 
SOV prediction measures 
 
 

Table 6.2 shows that NN-I scored about 57% for helices and strands and 74% 

for coils. NN-I reached 64% as Q3 accuracy which is better than that of GOR-IV for 

all the three states. However, in Table 6.3 the SOV of NN-I scored about 59%, 57%, 

and 61% for helices, strands and coils, respectively. The SOV for the three states is 

60.94% indicting that the prediction of NN-I is of less quality than GOR-IV. This 

result is confirmed by the Matthews’ correlation coefficients in Table 5.4 where NN-

I correlation coefficients for the three states are less than 0.5. 

 
 
 
 
6.5 Assessment of GOR-V Method 

 
 

The GOR-V method is fully described and implemented using the same 

database that is used by their authors (Kloczkowski et al., 2002). GOR-V uses 

multiple sequence alignment and resizable window size according to the length of 

the amino acid in an improvement that added triplet statistics to the previous GOR 
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methods. The original GOR-V combines the PSI-BLAST multiple sequence 

alignment with GOR methods with a full jack-knife training procedure.  

The histogram of Figure 6.3 shows the performance of GOR-V in this 

experimental work with respect to Q3 and SOV of the all three states. The figure 

clearly shows that there is a great shift of prediction accuracy towards the 100% 

compared to the previous methods GOR-IV and NN-I. Less than 30 proteins scored 

Q3 of 10%, 20%, 30%, 40%, 50%, and 60% each, while the majority of the 480 

proteins scored Q3 of 70%, 80%, and 90%. 

 

0 50 100
0

50

100

150

Q3 %

N
um

be
r o

f p
ro

te
in

s

GORV

0 50 100
0

50

100

150
GORV

SOV

N
um

be
r o

f p
ro

te
in

s

 
Figure 6.3: The performance of the GOR-V prediction method with respect to Q3 and 
SOV prediction measures 
 
 

GOR-V segment overlap measure (SOV) shows a similar trend to the Q3 

measure with about 30 proteins scored 10% and 40 proteins scored 100% SOV score. 

The majority of the proteins scored the range of 70%, 80%, and 90% as shown in 

Figure 6.3. Again the SOV is considered here as a measure of usefulness and quality 

of prediction rather than performance. 

 

Table 6.2 shows the GOR-V performance regarding the percentage 

accuracies for helices, strands, coils, and all the states together (QH, QE, QC, and Q3). 
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The GOR-V showed scores of 68.40% and 63.68% with relatively high standard 

deviations of around 33% for helices and strands, respectively. This indicates that 

prediction accuracies for these two states are oscillating from around 30% up to 90% 

or even more. The standard deviations reveal that helices and strands of some 

proteins within the data base are predicted with very high accuracies while others are 

predicted with very low accuracies. Coils in GOR-V are predicted with as high 

accuracy as 78.92% and low standard deviation. However, the overall Q3 accuracy of 

GOR-V is 71.84% with a relatively reasonable standard deviation of 19.63%.  

 

Kloczkowski et al., (2002) reported an average accuracy of GOR-V 

prediction for the secondary structure with multiple sequence alignment and full 

jack-knife procedure as 73.5%. The accuracy of the prediction is further increased to 

74.2% when limiting the prediction to 375 sequences of the CB513 database. 

However, the results of GOR-V which are presented in Table 5.2 showed a decrease 

of 2.36% (74.2-71.84) than that of Kloczkowski et al. (2002). This is in an 

agreement with Cuff and Barton (1999) who showed that a reduction of 3-4% of 

prediction accuracies when experiments are conducted in different environments. 

 

Table 6.3 shows the SOV scores per residue and per protein for GOR-V. 

Significantly GOR-V has the highest score over all the three states compared to 

GOR-IV and NN-I. The SOV accuracy per protein is 69.33% with a moderate 

standard deviation of 22.96%. The score indicted that GOR-V method is superior in 

quality and usefulness compared to GOR-IV and NN-I methods. 

 

The Matthews correlation coefficients (MCC) for GOR-V are shown in Table 

6.4. The coefficients are 0.69, 0.60, and 0.57 for helices, strands, and coils, 

respectively. The figures show that helices are predicted with high accuracy and 

reliability since the correlation between predicted and observed residues is near 0.7. 

Strands and coils are predicted with better than average accuracy and reliability of 

around 0.6 which in turn less than the accuracy of helices states.  

 

The results of the tables and figures of GOR-V showed that the method 

utilised the multiple alignment of PSI-BLAST in a way made it clearly superior 
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compared to GOR-IV and NN-I methods. The prediction accuracy jumped to a level 

above 70% from the previous level of 63% and 64% of GOR-IV and NN-I. These 

results elucidate and confirm the methodology that had been suggested and 

implemented by Rost and Sander (1993) boosting the secondary structure prediction 

level from 64% to above 70% level. 

 
 
 
 

6.6 Assessment of NN-II Method 
 
 

NN-II prediction method used in this experiment is basically similar to NN-I. 

It differs in the usage of the PSI-BLAST multiple sequence alignments to extract 

evolutionary information of similar proteins. PSI-BLAST profile is used to enable 

the network to slide over a window of 17 along the profile in contrast to the NN-I 

which slides over a window of 17 amino acids. 

 

Figure 6.4 shows histograms of the Q3 and the SOV for the NN-II prediction 

method. Most proteins are predicted at a level above 70%. About 50 proteins are 

predicted at the level of 70%, 180 proteins at the level of 80%, and more 140 of the 

480 proteins are predicted at the level of 90% Q3.  

 

Less than 20 proteins of the 480 are predicted at the level of 10%, 30%, 40%, 

50%, and 60% Q3. About 20 proteins are predicted at the level of 20% and 100% Q3. 

Figure 5.4 also shows that the SOV measure for NN-II scored less compared to the 

Q3 measure. About 80 proteins of the 480 scored the level of 70%, 140 proteins 

scored 80% SOV value, and more than 100 proteins scored 90%. Since SOV is a 

measure of quality and usefulness of predictors, this value showed that NN-II 

method is of high quality and more useful than GOR-V method. 
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Figure 6.4: The performance of the NN-II prediction method with respect to Q3 and 
SOV prediction measures 
 
 

Table 6.2 shows the Q3 predictions of the NN-II methods for all the three 

states of secondary structure separately and together. The prediction for helices (QH) 

is 70.77%, for strands (QE) is 68.72% with relatively high standard deviation of 

about 30% for each. The coils (QC) are predicted with a higher accuracy of 78.92% 

with a low standard deviation of 15.18%. The overall Q3 for all states is 73.58% with 

standard deviation of 17.82%. The Q3 of this neural network method (NN-II) is 

lower than that of the profile PHD method of where a similar architecture of the 

PHD is followed in the NN-II. The PHD scored 75.1% (Rost, 2001) Q3 where NN-II 

method scored 73.6%. The different training procedure and different data set used for 

each method led to this drop in NN-II method prediction but the difference is very 

small and the two methods are still comparable.   

 

Table 6.3 shows the results of the SOV measure regarding NN-II method. 

The SOV for strands and coils are below 70% which are 68.47 and 67.29, 

respectively, while for helices is 71.37%. This is better than the SOV of PHD 

method which is 70% (Rost, 2001).  
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The Matthews correlation coefficients (MCC) for the NN-II method are 

shown in Table 6.4. The MCC are 0.65, 0.56, and 0.53 for helices, strands, and coils, 

respectively. These correlation coefficients showed that the NN-II method could 

successfully relate unpredicted residues to their correspondent classes with relation 

that is better than that of NN-I and GOR-IV methods but not better than that of the 

GOR-V method. However, these coefficients are almost the same as for the PHD for 

the helices and coil states (0.64 and 0.53) and less as for the strand state which is 0 

.62 for the PHD (Rost, 2001). 

 

 

 

 

6.7 Assessment of PROF Method 
 
 
The PROF Method is briefly described in the methodology chapter of this 

report and fully described in the work of Ouali and King (2000). PROF is cascading 

multiple protein secondary structure classifier or predictor that uses neural networks, 

GORI-IV, linear and quadratic discrimination, and voting methods. PROF uses a full 

jack-knife training method and reported reaching a Q3 of 76.70% prediction 

accuracy.  

 

The general performance of the PROF method is elucidated in Figure 6.5. 

Among the 480 proteins, proteins that scored a Q3 accuracy of 10%, 20%, 30%, 

40%, and 50% are less than 20 proteins for each. About 30 proteins scored a Q3   of 

60% and more than 50 proteins reached a Q3 of 70%. More than 160 proteins scored 

an accuracy of 80% and 90% while less than 10 proteins reached the level of 10% Q3 

accuracy. 
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Figure 6.5: The performance of the PROF prediction method with respect to Q3 and 
SOV prediction measures 

 

 

The SOV measure for the PROF (Figure 6.5) achieved more or less similar 

scores to that of the Q3 except that more than 60 proteins scored a SOV value that is 

equal to 100% and the 80% and 90% level is achieved by less than 140 proteins for 

each. 

 

Table 6.2 shows that PROF has achieved accuracy of 70.65% and 68.29% for 

helices and strands, with standard deviations of 31.39% and 28.09%, respectively. 

These results are less than what had been reported by Ouali and King (2000) in their 

original work of PROF where their reported accuracy for helices and strands are 

70.8% and 71.6% with standard deviations of 29.8% and 25.3%, respectively.  
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6.7.1 Three States Performance of PROF Method 
 
 
The performance accuracies (Q) of the helices, strands, and coils states of 

PROF method in this work compared to other methods studied in this research are 

elucidated in Figure 6.6, Figure 6.7, and Figure 6.8, respectively. 
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Figure 6.6: The α  helices performance (QH) of the seven prediction methods 
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Figure 6.7: The β strands performance (QE) of the seven prediction methods 
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For coils, PROF in this work achieved an accuracy of 79.38% with standard 

deviation of 13.68%; both numbers showed an overestimation of coils and its 

standard deviation compared to the original work of PROF which scored 77.2% with 

standard deviation of 10.9%. Figure 6.8 explains the behaviour of coils prediction 

accuracies of the PROF in this wok with respect to the 480 proteins. 

 

Figures 6.6, 6.7, and 6.8 elucidated how the three states of protein secondary 

structure (helices, strands, and coils) for the different proteins responded to the 

PROF classification in this work or how PROF predicted or classified these states of 

proteins to secondary structure from their original amino acids. In Figure 6.6 the 

curve of PROF helices creeps almost in pattern that is almost similar to NN-II 

prediction but far below that of which revealed that helices of PROF of this 

experiment and helices of NN-II are classified with almost the same accuracy and 

reliability. In Figure 6.7 the curve shows that the strands of PROF for the 480 

proteins are predicted with a pattern that is relatively just better than that of NN-II 

strands a fact that is confirmed by the SOV measure shown in Table 6.3.  

 

In Figure 6.8, the coils curves show a different pattern that of the helices and 

strands. There are no more than 30 proteins helices and coils are predicted at 

accuracy of zero for all the seven classification methods. The curves show that PROF 

in this experiment predicts the coils of the 480 proteins at higher accuracy than that 

of NN-II. However, a detailed comparison of the seven methods trends in prediction 

will be made in the next section of this chapter. 
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Figure 6.8: The coils performance (QC) of the seven prediction methods 

 
 
 
 

6.7.2 Overall Performance and Quality of PROF Method 
 
 
The overall Q3 accuracy of PROF in this work is 75.03% with standard 

deviation of 14.74. This result shows that the Q3 accuracy in this work is less than the 

previously reported 76.7% result for the PROF. Also the standard deviation in this 

PROF is greater than that of the original PROF which scored a standard deviation of 

8.6%. The prediction of PROF of this work reveals that the proteins had been 

predicted in scattered and dispersed prediction rather than closely prediction 

compared to the original PROF. This result is supported by the histogram shown in 

Figure 6.5 as many proteins are predicted with very low accuracies and other with 

very high accuracies. 

 

The SOV measures for PROF are shown in Table 6.3. The SOV for helices, 

strands, and coils are 73.49%, 69.80%, and 69.75% with standard deviations of 

30.62%, 30.53%, and 18.95%, respectively. These results are almost similar to that 

reported for PROF with 71.1%, 75.6%, and 71.1% for helices, strands, and coils with 

 



 133

standard deviations of 29.9%, 26.0%, and 15.0%, respectively. The overall SOV for 

PROF in this experiment that combines all the three secondary structures states is 

72.74 with standard deviation of 20.51 compared to 73.7 with standard deviation of 

13.9 for the original PROF Ouali and King(2000). The above figures revealed that in 

general the original PROF experiment is of somewhat high quality and more useful 

than the PROF of this experiment. However, the margin of differences here is 

acceptable since each experimental work is conducted in a different environment 

(Rost, 2001; Cuff and Barton, 1999; Cuff and Barton, 2000). 

 

Table 6.4 shows the Matthews correlation coefficients of helices, strands, and 

coils for the PROF experiment. The figures showed that the MCC are 0.71, 0.63, and 

0.57 for helices, strands, and coils, respectively while the figures reported in the 

original PROF are 0.71, 0.63, and 0.57 for the same states, respectively. Surprisingly 

the figures are identical for each state in this experimental work and that of the 

original PROF. Matthews’ correlation coefficients give an indication of how 

predicted states are in relation with observed states with a value near zero means that 

there is almost no relation between predicted states and observed states and a value 

near one means there is strong relation between predicted and observed states.  

 

If we define the entropy as how much information a random variable carries 

or the amount of information needed to describe such a random variable (Baldi et al., 

2000; Crooks and Brenner, 2004; Crooks et al., 2004), we will recognize that 

Matthews’ correlation coefficients carry a high entropy than the SOV measure since 

MCCs take into accounts the value of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). More discussion about correlations and 

entropy will be found in the next chapter of this report. 

 

The PROF performance, quality, and reliability are far better than that of NN-

II, GOR-V, GOR-IV, and NN-I ones. This concluding point could be clearly 

depicted from Table 6.2, Table 6.3 and Table 6.4 which is a true result because 

PROF combines several methods of predictions (Rost, 2001) as explained in the 

methodology chapter. 
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6.8 Assessment of NN-GORV-I Method 
 
 
The NN-GORV-I method is the new method that has been developed in this 

research work. The method combines the new GOR-V method and the NN-II method 

which are explained and evaluated earlier in this chapter and the methodology 

chapter. At the beginning of this work GOR-V was just an idea and some theoretical 

points that had not yet being implemented. GOR-V is based on the information 

theory that founded the previous GOR methods while NN-II is based on the work of 

many researchers in the area of protein secondary structure that is sparked by the 

work of Quian and Sejnowski (1988) and refined by several recent workers (Rost 

and Sander, 1993; Cuff and Barton, 1999, Ouali and King 2000). 

 

Figure 6.9 illustrates the performance of Q3 and the SOV measure of NN-

GORV-I method. The histogram Q3 is significantly different of the other histograms 

of NN-II, GOR-V, and PROF. The figure shows that most proteins of the 480 

proteins scored a Q3 of above 50%. About 180 proteins scored a Q3 of 80% while 

above 100 proteins scored a Q3 accuracy of 70% and just below 100 proteins scored 

an accuracy of 90%. This sums up to 380 proteins of the 480 that achieved between 

70%-90% Q3 accuracies which is means that around 80% of the proteins achieved 

these high scores. However, few proteins which are less than 10 scored a Q3 of 100% 

accuracy. 

 

The SOV measure for NN-GORV-I (Figure 6.6) pushed up the 100% 

predictions to above 50 proteins and brought down the 80% predictions to about 120 

proteins. The SOV scores for the 70% and 90% remained in the range of 100 

proteins compared to Q3 scores. The histogram of the SOV figure showed that there 

are more proteins predicted at high level of SOV accuracies than that of NN-II, 

GOR-V, and PROF; a result which revealed that the NN-GORV-I method is more 

useful and of high quality prediction than the previously discussed methods. 
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Figure 6.9: The performance of the NN-GORV-I prediction method with respect to 
Q3 and SOV prediction measures 

 
 
Table 6.2 shows the results of NN-GORV-I prediction accuracies for helices 

(QH), strands (QH), coils (QC), and all the three states together (Q3). The results 

showed that   NN-GORV-I gained an accuracy of 76.56 with standard deviation of 

27.17 for alpha helices (QH), a result that is far better than the PROF prediction in 

this experiment for the same state which is 70.65 with standard deviation of 31.39. A 

gain of 6 points with lower standard deviation implied that the NN-GORV-I method 

is superior to PROF method in the performance of alpha helices with more closed or 

homogenous predictions towards the 100% accuracy side.  

 

The same score of α alpha helices (QH) of the original PROF showed that the 

score for these states is 70.8% with standard deviation of 29.8% (Ouali and King, 

2000) which almost behaved exactly like the PROF of this experiment and hence the 

same above conclusion which says the NN-GORV-I method is superior to PROF 

method in the performance of alpha helices with more closed or homogenous 

predictions towards better accuracy, applies in this case.  
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NN-GORV-I results for beta strands and coils are 68.54% and 79.44% with 

standard deviations of 28.22% and 12.65%, respectively. These results are almost the 

same as those are shown by PROF in this experiment (Table 6.2). However, the 

overall Q3 accuracy of NN-GORV-I method is 79.22% with standard deviation of 

10.14. The Q3 accuracy result  of this method is about 4% better and the standard 

deviation is also about 4% less (better) than that is scored by PROF in this 

experimental work (Table 6.2).  

 

The Q3 results of the original PROF for the beta strands and coils are71.6% 

and 77.2% with standard deviations of 25.3% and 10.9%, respectively. In comparing 

these results with Table 6.2, Figure 6.8, and 6.9, it suggests that the beta strands and 

coils of the original PROF performed better with slightly more homogenous 

predictions than that of the NN-GORV-I method.  

 
 
 
 

6.8.1 Three States Quality (SOV) of NN-GORV-I Method 
 
 
Table 6.3 shows the SOV measure for the NN-GORV-I method for the 

secondary structure separately as well as the overall SOV. The SOV measure is 

76.93%, 70.76%, and 72.90% with standard deviations of 27.82%, 29.33%, and 

14.47% for alpha helices, beta strands, and coils, respectively.  

 

These results are further portrayed in the using the line graphs as shown in 

Figure 6.10 for helices, Figure 6.11 for strands, and Figure 6.12 for coils. Figure 6.10 

curves depicted that alpha helices of the NN-GORV-I method for the 480 proteins 

are predicted with SOV measure pattern that exhibits a large margin above PROF of 

this work. This suggested that the dominant number of proteins helices is superior in 

their quality and usefulness to that of the PROF method. 
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Figure 6.10: The helices segment overlap measure (SOVH) of the seven prediction 
methods 
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Figure 6.11: The strands segment overlap measure (SOVE) of the seven prediction 
methods 
 
 

In Figure 6.11, the curves illustrated that although the NN-GORV-I method 

SOV prediction of the strands states outperformed that of the PROF in this 

experiment, the margin is very small and the curves are running close to each others 
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through the 480 proteins. This is in agreement with which had been reported by 

Ouali and King (2000) that PROF predicts strands with high accuracy and reliability. 

This pattern, of course, shows that NN-GORV-I method prediction for strands has 

high quality and more useful.  

 

As far as coils are concerned, Figure 6.12 presented the curves of the coils 

SOV measure for the seven classification or prediction methods. Unlike the SOV of 

helices and strands curves, the SOV of coils curves show that there are no proteins 

predicted the level of zero SOV measure. The figure also showed that the NN-

GORV-I method curve pattern is always above that of PROF in this work. 
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Figure 6.12: The coils segment overlap measure (SOVC) of the seven prediction 
methods 
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6.8.2 Overall Performance and Quality of NN-GORV-I Method 
 
 
The above analysis of the SOV measure for all the three states, helices, 

strands, and coils clarified that the predictions of the NN-GORV-I are far better than 

that scored by PROF method of this work. The results simply reveal that the NN-

GORV-I method has high quality and more useful of than the PROF method. 

 

Table 6.4 illustrate the results of the Matthews’ correlation coefficients for 

the NN-GORV-I method. The coefficients are 0.77, 0.70, and 0.65 for alpha helices, 

beta strands, and coils, respectively. These figures are highly better than that of 

PROF and of course all the previously discussed methods (Table 6.4). These results 

revealed that NN-GORV-I method predicted states are more reliably related to the 

observed states. It is obvious that the figures and numbers of NN-GORV-I method 

carry more information about prediction than that of the PROF method. 

 

Comparing the overall performance of the NN-GORV-I method with the 

original PROF needs a look at Table 6.2, Table 6.3, and Table 6.4 with all the 

corresponding figures. The prediction accuracies for helices (QH), strands (QE), and 

coils (QC) for the original PROF are 70.8%, 71.6%, and 77.2% with standard 

deviations of 29.8%, 25.3%, and 13.9%, respectively (Ouali and King, 2000). There 

is about 6% points in NN-GORV-I helices (QH) prediction higher than that of the 

original PROF while strands prediction of 3% have higher accuracy than of the NN-

GORV-I strands (Table 6.2). This conclusion supports the findings reported by the 

authors of PROF that PROF predicts strands with relatively higher accuracy than 

other predictors. For coils, the NN-GORV-I prediction is more than the original 

PROF with about 3%. However, the overall performance of the NN-GORV-I Q3 

accuracy is about 2.5% better than original PROF. This result indicates that the NN-

GORV-I outperform the original PROF in predicting protein secondary structure. 
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6.9 Assessment of NN-GORV-II Method 
 
 
This section discusses and compares the findings of the seven prediction 

methods or algorithms examined in this research work. The NN-GORV-II is the 

method developed in this work to be an outstanding protein secondary structure 

classifier that predicts secondary structures from their amino acid sequences. As 

described in the previous section, the NN-GORV-I is developed by combining neural 

network method with GOR-V. The NN-GORV-I is further refined by using a 

filtering mechanism to the searched sequences database to mask low complexity 

regions. The pfilt program (Jones and Swindells, 2002) is used for this purpose. 

Although, there are limited changes to NN-GORV-I method, the use of the filtering 

mechanism to the searched database yields a different version of the NN-GORV-I 

which is called NN-GORV-II method. 

 
 
 
 

6.9.1 Distributions and Statistical Description of NN-GORV-II Prediction 
 
 
Figure 6.13 shows histograms of the performance of the Q3 prediction 

accuracies and the segment overlap (SOV) measure of the 480 proteins. It shows that 

there is almost a negligible number of proteins that score a Q3 below 50% and there 

are about 80 proteins score Q3 predictions below 70% while other proteins scored 

above 70% with 180 proteins score 80% and about 140 proteins score 90%. This 

distribution of Q3 scores have a tendency towards the 80% and 90% scores, making 

the average Q3 score of NN-GORV-II method touches the 80% prediction accuracy.  
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Figure 6.13: The performance of the NN-GORV-II prediction method with respect to 
Q3 and SOV prediction measures 
 

 
Table 6.5 elucidates these results in more details by rendering the Q3 

descriptive statistics of the secondary structure states. As for helices and strands of 

the NN-GORV-II method, the minimum predictions are 0.0% and the maximum are 

100% and then the ranges are 100% for each state. The coils minimum prediction is 

20% and maximum is 100% while the range is 80%.The minimum for the whole Q3 

prediction is 0.0% pushing the maximum to 97.4%. The mean standard deviation 

errors and variances are higher for the helices and strands states compared to the coil 

state and the whole Q3 prediction. 

 

The SOV measure in Figure 6.13 elucidates that NN-GORV-II method 

showed a different histogram than that of Q3 performance. Among the 480 proteins 

there are about 60 proteins scored below 50% and about 60 proteins scored 100% 

SOV score. The rest of the proteins achieved score above 50% and below 100% with 

120 proteins scored 80% SOV accuracy. This distribution of the SOV of NN-GORV-

II method brought down the SOV score to the 76.27 level. 
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Table 6.5: Descriptive Statistics of the prediction accuracies of NN-GORV-II 
method 
 

Structure Min Max Range Mean 

Mean  
Std. 
Error 

Std 
Dev Variance 

QH
 

0.0 100.0 100.0 77.40 1.21 26.53 704.09 

QE
 

0.0 100.0 100.0 77.12 1.25 24.19 751.87 

QC
 

20.0 100.0 80.0 79.99 0.54 11.75 138.52 

Q3 0.0 97.4 97.4 80.49 0.46 10.21 102.54 
 

 
The above NN-GORV-II method SOV histogram of Figure 6.13 is further 

explained by the figures of Table 6.6. The minimum for helices and strands of the 

NN-GORV-II are 0.0% while the maximum are 100% with ranges of 100% each. 

The minimum for coils is 10% while the maximum is 100% with a range of 90%. 

The overall SOV minimum is 0.0% while the maximum and then the range is 98.8%. 

The high variances and standard deviations are shown by helices and strands while 

the low variances and standard deviations are shown by coils and the overall SOV. 

This indicates that the helices and strands scores are more dispersed than the scores 

of coils and overall predictions. The low mean SOV value of coils indicted that coils 

prediction for the NN-GORV-II method is of less quality and usefulness compared 

helices and strands that showed higher mean value and hence more useful and of 

high quality SOV scores. 

 
 
Table 6.6: Descriptive Statistics of the prediction of SOV measure for NN-GORV-II 
method 
 

Structure Min Max Range Mean 
Mean 

Std. Error 
Std 
Dev Variance 

SOVH
 

0.0 100.0 100.0 77.96 1.23 26.92 725.13 

SOVE
 

0.0 100.0 100.0 79.94 1.32 24.57 840.46 

SOVC
 

10.0 100.0 90.0 74.35 0.65 15.53 203.96 

SOV3 0.0 98.8 98.8 76.27 0.75 17.50 267.58 
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Throughout the previous sections, results and discussion have been directed 

to explaining the performance, the quality, and the usefulness of the seven prediction 

methods. In the following section a detailed comparison of these methods will be 

explored. 

 
 
 
 
6.9.2 Comparison of NN-GORV-II Performance with Other Methods 
 
 

Figure 6.14 represents a histogram that elucidates the performance of the 

seven classification or prediction methods. It shows the seven classifiers Q3 accuracy 

from the 50% level and above. Based on the nature of the composition of protein 

secondary structure, it is worth mentioning that prediction accuracy of 50% is worst 

than random guess. Baldi et al., (2000) in their study about different protein data sets 

showed that the Q3 accuracy for coil states is 48%. This number can be approximated 

to 0.5 probability of an event to occur; leading for detailed discussion about the 

dichotomous analysis in the next chapter.  

 

Figure 6.14 shows the seven classifiers against their Q3 accuracies. The NN-I 

method predicted about 30 proteins at the level between 50-55% and the PROF and 

NN-II methods predicted below 20 proteins for each respective level. This illustrates 

that these classifiers or predictors predict a considerable number of proteins at this 

low level of 50-55%. The NN-GORV-II predicts about 10 proteins at this level 

which suggested that the prediction ability of this method is negatively brought down 

by these proteins. However, the other three predictors which are GOR-IV, GOR-V, 

and NN-GORV-I methods are not shown at this low range of prediction accuracy. 
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NN-I and GOR-IV methods predict around 120 proteins each at the level of 

55-65%. The rest of the prediction methods predicted less than 20 proteins each 

except the PROF which predicted about 30 proteins at the 55-65% level. This 

revealed that the NN-I and GOR-IV methods accuracies are much influenced by the 

55-65% level of Q3  prediction accuracy while the rest of  the prediction methods are 

less influenced by this prediction level and  PROF is somewhat influenced by this Q3 

level.  
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Figure 6.14: Histogram showing the Q3 performance of the seven prediction methods  
 
 

At the 65-72% Q3   GOR-IV and NN-I predicted about 170 of the 480 

proteins each while the rest of prediction methods predicted about 50 proteins at this 

Q3 level. Again these results elucidated that GOR-IV and NN-I more predicted 

abundantly at this Q3 level while the remaining prediction methods are predicted 

with less numbers of proteins at this Q3 prediction level. This result explained that 

GOR-IV and NN-I methods predicted more proteins at this level and hence the final 

score for each will be affected by this Q3 level and the level below it (55-65%) as 
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shown in Figure 6.14 while the rest of the methods predicted less proteins and hence 

these methods might be affected by other higher Q3 prediction levels. 

 

At the 75-80% Q3 prediction level, NN-II method predicted about 180 

proteins while NN-GORV-I, NN-GORV-II, and PROF methods predicted about 165 

proteins each (Figure 6.14). GOR-V predicted above 120 proteins while NN-I and 

GOR-IV methods predicted around 80 proteins each. This revealed that NN-II, NN-

GORV-I, NN-GORV-II, and PROF prediction methods predicted more proteins in 

the 75-80% level rather than lower levels of Q3 prediction which will shift the 

prediction accuracies of these methods towards the high level of prediction 

accuracies. NN-I and GOR-IV methods predicted less protein at this level and more 

protein at lower levels as we discussed above and hence the predictive abilities of 

these two prediction methods are shifted towards lower prediction levels. GOR-V 

appears to have predictive accuracy between the two groups of prediction methods 

mentioned above. 

 

At Q3 prediction level of 85-90%, NN-GORV-I, NN-GORV-II, and GOR-V 

methods predicted above 180 proteins each, while PROF predicted below 180 

proteins and the NN-II method predicted around 140 proteins. GOR-IV method did 

not predict any number of proteins at this level and NN-I predicted around 10 

proteins. These results suggested that at this high level of prediction the NN-GORV-

I, NN-GORV-II, GOR-V, and to a lesser extend PROF predicted many proteins at 

this level of Q3 prediction (85-90%) which may push the level of accuracy of these 

predictors to a high level. The non appearance of GOR-IV at this Q3 high level of 

prediction implied that GOR-IV is less accurate than the other predictors mentioned 

here. 

 

Figure 6.14 shows the Q3 prediction level of above 90-100% which is the 

highest level can be achieved to predict a protein. NN-GORV-II method predicted 

about 40 proteins while NN-GORV-I method and NN-II predicted about 25 proteins 

each at this level. GOR-V predicted about 15 proteins while the rest three prediction 

methods predicted less than 10 proteins each. These results supported the suggestion 

that NN-GORV-II predicts many proteins at Q3 higher accuracy level compared to 
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the other prediction methods followed by NN-GORV-I method. NN-II predicted 

more proteins at this high level of prediction which suggested that this method will 

be pushed towards the high accuracy level while PROF predicted fewer proteins here 

which will drop its accuracy towards the previous levels.  

 

However, Table 6.2 showed that NN-II scored a lower level of Q3 accuracy 

than PROF; this can be explained by the fact that NN-II showed a higher standard 

deviation than PROF (Table 6.2) which made the prediction of NN-II scattered 

distribution prediction. GOR-IV and NN-II predicted very few proteins at this high 

level of accuracy (90-100%) while predicted many proteins at the level of 55-65% 

(Figure 6.14) a result suggested that these two methods among the low performance 

predictors of the seven prediction methods. 

 

In conclusion, Figure 6.14 explains that the histograms distributions illustrate 

NN-GORV-II and NN-GORV-I outperform all other classifiers or prediction 

methods. However, NN-I and GOR-IV are the lowest performing classifiers and 

GOR-V, NN-II, and PROF are intermediate classifiers. 

 

Figure 6.15 is a line graph designed to test the ability of the seven prediction 

methods, and how they behave in the prediction of the 480 proteins. An ideal line for 

an ultimate predictor is a line parallel to the  axis at a point of axis equal to 100. 

When y equals to 50 for the same parallel line then the line represents a random 

guess for the coils states predictor. A line travels parallel to the  axis at 

x y

x y  equals to 

33.3 is as worst (poor) as random guess of a prediction. The figure resembles the 

reliability index (RI) for predicting proteins similar to that proposed by Rost (2003); 

that is to show the prediction methods did not only restrict their predictions to the 

most strongly predicted residues.  It is also equivalent to the scale that discussed by 

Eyrich et al., (2003) which plotted the accuracy versus coverage for subset of 205 

proteins. 

 

Figure 6.15 shows that NN-GORV-II line is travelling from Q3 near 40% 

then steadily increasing accuracy to reach just below 100% assign the 480 proteins of 

the database. NN-GORV-II method line is above all the other six lines of other 

 



 147

prediction methods. The NN-GORV-I method line is just below the above line with 

small merging of dropping in accuracy. From the graph it can be concluded that the 

margin between NN-GORV-II line and NN-GORV-I line is the effect of pfilt 

program that mask low complexity regions of the data base as explained in the 

methodology. NN-GORV-II method is the second version of NN-GORV-I method 

that has been developed in this work, outperforming all the other methods as the 

figure shows. 
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Figure 6.15: A graph line chart for the Q3 performance of the seven prediction 
methods. 

 
 
The same graph (Figure 6.15) shows that GOR-IV method travels from Q3 

prediction accuracy near 20% and then increases steadily until it reaches 85% 

spinning through the 480 proteins. GOR-IV line is under all the other six lines 

followed by NN-I method line just above it with very minor margin following a 

similar pattern indicting that GOR-IV method is the poorer performing prediction 

method followed by NN-I method. GOR-V method, NN-II method, and PROF 

method lines are in between the above mentioned four methods lines. GOR-V line is 

below the NN-II line while PROF line is above them and of course below the NN-

GORV-I method and NN-GORV-II method lines. This graph elucidated that these 
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three methods are in between the NN-GORV-I and NN-GORV-II methods and 

GOR-IV and NN-I methods as far as Q3 performance is concerned. 

 

To conclude Figure 6.15, the newly developed method (NN-GORV-II) that 

combines GOR-V method and NN-II method is superior to all other methods studied 

in this work. Individual performance of GOR-IV and NN-I proved to be the poorest 

among other methods. 

 
 
 
 

6.9.3 Comparison of NN-GORV-II Quality with Other Methods 
 
 
Figure 6.16 shows a histogram of the SOV measure for the seven prediction 

methods. SOV has an ability to discriminate between similar and dissimilar segment 

distributions. This definition reflects the quality of prediction rather than a score or 

performance measure as discussed earlier. 
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Figure 6.16: Histogram showing the SOV measure of the seven prediction methods  
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The distribution of the proteins according to each level of SOV followed 

almost the same pattern of Q3 prediction accuracy. At the 50-60% SOV level, GOR-

IV and NN-I methods predicted about 120 proteins each while the rest of the 

methods predicted 25 proteins each. For the 60-70% SOV level again GOR-IV and 

NN-I methods predicted about 150 proteins each while the rest of prediction methods 

predicted above 60 proteins each. At the 70-80% SOV level GOR-IV and NN-I 

methods predicted less than 100 proteins each while the rest of prediction methods 

predicted more that 140 proteins each.  

 

Figure 6.16 also shows that when SOV level between 80-90% GOR-IV and 

NN-I methods predicted about 20 proteins each while the other five methods 

predicted about 125 proteins each. At the last SOV level which is 90-100%, GOR-IV 

and NN-I methods predicted less than five proteins each while NN-GORV-II and 

NN-GORV-I predicted about 65 proteins each. The PROF predicted 60 proteins; 

GOR-V predicted about 40 proteins, while NN-II predicted about 20 proteins at this 

high level of SOV.  

 

These results elucidated that GOR-IV and NN-I methods predicted more 

proteins at lower levels of SOV while they predicted fewer proteins at higher levels 

of SOV. This is in contrast with the remaining five prediction methods which 

predicted more proteins at higher SOV levels. Among the five methods, NN-GORV-

II, NN-GORV-I, and PROF predicted more proteins at the high level (90-100%) of 

SOV than the other two methods GOR-IV and NN-II. These results confirmed that 

NN-GORV-II and NN-GORV-I methods are of high quality prediction. The 

relatively many proteins predicted by GOR-V method at this high level of SOV 

compared to NN-II is confirmed by the Matthews correlation coefficients (Table 6.4) 

that is although NN-II outperformed GOR-V (Table 6.2), GOR-V prediction is of 

high quality and more useful than NN-II prediction. 

 

It is clear that from the above results of Figure 6.14 and Figure 6.15, and 

Figure 6.16 NN-GORV-II method is superior and of high quality prediction method 

compared to other methods while NN-I and GOR-IV methods are the less accurate 

and of low quality methods. This concludes the discussion on the above two figures. 

 



 150

 
Figure 6.17 shows a line graph illustrates the same lines for the seven 

prediction methods but representing the SOV measure this time. Since the SOV 

measure is a measure of quality and reliability rather than performance, this figure 

shows the quality of each prediction method. NN-GORV-II and NN-GORV-I 

methods lines are above all the other five methods lines (Figure 6.17). The two lines 

are travelling through the proteins in the same pattern with a very small margin 

favouring NN-GORV-II method. This confirms the findings that NN-GORV-II and 

NN-GORV-I methods predictions are the most reliable and of high qualities 

predictions.  
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 Figure 6.17: A graph line chart for the SOV measure of the seven prediction 

methods 

 
 
The lines for NN-I and GOR-IV are almost identical but below all the other 

methods lines indicting that the prediction of these two methods are of low quality 

and less useful. NN-II and GOR-V methods lines are almost identical most of the 

time with a very little margin favouring GOR-V. This confirmed the fact that 
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although GOR-V performance is low compared to the NN-II performance, it 

exhibited a high quality prediction. Figure 6.17 shows also PROF line is travelling 

below NN-GORV-I and NN-GORV-II lines but above all the other four lines. This 

indicted that PROF is the third prediction method as far as quality is concerned.  

The lines of Figure 6.17 confirm the facts revealed by Figure 6.16 that the 

newly developed method in this work (NN-GORV-II) method has the highest 

performance and the highest quality among all the seven methods studied in this 

work. This is followed by the NN-GORV-I, PROF, NN-II, GOR-V, NN-I, and GOR-

IV methods, respectively. 

 
 
 
 

6.9.4 Improvement of NN-GORV-II Performance over Other Methods 
 
 
The following sections will discuss the gain and improvement of the 

prediction methods developed in this work. The NN-GORV-II is an advanced 

version of NN-GORV-I developed by combining two methods in this work, GOR-V 

and NN-II. 

 

Table 6.7 shows the improvement of the prediction accuracy of helices, 

strands, coils, and all the three secondary structure sates together of NN-GORV-II 

over the other six methods. The improvement of NN-GORV-II method over NN-I 

and GOR-IV is very high which is above 19% improvement for the helices, and 

strands states but below 10% improvement for the coil states. However, the overall 

performance improvement (Q3) of the NN-GORV-II method over NN-I and GOR-IV 

is above 16% which is a very big gain in secondary structure prediction accuracy. 

This result is not surprising since the two low performance predictors did not 

implement a multiple sequence alignment method to get use of the long range 

interactions of residues in the amino acid sequences. 
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Table 6.7: Percentage Improvement of NN-GORV-II method over the other six 
prediction methods  
 

Prediction 
Method 

Q3 QH QE QC Q3 

Improvement

QH 

Improvement

QE 

Improvement

QC 

Improvement

NN-I 64.05 57.29 57.39 74.1 16.44 20.11 19.73 5.89 

GOR-IV 
 

63.19 57.02 51.86 71.95 17.3 20.38 25.26 8.04 

GOR-V 
 

71.84 68.4 63.68 78.92 8.65 9.0 13.44 1.07 

NN-II 
 

73.58 70.77 68.72 78.33 6.91 6.63 8.40 1.66 

PROF 
 

75.03 70.65 68.29 79.38 5.46 6.75 8.83 0.61 

NN-GORV-I 
 

79.22 76.56 68.54 79.44 1.27 0.84 8.58 0.55 

NN-GORV-II 80.49 77.4 77.12 79.99 0 0 0 0 

 
 
GOR-V is one of the two methods that formed the NN-GORV-II method and 

hence the improvement over this method is of special importance. Table 6.7 showed 

that the improvements of the NN-GORV-II method over GOR-V are 9.0%, 13.44, 

and 1.07 for helices states (QH), strands (QE), and coils (QC), respectively. The 

improvements in helices and strands states are considerably high, especially for the 

strands since strands are known to be difficult to predict. The improvement in coil 

state is very low and this might be good sign that NN-GORV-II method is a high 

performance predictor since its gain is not from the coil states since most predictors 

over predict coil states.  

 

When a prediction method gains an improvement in its helices and strands 

states, this means that this predictor is able to differentiate and discriminate between 

the three secondary structure states. That is because coils states are usually over 

predicted due to their high availability in the protein data set. As mentioned earlier a 

random guess of about 50% accuracy represent a right prediction for the coil states. 

The overall improvement (Q3) of the NN-GORV-II method over the GOR-V method 

is 8.65%. The reported accuracy of GOR-V is 73.5% (Kloczkowski et al., 2002) 

which means an improvement of 6.99% is gained. Anyhow, whatever compared to 

the reported accuracy of GOR-V or the calculated accuracy in this experimental 

work, the improvement of the NN-GORV-II method performance over GOR-V is 

fairly high. 
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NN-II method is also one of the two methods that combined NN-GORV-II 

method. Table 6.7 shows the improvements of performance of NN-GORV-II method 

over the NN-II method are 6.63%, 8.4%, and 1.66% for helices (QH), strands (QE), 

and coils (QC) states, respectively. The improvement of Q3 of NN-GORV-II over 

NN-II is 6.91%. The improvements in the helices and strand states are considerably 

high while the improvement in the coil states is low and as discussed before the gain 

in accuracies of beta strands is the most important among the three states of 

secondary structure. Most modern neural network methods of secondary structure 

prediction in the literature reported accuracies from 70.5% and below 76.4% (Riis 

and Krogh, 1996; Cuff and Barton 2000; Rost, 2003). However, an overall gain of 

accuracy of about 5- 7% in the NN-GORV-II method over NN-II in this 

experimental work and other works is an excitingly high gain.  

 

Table 6.7 shows that the improvements of the NN-GORV-II method over the 

PROF method in this experimental work are 6.75%, 8.83%, and 0.61% for the 

helices (QH), strands (QE), and coils (QC), respectively. However, the improvements 

in the same states over the original PROF (Ouali and King, 2000), are 6.6%, 5.5%, 

and 2.8% for the helices (QH), strands (QE), and coils (QC), respectively. Unlike the 

original PROF, the gain of the NN-GORV-II method is very high for the helices and 

strands states over the PROF of this work while it is low for the coil states.  

 

The improvement in the coil states over the original PROF is considerably 

high. However, the overall gain (QE) of the NN-GORV-II method over the PROF 

method is 5.46% for PROF this work and 3.8% over the reported Q3 of the original 

PROF. The 3.8 -5.5% increment in the performance accuracy of the NN-GORV-II 

method over the PROF algorithm is considerably a significant gain in Q3 accuracy if 

we compare this work with the work of Cuff and Barton (2000) where their Jnet 

algorithm achieved a 3.1% gain in Q3 over the PHD (Rost and Sander, 1996) 

algorithm. 

 

The improvement of the NN-GORV-II over NN-GORV-I method results are 

shown in Table 6.7. As explained earlier the NN-GORV-I method is the first version 
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of NN-GORV-II method and the increments in accuracies shown in the table is the 

affect of pfilt program. Except for strands states where the Q3 accuracy improvement 

is 8.58%, the increments in accuracies for other states are very small and below 1% 

improvements. However, the overall increment in performance of Q3 is 1.27% which 

is considered as significantly good gain since both experiments are conducted in 

identical environments except the invoking of pfilt program in the NN-GORV-II 

case. 

 

Concluding the discussion about Table 6.7, the figures showed that the newly 

developed algorithm that combined the neural networks with information theory of 

GOR-V method is superior in performance to all methods tested here in this 

experimental work and most methods reported in the literature. The improvement in 

accuracies ranged from 5.5 % to 16.4% which is a significant gain in the domain of 

the protein secondary structure prediction. The pfilt program that masks low 

complexity regions in the searched database had even boosted the algorithm 1.27% 

further. 

 

Table 6.8 shows the SOV measures improvements of the NN-GORV-II 

method over the other methods. The gain in the overall SOV3 accuracies over the 

NN-I method and GOR-IV method are 15.33 and 14.20, respectively. The high gains 

in SOV over NN-I method and GOR-IV methods are expected since both methods 

did not use the multiple sequence alignment profile method to read more information 

from similar sequences (Cuff and Barton, 2000; Kaur and Raghava, 2003). Again the 

increments in SOV did reflect the fact that they are increments in prediction quality 

and usefulness rather that prediction performance. 

 
 
 
 
 
 
 

6.9.5 Improvement of NN-GORV-II Quality over Other Methods 
 
 
The overall SOV improvements of NN-GORV-II method over the GOR-V 

and NN-II methods that are the two methods which combined the NN-GORV-II 
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algorithm are 6.94% and 5.90%, respectively (Table 6.8). The most improvement in 

SOV is yielded from the strands states which recorded 15.94% and 11.47% for 

GOR-V and NN-II, respectively. 

 
 

Table 6.8: SOV percentage improvement of NN-GORV-II method over the other 
prediction methods 
 
Prediction 
Method 

SOV3 SOVH SOVE SOVC SOV3 

Improvement

SOVH 

Improvement

SOVE 

Improvement

SOVC 

Improvement

NN-I 
 

60.94 59.5 57.61 61.53 15.33 18.46 22.33 12.82 

GOR-IV 
 

62.07 60.81 56.01 62.34 14.20 17.15 23.93 12.01 

GOR-V 
 

69.33 70.87 64 66.63 6.94 7.09 15.94 7.72 

NN-II 
 

70.37 71.05 68.47 67.29 5.9 6.91 11.47 7.06 

PROF 
 

72.74 73.49 69.8 69.75 3.53 4.47 10.14 4.6 

NN-GORV-I 
 

76.55 76.93 70.76 72.9 -0.28 1.03 9.18 1.45 

NN-GORV-II 76.27 77.96 79.94 74.35 0 0 0 0 

 
 

A gain of about 6-7% in SOV over these two methods is significantly high 

gain and proved that combining two different methods of predictions that use 

different approaches might lead to an exciting improvement in protein secondary 

structure prediction usefulness and quality.  

 

The improvement of NN-GORV-II algorithm over the PROF algorithm 

which is described as cascaded multiple classifier by its authors (Ouali and King, 

2000) is shown in Table 6.8.  SOV improvements of 4.47%, 10.14%, and 4.6% for 

helices, strands, and coils respectively are achieved. This is considerable 

improvement especially for the strands states which is very high and indicted that 

NN-GORV-II algorithm predicted the strands states in a high quality prediction 

compared to the PROF method in this work. In this work, the overall SOV accuracy 

of NN-GORV-II algorithm is increased by 3.53% compared to PROF which revealed 

that the new NN-GORV-II method is of high quality and useful in protein secondary 

structure prediction. However, the improvement in overall SOV (SOV3) of the NN-

GORV-II method over the published PROF SOV (Ouali and King, 2000) is 2.57%. 
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This fact leads to same conclusion as mentioned above that the method developed in 

this work is superior to the PROF method in predicting protein secondary structure. 

 

The improvements in SOV of the NN-GORV-II method over the NN-GORV-

I method are small in helices and coil states while is very high in strands sates and 

reached 9.18% (Table 6.8). However, the high improvement in the SOV of strands 

states did not reflect on the overall SOV where the NN-GORV-I proved to have 

slightly better SOV than the NN-GORV-II method. The negative value of 0.28 in 

Table 6.8 suggested that although there is an improvement in the overall 

performance accuracy of NN-GORV-II method over the NN-GORV-I method the 

quality of this prediction is not as good as the prediction of NN-GORV-I method. 

 
 
 
 

6.9.6 Improvement of NN-GORV-II Correlation over Other Methods 
 
 
Table 6.9 shows the improvements in the Matthews correlations coefficients 

(MCC) of NN-GORV-II method over the other methods. It is important to recall here 

that MCC is an index that shows how strong the relation between predicted and 

observed values. The nearest the coefficient to 1.0 the stronger the relation, while the 

nearest the coefficient to 0.0 the lesser the relation between observed and predicted 

values.  There are significant improvements in the MCC of the NN-GORV-II method 

over the NN-I and GOR-V methods for all the secondary structure states ranging 

from 0.21-0.32 which indicated that the NN-GORV-II method is significantly 

containing high entropy or more information to describe the relation between 

predicted and observed values and its prediction is of more meaning than these two 

methods (Crooks et al., 2004; Baldi, et al., 2000). 

 

Table 6.9 also shows that the improvements in the MCC of the NN-GORV-II 

method over the GOR-V and NN-II are ranging from 0.08-0.13 for all the secondary 

structures sates; helices, strands, and coils. There are more improvements in the 

strand states compared to other states over both GOR-V and NN-II methods. This 

result revealed that the new developed algorithm by combining these two algorithms 

is superior in terms of describing more relations between predicted states and 
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observed ones with more emphasis to strands sates which are known to be difficult to 

predict. 

 
 

Table 6.9: Matthews Correlation Coefficients improvement of NN-GORV-II method 
over the other six prediction methods 
Prediction 
Method 

MCCH MCCE MCCC MCCH 

Improvement

MCCE 

Improvement

MCCC 

Improvement

NN-I  
 

0.4906 0.4124 0.4448 0.2838 0.2834 0.2053 

GOR-IV  
 

0.5283 0.3756 0.4382 0.2461 0.3202 0.2119 

GOR-V 
 

0.6859 0.5994 0.5675 0.0885 0.0964 0.0826 

NN-II 
 

0.6503 0.5641 0.5304 0.1241 0.1317 0.1197 

PROF 
 

0.7102 0.6291 0.5743 0.0642 0.0667 0.0758 

NN-GORV-I 
 

0.7736 0.6959 0.6494 0.0008 -0.0001 0.0007 

NN-GORV-II 0.7744 0.6958 0.6501 0 0 0 
 

 
As far as the improvements of the MCC of the NN-GORV-II method over the 

PROF method are concerned, Table 6.9 shows that the increments in helices, strands, 

and coils are 0.06, 0.07, and 0.08, respectively. These are considerable improvements 

in the entropy of these states if we define the entropy as the information need to 

describe variables (Crooks and Brenner, 2004; Baldi, et al., 2000). This result proved 

that the NN-GORV-II algorithm is not only superior in performance (Table 6.2) but 

also superior in describing the strength of the relations between observed and 

predicted states in its prediction. 

 

The increments in the MCC achieved in the NN-GORV-II method over its 

previous version NN-GORV-I are shown in Table 6.9. The improvements in helices 

states and coils states are very small and counted to 0.001 each. Although this is very 

minor gain in MCC coefficients but it indicated that the improvement in the 

performance of the NN-GORV-II over NN-GORV-I method (Table 6.2) is 

accompanied by improvements in the strength of the predictions for the helices and 

coil states.  However, Table 6.9 also shows a negative number (-0.0001) as the 

improvement in the MCC of the strand states of the NN-GORV-II method over NN-
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GORV-I method. This elucidated that the amount of information described NN-

GORV-I method prediction is a more than the information described NN-GORV-II 

method prediction.  

 

This result also concluded that the gain in performance of the strands states 

(Table 6.2) of the NN-GORV-II method over NN-GORV-I method is not coupled by 

same gain or in the entropy or the information describing this prediction. This result 

is also confirmed by the results of the SOV values in Table 6.8 which suggested that 

the NN-GORV-I method prediction is of higher quality and more usefulness than the 

NN-GORV-II method; a fact that might questioned the improvement achieved in 

performance by using pfilt program. 

 
 
 
 

6.10 Summary 
 
 
In this chapter, the performance of the seven methods conducted in this work 

is described and assessed in detail. The results confirmed that methods or algorithms 

that did not use sequence alignment profiles like GOR-IV and NN-I are found to be 

of very low performance ranging between 63-64% compared to other methods. 

When the above two methods used multiple alignment profiles and hence named 

GOR-V and NN-II, a significant gain in the accuracy has been achieved and reached 

the range of 73-75%. The PROF method conducted in this work with almost the 

same database and environment of the original PROF and has achieved accuracy 

performance almost similar to that reported in the original PROF. This facilitates the 

statistical comparison with the method developed in this work. 

 

The newly NN-GORV-II algorithm developed in this work which is an 

advanced version of NN-GORV-I algorithm developed in this work too, proved to be 

of superior performance that outperformed all algorithms implemented in the 

experimental work of this research. The NN-GORV-II algorithm outperformed the 

reported accuracy of the multiple cascaded classifier (PROF) method which is 76.7% 

(Ouali and King, 2000) and reached an accuracy of 80.84%. 
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The NN-GORV-II also proved that it is of high quality and more useful 

compared to the other methods. The method also proved that the entropy and the 

information used to describe its strength of prediction is more than the information 

used in the other prediction methods. However, the results proved that the NN-

GORV-II method is superior to the NN-GORV-I method in performance of the 

prediction but might not in the quality of the prediction. 

 



 
 
 
 
 

CHAPTER 7 
 
 
 
 

THE EFFECT OF DIFFERENT 
REDUCTION METHODS 

 
 
 
 
7.1 Introduction 
 
 

The widely known and used DSSP (Dictionary of Protein Secondary 

Structure) algorithm to assign the secondary structure categories to the 

experimentally determined three-dimensional (3D) structure has been used in this 

experimental work. Among other algorithms to conduct the same task of assigning 

secondary structures are STRIDE and DEFINE. As described by the DSSP authors, 

the DSSP works by assigning potential backbone hydrogen bonds which based on 

the 3D coordinates of the backbone atoms and subsequently by identifying repetitive 

bonding patterns The DSSP database is a database of secondary structure 

assignments for all protein entries in the Protein Data Bank (PDB) and the DSSP 

program was designed by Kabsch and Sander to standardize these secondary 

structure assignments (Kabsch and Sander, 1983; Kabsch and Sander, 1984). 

 

As mentioned in the methodology chapter, The DSSP algorithm classifies 

each residue into eight classes: H =>α  alpha helix; B =>residue in isolated β  

bridge; E =>extended strand, participates in β  ladder; G => 3-helix [3/10 helix]; I 

=> 5 helix [pi helix]; T => hydrogen bonded turn; S => bend; and “.”. Since the 

methods developed and or implemented in this experimental work used the three 

states of protein secondary structure, these eight classes are collapsed or reduced into 

the three standard classes associated with helices (H), strands (E), and coils(C). 
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The adopted reduction schemes from the mentioned eight states or classes to 

three classes of helices, strands, and coils are usually performed by using one of the 

five assignment or reduction methods or schemes discussed previously in the 

methodology chapter. 

 
 
 
 
7.2 Effect of Reduction Methods on Dataset and Prediction 
 
 

The mentioned reduction methods are well established for a long time and 

some of them have been established for decades (Kabsch and Sander, 1983). It was 

argued that the eight-to-three state reduction scheme can alter the prediction 

accuracy of an algorithm in a range of 1-3% (Cuff and Barton, 1999). It is worth 

mentioning that the purpose of this chapter is to study the effect of the reduction 

methods on the newly developed algorithm NN-GORV-II and its affect on prediction 

accuracy and quality. The NN-GORV-II algorithm has been tested using the five 

reduction methods, which facilitates the comparison of this algorithm with other 

prediction algorithms adopting any of these five reduction methods. 

 

In this experiment, Method II reduction has been adopted because it is 

considered to be among the stringent definitions of reduction. However, Method I 

usually results in lower prediction accuracy than other definitions or reduction 

methods. Method V is used to compare the effect of reduction schemes on prediction 

accuracy. 

 

Table 7.1 shows the numbers of helices, strands, and coils according to each 

of the reduction methods from the eight states to the three states. A PERL program 

was developed to make these assignments and count the number of the total residues 

in the database and then the numbers and the ratio of each secondary structure state. 

From Method I to Method V the number of states assigned as coils increased 

gradually.  
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Table 7.1: Percentage of secondary structure state for the five reduction methods of 
DSSP definition (83392 residues) 
 

Helix Strands Coils Reduction Method 
Number % Number % Number % 

Method I 
 

28851 35 18951 23 35590 43 

Method II 
 

28881 35 17810 21 36701 44 

Method III 
 

28851 35 17810 21 36731 44 

Method IV 
 

25807 31 18951 23 38634 46 

Method V 25807 31 17810 21 39775 48 
 

 

The percentages of coils for Method I is 43% and then increased to 44% for 

Method II and III until it reached 48% for Method V. The helices are 35% for the 

first three methods and then decreased into 31% for methods IV and V. the Strands 

are 23% for method I and IV while they are 21% for the other reduction methods. 

The above table clearly explains that the least numbers of residues assigned to the 

coils states are for Method I while the best numbers are for Method V. Method V 

revealed that half of the residues are assigned to the coils states (0.48  0.5).  ≈

 
 
 
 

7.2.1 Distribution of Predictions 
 
 
Table 7.2 shows the results of one way analysis of variance procedure 

(ANOVA) against the performance of prediction accuracy (Q3) of the five reduction 

methods. The ANOVA procedure tests for the hypothesis that what ever all means of 

the five methods are similar or there are significant differences between them. In 

other words, the importance of this test is to accept or reject the fact that the means 

of the performance of the five reduction methods differ significantly at the 0.05 or 

0.01 probability level or not. The same ANOVA test has been conducted for the 

SOV of the five reduction methods shown in Table 7.3. 
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Tables 7.2 and 7.3 show that the total degree of freedom of the test is 479 and 

that means 480 proteins (observations or entries) had been used in evaluating each 

method. Assignment for both between and within groups had been allocated at 

random; the total of sum of squares, is, however, the most important to determine the 

F-test. Method I is randomly chosen as a factor variable to compare methods with 

and among each others. 

 

Table 7.2 presents the results of the five reduction methods. It shows that the 

means are significantly different from each others at the 0.001 probability level, as 

far as their performance accuracies are concerned. This probability level suggested 

that we are more than 99% sure that these methods differ from each others. The same 

conclusion applies for Table 7.3, that the five reduction methods are significantly 

different from each other as far as their SOVs are concerned. It elucidates that the 

five reduction methods are different in their quality and usefulness. 

 
 
Table 7.2: The analysis of variance procedure (ANOVA) of the Q3 for the five 
reduction methods* 
 

Method  Sum of 
Squares 

df Mean Square F-test Significance 

Method II Between Groups 49578.977 252 196.742 122.356 .000 
  Within Groups 365.003 227 1.608    
  Total 

 
 

49943.980 479      

Method III Between Groups 49633.031 252 196.956 132.267 .000 
  Within Groups 338.023 227 1.489    
  Total 

 
 

49971.053 479      

Method IV Between Groups 44528.264 252 176.699 29.473 .000 
  Within Groups 1360.915 227 5.995    
  Total 

 
 

45889.180 479      

Method V Between Groups 45300.225 252 179.763 24.194 .000 
  Within Groups 1686.648 227 7.430    
  Total 46986.873 479      

* Method I is control 
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Table 7.3: The analysis of variance procedure (ANOVA) of SOV for the five 
reduction methods* 
 

Method  Sum of 
Squares 

df Mean Square F-test Significance 

Method II Between Groups 134307.505 295 455.280 6.774 .000 
  Within Groups 12367.493 184 67.215    
  Total 

 
 

146674.998 479     

Method III Between Groups 134764.938 295 456.830 6.833 .000 
  Within Groups 12300.720 184 66.852    
  Total 

 
 

147065.657 479     

Method IV Between Groups 128010.211 295 433.933 15.716 .000 
  Within Groups 5080.433 184 27.611    
  Total 

 
 

133090.644 479     

Method V Between Groups 144217.099 295 488.872 3.633 .000 
  Within Groups 24761.180 184 134.572    
  Total 168978.279 479     

* Method I is control 
 
 

Figure 7.1 shows how the 480 amino acids had been predicted and distributed 

through the different levels of Q3 predictions by the five different reduction methods. 

As mentioned before the NN-GORV-II algorithm was screened using the five 

reduction methods to give a clear portray of this algorithm and study its response and 

stability towards each method. The descriptive statistics for the five reduction 

methods regarding Q3 and SOV is shown in Appendix C. 

 

Figure 7.1 elucidated that the performance accuracy Q3 for Method V 

predicted just below 250 of the 480 proteins tested at the level of 80-90%, just above 

100 proteins for the level of 70-80, and below 100 proteins for the 90-100%. Method 

IV had a similar pattern of Method V, while other three reduction methods predicted 

just above 200 proteins at the 80-90% level. The five histograms for the five 

reduction methods illustrate that although they are entirely different reduction 

methods, the NN-GORV-II algorithm is stable in predicting the 480 proteins and 

each prediction took almost similar distribution. 
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Figure 7.1: Five histograms showing the Q3 distribution of the test proteins with 
respect to the five reduction methods 

 
 
The SOV measure distribution of the five reduction methods is shown in 

Figure 7.2. It is clearly elucidated in the histograms the variability of the SOV 

measures are more scattered than that of the Q3 variability (Figure 7.1). Method II 

and Method III predict more proteins at higher SOV range levels. This is followed by 

method I and Method IV, while Method V shows more proteins scoring SOV below 

60%. This reveals that Method V was of low quality and less useful prediction 

followed by Method I and IV while Method II and III are of high quality and 

meaningful prediction. These results will be explained in more detail when studying 

the exact values of each reduction method and then arrive at solid conclusion. 
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Figure 7.2: Five histograms showing the SOV distribution of the test proteins with 
respect to the five reduction methods  
 
 
 
 
7.2.2 Effect of Reduction Methods on Performance 
 
 

To explore the effect of the five reduction methods on the NN-GORV-II 

performance, Table 7.4 shows the scores of  the helices (QH), strands(QE), coils(QC), 

and all the states together (Q3) with respect to each reduction method. The 

performances of helices (QH) are almost the same and about 77.4% with standard 

deviations of 26.53% for all the first three methods, I, II, and III. The performances 

of the helices (QH) for Method IV and Method V are 87.03 with standard deviations 

20.57 for each. There is about 10% QH increase in predicting helices for methods IV 

and V compared to methods I, II, and III. This increase in QH accuracy was 

accompanied by a 6% decrease in the standard deviations for methods IV and V. 

This result proves that methods IV and V predicted helices more accurately and the 

prediction is more homogenous compared to the other three methods I, II, and III. 
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The strands (QE)  prediction accuracies are 77.12% with standard deviations 

of about 12% for methods II, III, and V while strands predictions are 69.49% with 

standard deviations of 27.42% for methods I and IV.  

 
 
Table 7.4: The effect of the five reduction methods on the performance accuracy of 
prediction (Q3) the of NN-GORV-II prediction method 
 
Reduction Method Q3 QH QE QC

Method I 79.88±10.13 
 

77.42±26.53 
 

69.49±27.42 
 

80.31±11.77 
 

Method II 80.49±10.21 
 

77.40±26.53 
 

77.12±24.19 
 

79.99±11.75 
 

Method III 80.48±10.21 
 

77.42±26.53 
 

77.12±24.19 
 

79.96±11.77 
 

Method IV 80.38±9.79 
 

87.03±20.57 
 

69.49±27.42 
 

78.34±11.78 
 

Method V 80.98±9.90 87.03±20.57 77.12±24.19 78.07±11.76 
Calculations are estimated from 480 amino acids 
Q3  is the accuracy  per amino acid 
QH  is the accuracy for α helices 

QE  is the accuracy for β strands 
QC  is the accuracy for coils 

 
 

This reveals that strands predictions have higher accuracies and more stable 

and homogenous for methods II, III, and V in comparison with other two methods. It 

had been reported in the literature that beta strands are difficult to predict compared 

to the other two states. Ouali and King, (2000) reveals that their algorithm (PROF) 

predicted strands with accuracy of 71.6% and that was the highest accuracy to be 

achieved by a protein secondary structure classifier or predictor.  

 

As for the coils states prediction accuracy (QC), Table 7.4 shows that 

methods I, II and III scored about 80% prediction accuracies with standard 

deviations of 11% each while the prediction for the coil states scored about 78% with 

standard deviations of about 11%for methods IV, V each. This result proves that 

methods IV and V predicted the coil states with less accuracies but with the same 

stabilities and homogeneities compared to the other three methods. 

 

Considering the overall prediction accuracies (Q3) for the five reduction 

methods, Table 7.4 shows that Method I recorded the least accuracy of 79.88% while 
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Method V recorded the highest accuracy which is 80.98%. The other three methods 

recorded accuracies of 80.49%, 80.48%, and 80.38% for methods II, III, and IV, 

respectively. The standard deviations for all the five methods are almost the same 

and are around 10% which showed small standard deviations that reflected 

homogenous and stable predictions for all the five reduction methods. This 

observation is confirmed in Figure 7.3 which shows the trend of predicting the 480 

proteins using the different five reduction methods. However, the graph portrays that 

the five reduction methods performed in more or less similar trend and the margin 

differences between the five methods are very small.  
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Figure 7.3: The performance accuracy (Q3) of the five reduction methods on the test 
proteins 

 
 
By further elaboration to Table 7.4, it is clear that Method I records the most 

rigorous and least accurate performance in assessing the NN-GORV-II algorithm. In 

contrast, Method V shows the highest accuracy demonstrating that it is the most 

optimistic method of assessing prediction algorithms. The difference in accuracy 

prediction (Q3) between Method I and V is 1.1% which is a considerable and true 

difference in evaluating prediction algorithms since this difference has been resulted 

from experiments conducted in exactly the same environments. This result is 
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consistent with Cuff and Barton (1999) in leading the conclusion that different 

reduction methods can affect prediction accuracy of an algorithm with a range of 1-

3%. Method II had a medium score between methods I and V, while having similar 

pattern score to methods III and IV. However, the difference in Q3 score between 

Method II which is adopted in assessing the NN-GORV-II algorithm through out the 

experimental work in this research, and Method I is 0.61%. This is a very small 

difference that does not affect the reported accuracies of NN-GORV-II method.  

 
 
 
 

7.2.3 Effect of Reduction Methods on SOV 
 
 
The response of the five reduction methods to the SOV measures is shown in 

Table 7.5. The SOVH of helices for methods I, II, and III are about 77% with 

standard deviations of about 26% each while the SOVH for methods IV and V are 

87.63% with standard deviations of 21.33% each. This indicates that methods IV and 

V predictions for the helices states are of higher qualities and stabilities compared to 

the other three methods. 

 
 
Table 7.5: The effect of the five reduction methods on the segment overlap measure 
(SOV) of the NN-GORV-II prediction method* 
 
Reduction Method SOV3 SOVH SOVE SOVC

Method I 75.83±16.36 77.98±26.93 71.19±28.99 
 

73.41±14.28

Method II 76.26±17.50 77.95±26.92 79.94±24.57 
 

74.35±15.52

Method III 76.25±17.52
 

77.98±26.93 79.94±24.57 
 

74.32±15.57

Method IV 75.84±16.67 87.63±21.33 71.19±28.99 
 

72.69±14.84

Method V 74.93±18.78 87.63±21.33 79.94±24.57 72.50±16.33
*calculations are estimated from 480 amino acids 
Q3  is the accuracy for residue or amino acid 
QH  is the accuracy for α helices 

QE  is the accuracy for β strands 
QC  is the accuracy for coils 

The SOV measures of strands SOVE with respect to the five reduction 

methods is shown in Table 7.5. The SOVE measures are 79.94 with standard 

deviations of 24.57 for methods II, III, and V though the SOVE measures are 71.19% 
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with standard deviations of 28.99% for methods I and IV. These results indicate that 

method II, III, and V predict strands states with higher quality and more stability 

than methods I and IV.  

 

The coils states SOVC measures for the five reduction methods are shown in 

Table 7.5. Methods II and III scored about 74% SOVC with standard deviations of 

about 16%. Methods IV and V achieved 72.69% and 72.5 SOVC measurement for 

coils with standard deviations of 14.84% and 16.33, respectively while Method I 

achieved 73.41 SOVC with standard deviation of 14.28. Referring to Table 7.4 which 

showed high performances for the coil states (QC) for the five reduction methods, the 

SOVC results (Table 7.5) reflects that respective predictions of the coil states for the 

five methods are of low qualities, less usefulness, and less stabilities. 

 

Table 7.5 shows the overall segment overlap (SOV3) measures for the five 

reduction methods. Methods II and III achieve overall SOV3 of 76.3% with standard 

deviations of 17.5 each. Method I and IV score SOV3 of 75.8% with standard 

deviations of about 16% each. Method V achieves an overall SOV3 for all the 

secondary structure states reached 74.93% with standard deviations of 18.78%. The 

figures of this table are rendered in Figure 7.4 which shows very small marginal 

differences between the five reduction methods.  

 

 



 171

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Number of proteins

S
O

V

Method I
Method II
Method III
Method IV
Method V

 
Figure 7.4: The SOV measure of the five reduction methods on the 480 proteins 
using NN-GORV-II prediction method 
 
 

These results reveal that methods II and III predict the secondary structures 

of proteins with high quality and usefulness while methods I and IV predict proteins 

with comparatively less quality. However, Method V had achieved the highest 

apparent performance (Q3) in prediction accuracy (Table 7.4). Method V as well had 

achieved the least SOV3 and hence the least quality of prediction compared to the 

other five reduction methods. The above results also conclude that Method II which 

had been adopted in this work to evaluate the NN-GORV-II algorithm showed a 

higher quality and more usefulness than Method I.  

 
 
 
 

7.2.4 Effect of Reduction Methods on Matthews’s Correlation Coefficients  
 
 The effect of the five reduction methods on the Matthews’s correlation 

coefficients (MCC) are shown in Table 7.6. The coefficients of the helices states 

(MCCH) for methods IV and V are 0.79 each; they are 0.78 for methods I and III 

while the MCCH for method II is 0.77. This indicates that although the correlation 
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coefficients for all the methods are almost similar, Method IV and V achieve the 

highest correlation coefficients which indicate that the relation between predicted 

and observed secondary helices structures is very strong for these two reduction 

methods.  

 
 
Table 7.6: The effect of reduction methods on Matthews’s correlation coefficients 
using NN-GORV-II prediction method 
 
Reduction Method MCCH MCCE MCCC

Method I 
 

0.779 0.700 0.654 

Method II 
 

0.774 0.696 0.650 

Method III 
 

0.779 0.714 0.666 

Method IV 
 

0.790 0.700 0.668 

Method V 0.790 0.714 0.681 
Calculations are estimated from 480 residues or amino acids 
MCCH  is the Mathews correlation coefficient for α helices 

MCCE  is the Mathews correlation coefficient for β strands 
MCCC  is the Mathews correlation coefficient for coils 

 
 

As for the strands states the Matthews’s correlation coefficients (MCCE) are 

0.70 for methods I, II, and IV while they are 0.71 for methods III and V. The results 

reveal that the predicted strands states of methods I, II, and IV are less related to the 

observed ones compared to the other two methods but the differences are very minor. 

 

The coils states Matthews’s correlation coefficients (MCCC) for the five 

reduction methods is 0.65 for methods I and II, 0.67 for methods III and IV, and 0.68 

for Method V. Again these results reveal that methods I and II predictions for the 

coil states are less related to the observed coils while Method V coils predictions are 

more related to the observed coils states. 
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7.3 Summary 
 
 

Five reductions methods that assign the DSSP eight protein secondary 

structural classes into the commonly used three structural classes are attempted in 

this work to test the ability of the newly developed NN-GORV-II algorithm 

performing under different assignment or reduction methods. The number of helices, 

strands, and coil states are affected by different reduction methods and the one way 

analysis of variance procedure showed that the five reduction methods varied 

significantly in their performance (Q3) and quality (SOV3) of predicting protein 

secondary structures. 

 

Further analysis depicted that although there are differences between the five 

reduction methods in their performances, these are as half as had been estimated in 

other studies. Method I is the most pessimistic in its performance response while 

Method V is the most optimistic. Using method I will make a reliable comparison of 

the NN-GORV-II algorithm with other algorithms rather than using Method V. 

Method II which has been adopted in this work is in middle performance between 

method I and V and can let the NN-GORV-II algorithms to be fairly compared to 

other algorithms. However, for a reliable comparison of NN-GORV-II algorithm 

with other algorithms, 0.6% can be deducted from the NN-GORV-II algorithm 

performance. The evaluation of the five reduction method also proves and suggests 

that NN-GORV-II algorithm is stable and robust in performance and quality using 

different reduction methods. 

 



 
 
 
 
 

CHAPTER 8 
 
 
 
 

PERFORMANCE OF BLIND TEST  
 
 
 
 
8.1 Introduction 
 
 

As described by their founder, the Critical Assessment of Techniques for 

Protein Structure Prediction (CASP) experiments aim at establishing the current state 

of the art in protein structure prediction, identifying what progress has been made, 

and highlighting where future effort may be most productively focused. There have 

been several experiments in CASP every two years since 1994.The CASP3 

competition gathered prediction groups from all around the world. 

 

The goal of CASP experiments is to obtain an in depth and objective 

assessment of the current abilities and inabilities in the area of protein structure 

prediction. In the competition, participants will predict as much as possible about a 

set of soon to be known structures. This type of prediction was described by CASP 

initiators as true prediction and prediction made on already known proteins. Full 

details of these competition and results of predictions can be located at the CASP 

prediction center web site, http://PredictionCenter.llnl.gov/, and in the special issues 

of the Proteins journal (Moult et al., 1997; Moult et al., 1999).  

 

CASP3 targets are used in this independent or blind test which represents 

sequences that have never been used in training the new NN-GORV-II algorithm 

developed in this work. The importance of these CASP3 proteins is that they are 

classified by the CASP organizers as proteins with no homologous sequences of 

known structure.  
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8.2 Distribution of CASP Targets Predictions 
 
 
In this experiment, 42 CASP3 target proteins are extracted with their 

secondary structure predicted using the PHD (Rost and Sander, 199) program. It is 

not possible for this experiment to find predicted or observed CASP4 or CASP5 

targets which are more recent and hence CASP3 was used to give an idea about an 

independent test set performance. According to Cuff and Barton (2000), the CASP3 

data set was not included in the 480 proteins data set that had used in training and 

testing algorithms of this research work. 

 

Figure 8.1 shows the distribution of the 42 CASP proteins predicted using the 

NN-GORV-II algorithm for all the secondary structure states. For the helices states, 

the histogram of Figure 8.1 shows that about 18 proteins (targets) are predicted at QH 

of above 95% and more than 5 proteins predicted at 85%, 75%, and 65% each.  

 

Less than three proteins are predicted at 55% and about two proteins 

predicted at 45%, 35%, and 5%. The strands prediction accuracies (QE) are 8 proteins 

predicted at 95%, 6 proteins predicted at 85% and 5% each, and 7 proteins are 

predicted at 75%, and 65%. The rest of the proteins are predicted at 55% QE level 

and below. As for coils, Figure 8.1 shows that the about 15 proteins are predicted at 

level of 70-80% QC, about 13 proteins at level of 60-70%, and about 10 proteins at 

level of 80-90%. The rest three proteins are predicted at level 90-100%. 
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Figure 8.1: The distribution of prediction actuaries of the of the 42 CASP targets 
blind test for the secondary structure states. 

 

 

The overall prediction accuracies Q3 (ALL) for the 42 CASP targets are 

shown in Table 8.1. About 8 proteins are predicted at Q3 accuracy between 60% and 

below 70%, about 20 proteins predicted at accuracy of 70-80%, about 12 proteins are 

predicted at Q3 of 80-90%, and about two proteins predicted at accuracies above 90% 

and below 100%. It is clear that there is no protein predicted at accuracy below 60% 

of Q3. These results are supported by the line graph of Figure 8.2 where each line 

indicates a secondary structure state travelling towards the 100% accuracy through 

the 42 CASP targets. 
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Figure 8.2: The performance of the 42 CASP targets with respect to Q3 and SOV 
prediction measures 

 
 
The figure elucidates that the helices (QH) and strands (QE) lines travelled 

from the zero prediction while coils (QC) and the overall performance (Q3) travelled 

from below 60% and above 60%, respectively. 

 

The histogram of Figure 8.1 and the line graph of Figure 8.2 show that the 

strands states are predicted by the NN-GORV-II in a more scattered distribution 

followed by the helices states while the overall prediction (ALL) was more 

homogenous and continuous followed by the coils states prediction. The results 

elucidated that the majority of protein are predicted at Q3 accuracies between 70-

80%. 

 

The SOV measures for the helices, strands, coils, and all secondary structure 

states of the 42 CASP target proteins are shown in Figure 8.3. For the helices states 

NN-GORV-II method predicted about 3 proteins below the 65% SOVH level, about 

20 proteins are predicted between 60% and below 90%, and about 18 proteins are 

predicted above 90% SOVH level. 
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Figure 8.3: The distribution of SOV measure of the of the 42 CASP targets blind test 
for the secondary structure states. 
 
 

The SOVE measures of strands showed that 7 proteins are predicted at SOVE 

about 5%, in the range of above 5% and below 60% are only 3 proteins predicted 

while the rest of the 42 proteins predicted at level above 60% to 100% SOVE level 

(Figure 8.3). 

 
As far as coils states are concerned, Figure 8.3 presents that the 42 proteins 

are distributed in a more homogenous manner. At SOVC  level of  80-90% about 13 

proteins had been predicted, at level 60-80% about 19 proteins predicted while the 

remaining of the 42 proteins are predicted at SOVC level of above 90% or below 60% 

but above 40%.  

 

 

 

 

Figure 8.3 shows the estimations of overall SOV3 (ALL). It reflects that about 

8 proteins from the 42 are predicted at SOV3 level of above 50% and below 70%. 

 



 179

About 24 proteins had been predicted at the level of above 70% and below 85% 

SOV3 measure. The remaining 10 proteins had been predicted at level of 85-100%.  

 

By reading the two figures (Figure 8.2 and Figure 8.3) together, it is clearly 

shown that the SOV prediction distribution of the 42 CASP proteins for the helices 

(SOVH) and strands (SOVE) states are more scattered than the distribution of the 

coils (SOVC) and overall states (SOV3). The line graph of SOV in Figure 8.2 

illustrates that the lines of the three states travels through the 42 CASP target 

proteins towards the 100% SOV measure. It shows that helices and strands depart 

from 0.0% SOV prediction while the coils states SOV and overall SOV start above 

40% and above 50%, respectively. 

 
 
 
 

8.3 Performance and Quality of CASP Targets Predictions 
 
 
Table 8.1 shows the performance of the NN-GORV-II method predicting the 

three secondary structures states: helices (QH), strands (QE), and coils (QC); and the 

overall accuracies (Q3) of the 42 CASP targets. The observed secondary structure 

predictions of the 42 targets are referenced to the PHD predications of these target 

sequences. This independent test portrays a general view about the NN-GORV II 

algorithm predictions of data that has not been used in its training procedure. 
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Table 8.1: Percentages of prediction accuracies for the 42 CASP3 proteins targets 
 
 
ID Protein Name Q3 QH QE QC
T0042 NK-lysin from pig, 78a.a. 80.8 94.1 0.0 83.3 
T0043 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase 

(HPPK) 
66.5 62.0 81.0 66.7 

T0044 RNA-3'terminal phosphate cyclase 72.0 94.9 66.1 64.9 
T0045 HI1434 77.2 61.8 78.6 98.1 
T0046 Gamma-Adaptin Ear Domain 79.0 33.3 92.0 75.0 
T0047 Alpha(2u)-Globulin 87.7 100 98.5 75.3 
T0048 Pterin-4-alpha-carbinolamine dehydratase, Pseudomonas 

aeruginosa 
62.7 54.8 80.0 73.3 

T0049 EstB, Pseudomonas marginata 71.7 79.2 46.2 73.9 
T0050 Glutamate mutase component S - Clostridium cochlearium 69.3 95.6 47.6 64.0 
T0051 Glutamate mutase component E - Clostridium cochlearium 74.7 84.1 53.8 70.7 
T0052 Cyanovirin-N, Nostoc ellipsosporum 64.4 50.0 53.8 77.6 
T0053 CbiK protein, S. typhimurium 72.7 80.5 65.6 61.4 
T0054 VanX, Enterococcus faecium 75.7 76.3 48 82.2 
T0055 lectin, Polyandrocarpa misakiensis 67.2 70.6 65.9 67.2 
T0056 DnaB helicase N-terminal domain, E.coli 86.8 98.6 0.0 73.2 
T0057 Glyceraldehyde 3-phosphate dehydrogenase, S. solfataricus 67.1 64.0 67.0 69.6 
T0058 Uracil-DNA glycosylase, E.coli 79.9 95.7 59.6 78.8 
T0059 Sm D3 protein (The N-terminal 75 residues) 82.7 100 85.4 79.4 
T0060 D-dopachrome tautomerase, human 80.3 93.5 81.6 70.8 
T0061 Protein HDEA, E. coli 66.3 78.3 16.7 59.5 
T0062 Flavin reductase, E. coli 83.2 80.6 93.8 78.1 
T0063 Translation initiation factor 5A, Pyrobaculum aerophilum 75.4 88.9 90.3 59.7 
T0064 A SinR protein, Bacillus subtilis 77.5 92.7 0.0 79.5 
T0065 B SinI protein, Bacillus subtilis 87.7 96.3 0.0 85.7 
T0067 Phosphatidylethanolamine Binding Protein, Homo sapiens 75.9 100 68.4 77.5 
T0068 Polygalacturonase, Erwinia carotovora subsp. carotovora 78.5 100 83.5 73.7 
T0069 Recombinant conglutinin, bovine 78.8 91.3 77.1 72.0 
T0070 Omp32 protein, Comamonas acidovorans 73.8 0.0 86.3 65.4 
T0071 Alpha adaptin ear domain, rat 75.2 59.4 88.9 75.5 
T0072 CD5 domain 1, human 78.2 63.6 60.5 91.8 
T0074 The second EH domain of EPS15, human 88.8 97.7 100 81.5 
T0075 Ets-1 protein (fragment), mouse 82.7 80.0 0.0 87.8 
T0076 cdc4p, Schizosaccharomyces pombe 95.7 96.5 100 94.5 
T0077 Ribosomal protein L30, Saccharomyces cerevisiae 76.2 94.3 74.2 61.5 
T0078 Thioesterase, E. coli 67.7 82.8 76.4 58.2 
T0079 MarA protein, E. coli 79.8 92.0 0.0 66.7 
T0080 3-methyladenine DNA glycosylase, human 72.6 65.6 75.0 73.3 
T0081 Methylglyoxal synthase, E. coli 71.7 73.4 64.0 73.0 
T0082 Ribonuclease MC1, Momordica charantia (Bitter Gourd) 77.4 81.2 75.0 76.4 
T0083 Cyanase, E.coli 83.3 77.5 100 90.0 
T0084 RLZ, artificial construct 91.9 100 100 62.5 
T0085 Cytochrome C554, Nitrosomonas europaea 72.0 65.8 22.2 83.3 

Q3  accuracy for amino acid 
QH  accuracy for α helices 

QE  accuracy for β strands 
QC  accuracy for coils 
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Table 8.2 also shows the SOV measures of the NN-GORV-II method 

predicting the three secondary structures states: helices (SOVH), strands (SOVE), and 

coils (SOVC); and the overall accuracies (SOV3) of the 42 CASP targets. 

 
Table 8.2: Percentages of SOV measures for the 42 CASP3 proteins targets 
 

ID Protein Name SOV3 SOVH SOV
E

SOVC

T0042 NK-lysin from pig, 78a.a. 71.6 73.0 0.0 100 
T0043 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK) 55.0 69.1 73.6 41.4 
T0044 RNA-3'terminal phosphate cyclase 76.7 86.4 68.2 78.4 
T0045 HI1434 82.9 80.3 81.0 87.5 
T0046 Gamma-Adaptin Ear Domain 82.7 44.4 94.9 78.8 
T0047 Alpha(2u)-Globulin 86.6 100 100 74.5 
T0048 Pterin-4-alpha-carbinolamine dehydratase, Pseudomonas 

aeruginosa 
70.6 65.4 73.3 81.7 

T0049 EstB, Pseudomonas marginata 51.1 91.0 38.4 43.4 
T0050 Glutamate mutase component S - Clostridium cochlearium 75.8 90.2 63.1 73.6 
T0051 Glutamate mutase component E - Clostridium cochlearium 72.8 91.8 64.0 58.1 
T0052 Cyanovirin-N, Nostoc ellipsosporum 69.4 71.4 68.3 68.9 
T0053 CbiK protein, S. typhimurium 71.1 84.7 67.7 53.2 
T0054 VanX, Enterococcus faecium 70.4 79.6 56.0 67.3 
T0055 lectin, Polyandrocarpa misakiensis 59.8 82.4 75.4 50.7 
T0056 DnaB helicase N-terminal domain, E.coli 79.5 98.4 0.0 61.0 
T0057 Glyceraldehyde 3-phosphate dehydrogenase, S. solfataricus 72.2 66.0 70.6 79.4 
T0058 Uracil-DNA glycosylase, E.coli 78.3 99.1 70.2 70.7 
T0059 Sm D3 protein (The N-terminal 75 residues) 76.2 100 70.2 85.3 
T0060 D-dopachrome tautomerase, human 90.9 100 92.8 83.6 
T0061 Protein HDEA, E. coli 59.7 60.8 8.3 66.2 
T0062 Flavin reductase, E. coli 90.3 86.2 97.1 89.0 
T0063 Translation initiation factor 5A, Pyrobaculum aerophilum 72.5 100 84.6 59.2 
T0064 A SinR protein, Bacillus subtilis 82.6 100 0.0 83.4 
T0065 B SinI protein, Bacillus subtilis 85.2 100 0.0 77.1 
T0067 Phosphatidylethanolamine Binding Protein, Homo sapiens 80.6 82.6 76.1 82.4 
T0068 Polygalacturonase, Erwinia carotovora subsp. carotovora 74.4 39.6 81.0 70.7 
T0069 Recombinant conglutinin, bovine 73.0 100 82.9 58.0 
T0070 Omp32 protein, Comamonas acidovorans 64.1 0.0 84.0 53.8 
T0071 Alpha adaptin ear domain, rat 82.0 67.4 84.3 89.1 
T0072 CD5 domain 1, human 79.9 90.9 71.8 82.9 
T0074 The second EH domain of EPS15, human 85.3 98.5 100 77.6 
T0075 Ets-1 protein (fragment), mouse 85.0 79.4 0.0 95.1 
T0076 cdc4p, Schizosaccharomyces pombe 94.7 100 100 87.5 
T0077 Ribosomal protein L30, Saccharomyces cerevisiae 86.0 98.2 83.9 76.7 
T0078 Thioesterase, E. coli 64.0 84.1 68.0 56.2 
T0079 MarA protein, E. coli 85.3 100 0.0 68.8 
T0080 3-methyladenine DNA glycosylase, human 65.0 94.1 67.5 59.8 
T0081 Methylglyoxal synthase, E. coli 73.5 95.3 72.0 56.8 
T0082 Ribonuclease MC1, Momordica charantia (Bitter Gourd) 67.4 62.3 76.4 68.1 
T0083 Cyanase, E.coli 81.9 75.2 86.8 93.8 
T0084 RLZ, artificial construct 69.5 68.0 100 75.0 
T0085 Cytochrome C554, Nitrosomonas europaea 72.9 82.7 27.8 73.5 
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It is important to note that the SOV measure had been estimated by using the 

same observed and predicted data used in estimating performance accuracy (Q), and 

also the same program as discussed in the methodology chapter. Since the predicted 

secondary structures of the 42 targets of the PHD program are used here as observed 

structures, care should be taken when globally comparing the performances (Q3) and 

qualities (SOV3) of NN-GORV-II method with other prediction methods (Table 8.1 

and Table 8.2). 

 

Table 8.3 shows the mean performance (Q), the SOV measure, and the 

Mathew’s Correlation Coefficients (MCC) of the NN-GORV-II method on the 42 

CASP target sequences with the corresponding standard deviations. The values in the 

table confirmed what has been discussed previously in Chapter 6. Since they exhibit 

higher standard deviations, the strand states predictions have a higher variability and 

less homogeneity followed by the helices states. On the other hand the coils states 

exhibit less standard deviation and hence predicted in a continuous and homogenous 

pattern or distribution. 

 
 
Table 8.3: The mean of Q3 and SOV with and standard deviation, and Mathew’s 
Correlation Coefficients (MCC) of CASP  
 

 
Measure ALL H E C 

Q 
 

76.87  7.52 ± 79.69± 20.75 62.45± 31.10 74.58 09.80 ±

SOV 
 

75.44 9.75 ± 81.87± 20.62 63.81± 31.03 72.33 12.83 ±

MCC - 0.68 0.63 0.62 
 

 

The performance of the NN-GORV-II method on the 42 CASP targets (Q3) is 

76.87% with a small standard deviation of 7.52% while the quality and usefulness 

(SOV3) of the method reached 75.44% with relatively small standard deviation of 

9.75%. The Mathew’s Correlation Coefficients (MCC) is 0.68, 0.63, and 0.62 for 

helices, strands, and coils, respectively, indicating strong relationship between 

predicted and observed secondary structures states (Baldi et al., 2000; Crooks et al., 

2004). 
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These results aim to give a general idea about the NN-GORV-II method 

performance on an independent test set and not accurate measures since the observed 

secondary structures are not produced with X-ray spectroscopy or NMR laboratory 

techniques. 

 
 
 
 
8.4 Summary 
 
 

This chapter assesses the performance and quality of the prediction of the 

NN-GORV-II algorithm by using an independent test set of protein data that has not 

been used in training the algorithm. CASP3 protein targets had been used for this 

purpose. The result of the test gives a good idea about the prediction performance 

and quality of the NN-GORV-II method despite the limitation of the data set.  

 

The observed secondary structures states of these target sequences are 

determined by the PHD method and not laboratory methods; so a straightforward 

comparison with other methods might not be an accurate comparison. The NN-

GORV-II method performance accuracy (Q3) in predicting protein secondary 

structure is 76.9% and the quality of prediction (SOV3) is 75.4%. These results are 

far better than what was reported by (Ouali and King, 2000) who used only 23 

CASP3 targets instead of 42 CASP3 targets used in this test. The results are also in a 

comparative range with what reported by Kim and Park (2003) in their SVM 

predictor that used CASP5 targets.  

 

 



 
 
 
 
 

CHAPTER 9 
 
 
 
 

RECEIVER OPERATING  
CHARACTERISTIC (ROC) TEST 

 
 
 
 

9.1 Introduction 
 
 

Many researchers argue that dichotomous (binary) classification is 

convenient and powerful for decision making, while it may introduces distortions 

(Fielding and Bell 1997; Hand, 1997). In particular, the use of threshold-independent 

Receiver Operating Characteristic (ROC) curves has received considerable attention 

in recent years. 

 

The Receiver Operating Characteristics (ROC) graphs are useful techniques 

for assessing the performance of classifiers. The ROC curves are well known in 

Biology and Medical decision making and they are well used in dichotomous 

classification. They have been increasingly adopted as a tool for analysing and 

visualizing many aspects of machine learning algorithms or methods. The ROC 

curve is a plot the true positive rate against the false positive rate for different 

possible cut points of a diagnostic test. 

 

The ROC curve illustrates the trade-off between sensitivity and specificity in the 

sense that any increase in sensitivity will be accompanied by a decrease in 

specificity. It also shows that the closer the curve follows the left-hand border and 

then the top border of the ROC space, the more accurate the test while the closer the 

curve comes to the 45-degree diagonal of the ROC space, the less accurate the test. 

The area under the curve (AUC) is a measure of the algorithm accuracy. 
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Kloczkowski et al. (2002) argued that, regularly, proteins contain about 30% 

helical structure (H), about 20% strands (E), and about 50% coil (C) structure. This 

means that even the most trivial prediction algorithm which assigns all residues to 

the coil (C) state would give approximately 50% correct prediction. This chapter 

attempts to test the results of the prediction or classification task of the NN-GORV-II 

method discussed in this work while opening up a discussion about the reliability of 

ROC curve analysis in predicting coils only states in a multi-class classifier. The 

eight-to-three secondary structure reduction Method V discussed in the previous 

chapter showed that coils states composed 0.48 of the whole data set (Table 7.1). 

Several researchers in the protein secondary structure prediction reported similar 

ratio. Baldi et al. (2000) reported coil only random guess of 0.4765 while others 

argued that 50% accuracy of an algorithm is not better than a random guess in 

protein secondary structure prediction. 

 
 
 
 

9.2 Binary Classes and Multiple Classes 
 

 
For the problem of secondary structure prediction, if we have an amino acid 

sequence of length n , the secondary structures corresponding to these sequences are 

the three states helix, strand, and coils which can be considered as di=d1 , d2, dn.. The 

SOV measure mentioned before takes care of these assignment to give maximal 

score even though the prediction is not identical to the assigned segment. 

 

In the case of the dichotomy problem of two alternative classes, that is if we 

would like to predict only one structural class, for instance: a coil versus non-coil, 

then, the di is in general equal to 0 or 1 which is a binomial model of 0.5 probability 

for a coil or non-coil state. In the case where di has a value between 0 and 1 

revealing the uncertainty of our knowledge of the correct assignment at the 

corresponding position as our case in this work where we have three classes, the 

analysis for this multiple class case is very similar. 

 

The problem of prediction accuracy is strongly related to the frequency of 

occurrence of each class. For instance, in protein secondary structure prediction the 
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non-helix class covers roughly 70% of the cases in natural proteins, while only 30% 

belong to the helix class. Thus a constant prediction of non-helix is bound to be 

correct 70% of the time, although it is highly non-informative and useless (Baldi et 

al., 2000). 

 

If we assume that the output of our prediction algorithm is G=g1 ,g2,.. gn, of 

course gi here is a probability between 0 and 1 showing the degree of confidence in 

the prediction. However, when both D and G are binary, their comparison can be 

entirely summarized by four numbers: 

 

TP = the number of times di is coil, gi is coil (true positive). 

TN = the number of times di is non-coil, gi is non coil (true negative). 

FP = the number of times di is non-coil, gi is coil (false positive). 

FN = the number of times di is coil, gi is non-coil (false negative). 
 
Then  
 
Sensitivity (True positive rate) = TP/(TP+FN)  

Specificity (True negative rate) = FP/(FP+TN) 

 
and N is the total sample size which defined as: 

N= T P + TN + F P + F N.  

 

When both D and G or one of them is not binary, then of course the situation 

is more complex and four numbers are not enough to summarize the situation. When 

G is not binary, binary predictions can still be obtained by using cut-off thresholds. 

The numbers TP, TN, FP, and FN will then vary with the threshold choice. These 

numbers are often arranged into a 2 x 2 contingency or confusion matrix as shown in 

Table 9.1. 
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Table 9.1: The contingency table or confusion matrix for coil states prediction 
 

 Predicted 
 C  

__

C

C  TP FN 

O
bserved __

C  FP TN 

C     Coil  
__

C   Not Coil 

 
 

The ROC curve does not provide a rule for the classification of cases. 

However, there are strategies that may be used to develop decision rules. Two 

elements are required to identify the appropriate threshold; the first is the relative 

cost of FP and FN errors while the second is the prevalence of positive cases. 

Assigning values to these costs are complex and subjective and dependent upon the 

context within which the classification rule will be used (Zweig and Campbell, 

1993). 

 

As discussed earlier, the numbers TP, TN, FP and FN depend on how the 

threshold is selected. In most cases, there is a trade-off between the amount of false 

positives and the amount of false negatives produced by the algorithm or the 

classifier. The Receiver operating characteristics (ROC) summarizes such results by 

displaying for threshold values within a certain range or hit rate; the sensitivity, 

against the false positive rate or false alarm rate. In a typical ROC curve the hit rate 

increases with the false alarm rate. It is also common to display the sensitivity versus 

the specificity in a similar curve or separately as a function of threshold in two 

different curves.   

 

As illustrated in the methodology and shown in this chapter, the sensitivity 

can be defined as the probability of correctly predicting a positive example and the 

specificity is the probability that a positive prediction is correct. In biology and 

medical statistics, the word specificity is sometimes used in a different sense (Burset 

and Guigo, 1996) which is beyond our discussion in this research.  
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The sensitivity and specificity of a test depends also on what constitutes a not 

normal test. Figure 9.1 illustrates an idealized graph showing the number of normal 

and not normal observations arranged according to the value of a test. This 

distributions overlap does not distinguish normal from not normal with 100% 

accuracy. The area of overlap indicates where the test cannot distinguish normal 

from not normal. In practice, a cut-point (cut score) is chosen; above which the test 

will be considered as abnormal and below which the test will be considered as 

normal. The position of the cut point will determine the number of true positive, true 

negatives, false positives and false negatives. Different cut points may be chosen if 

we wish to minimize one of the errors types of the test results. 
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Figure 9.1: An idealized curve showing the (TP, TN, FP, and FN) numbers of a 
hypothetical normal and Not normal observations  
 
 

Some researchers argued that even with four numbers alone, it is not 

immediately clear how a given prediction method fares. This is why a lot of the 

comparison methods aim at constructing a single number measuring the distance 

between D and G. But it must be clear from the outset, that information is always lost 
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in such a process, even in the binary case, i.e. when going from the four numbers 

above to a single one. In general, several different vectors (TP, TN, FP, and FN) will 

result in the same distance (Crooks and Brenner, 2004; Baldi et al., 2000).  

 
 
 
 
9.3 Assessment of NN-GORV-II 
 
 

Table 9.2 shows nine cut scores of 10772 secondary structures outputs sample 

predicted by the NN-GORV-II algorithm with Method V reduction method. The true 

positive (TP) row represents the situation that coils states predicted by NN-GORV-II 

algorithm as coils (i.e. the number of times di is coil, gi is coil) while the false 

positive (FP) represents the situation that not coils states predicted by NN-GORV-II 

algorithm as coils (i.e the number of times di is non-coil, gi is coil). 

 
 
Table 9.2: The cut scores for the NN-GORV-II algorithm considering coil only 
prediction  
 

Cut Score C  
__

C   Sum 
 
1 544 33 577 
 
2 625 45 670 
 
3 929 139 1068 
 
4 1244 185 1429 
 
5 2588 1187 3775 
 
6 710 415 1125 
 
7 912 814 1726 
 
8 18 14 32 
 
9 56 314 370 
 

10 0 0 0 
 

Total 7626 3146 10772 
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As discussed in Chapter 6, the total number of residues in the database used 

in training and testing the algorithms and hence the number of predicted secondary 

structures is 83392 (Table 6.1). The test sample used in this experiment was chosen 

from 10772 secondary structure predicted states for its appropriate cut scores and 

convenience in calculations and representation (Table 9.2).  

 

Figure 9.2 represents a curve resemble the idealized curve of Figure 9.1 

where the cut scores were plot against the numbers of observations. The numbers of 

observation in this case represent the numbers of the true positives and the numbers 

of the false positives. Figure 9.2 there are nine cut scores plotting the two curves, but 

big number of selected cut scores will make the two curves look smoother. However, 

from this graph a very huge number of cut scores can be observed where the TP and 

FP change accordingly. 
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Figure 9.2: The cut scores of the coils and not coils secondary structure states 
predicted by the NN-GORV-II algorithm using Method V reduction scheme. 
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According to their respective cut scores, the true positive rate (TPR) which is 

the sensitivity of the test and the false positive rate which is (1- specificity) of the 

test are shown in Table 9.3. It shows the respective area for each cut score. The 

summation of the nine scores areas represents the area under the curve (AUC). This 

area under the curve measures the prediction accuracy. The AUC of this test as 

shown in the table is 0.7151 with standard error (SE) of 0.0057 as calculated from 

the nine cut scores.  

 
 

Table 9.3: The cut scores, true positive rate (TPR), false positive rate (FPR), and area 
under ROC (AUC) for the NN-GORV-II prediction algorithm considering coil state 
only prediction  
 

Cut Score TPR FPR Area 
 
1 1.0000 1.0000 0.0710 
 
2 0.9895 0.9287 0.0805 
 
3 0.9752 0.8467 0.1161 
 
4 0.9310 0.7249 0.1471 
 
5 0.8722 0.5618 0.2320 
 
6 0.4949 0.2224 0.0399 
 
7 0.3630 0.1293 0.0279 
 
8 0.1043 0.0097 0.0002 
 
9 0.0998 0.0073 0.0004 
 

10 0.0000 0.0000 0.0000 
 

AUC - - 
 

0.7151 
 

SE - - 
 

0.0057 
 
 

Figure 9.3 shows the ROC illustrates that the ROC curve travels above the 

diagonal line and below the top left corner of the graph indicting that the area of this 

curve is above null guess 0.5 and below the perfect prediction 1.0. The computed 

AUC as shown in the figure and described in Table 9.2 is 0.72 and the standard error 
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is 0.0057. This proves that the NN-GORV-II algorithm is able to discriminate the 

coils states from non coils with 72% prediction accuracy with a very minor 

experimental or standard error. Although there is a loss in the entropy in this 

procedure due to the 0.48 probability of the coils sates in the database instead of 0.5, 

this result is in-line with what has been reported by Kaur and Raghava (2003). This 

result also has a comparative agreement with the correlation coefficients of the NN-

GORV-II method shown in Table 6.4.  
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Figure 9.3: The area under ROC (AUC) for the NN-GORV-II prediction algorithm 
considering coil only prediction. 
 
 

In this research, the adoption of the receiver operating characteristics (ROC) 

analysis aims to determine the discriminative ability of the NN-GORV-II algorithm 

to distinguish the coil states only since they constitute about 0.5 of the data. This test 

might be controversial since it is conducted on a three-class classifier and not a 

binary classifier. The nature of the data set that constitutes the three classes of 

secondary structure made the data set divided into two classes for the coil states that 

constitute half of the data set.  The ROC analysis test arrived at a conclusion that the 
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NN-GOR-V-II algorithm was able to distinguish between two classes (coils/not 

coils) at 72% of the times. 

 
 
 
 

9.4 Summary 
 
 

The protein secondary structure coils states are further classified using the 

receiver operating characteristics ROC curve and analysis. The trade-off between the 

true positive rate (sensitivity) and the false positive rate was plotted in an ROC curve 

and the area under the curve (AUC) was estimated and found that the NN-GORV-II 

algorithm was able to correctly classify 72% of the coils states. Although this 

accuracy is less than the accuracy discussed in the previous chapter, this number can 

give an estimate for the NN-GORV-II algorithm.  

 

The accuracy of ROC analysis should be less than  the accuracy obtained by 

the SOV measure since there is loss in the entropy of the TP, FP, TN, and FN values 

as discussed. In addition, describing the data set as coils and not coils in its discrete 

binary meaning had not been accurately satisfied in this case. 

 

 



 
 
 
 
 

CHAPTER 10 
 
 
 
 

CONCLUSION 
 
 
 
 
10.1  Introduction 
 
 

Since the observations of the early researchers in the field of protein 

structure, it is concluded that the 3D structure of a protein is extremely related to its 

primary sequences of amino acids (Epstein et al., 1963; Anfisen, 1973). This 

observation made it possible to predict protein structure from sequences with 

considerably high accuracy. In the absence of a known 3D or a homologue of a 

certain protein, the secondary structure prediction of protein plays a great role in 

extracting the utmost possible information from the primary sequences. Large 

sequencing projects that generate an increasing number of amino acids sequences, 

made laboratory techniques like X-ray crystallography and NMR unfeasible to 

observe the secondary structures of such sequences. The demand for feasible and 

reliable structure prediction method becomes inevitable. 

 

This chapter concludes the review of literature, methodology, experimental 

work, analysis, and the discussion of this research work. The output and results of 

the newly developed method of protein secondary structure prediction together with 

other methods studied in this research are concluded and summarised in this chapter. 

This chapter also presents the findings and the contributions of this research.  
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10.2 Summary of the Research 
 
 

The research work of this project focuses on the protein folding dilemma that 

asks a vital question; how a protein folds from its primary sequence into its 3D 

structure? Predicting proteins 3D structures from amino acids directly is a very hard 

task. In molecular biology it is fairly easy to predict 3D structure of a protein from its 

secondary structure as explained in the text of this report. The problem of the protein 

secondary structure prediction from its amino acid sequences has been investigated 

in this work.  

 

The research reviews the work done by other researchers and the literature 

cited in the area of amino acids sequences, proteins, and sequence homology and 

alignments. The types of protein structure as well as the laboratory methods of 

detecting and determining protein structures are reviewed.   

 

The research also describes the artificial neural networks and the Information 

Theory which formed the basis of the new prediction method developed in this 

research work. Feed forward neural networks that are mainly used in the area of 

protein secondary structure prediction, the networks training and optimizations are 

fairly examined. The information theory that uses the statistics and the probabilities 

foundations with special reference to GOR theory is discussed.  

 

The framework used in developing and implementing the new prediction 

method to achieve a better prediction accuracy protein secondary structure from its 

primary sequence is described and elucidated. The benchmark data set that is used in 

the experiments of this research is presented and discussed as well as the hardware 

and software utilized to implement the prediction methods.  

 

The methods, algorithms, and modelling used to develop and implement the 

new prediction method, NN-GORV-I, and its advanced version NN-GORV-II are 

explained in detail. All the methods studied in this work are trained and tested on the 

same multiple sequence alignments data sets which allow a valid and reliable 

comparison of the performance of the seven methods studied in this research. The 
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multiple sequence alignment and the profile generation procedures to collect 

maximum possible biological information to be presented to the neural networks are 

clearly explained. Five reduction schemes that converted the DSSP eight classes to 

the conventional three secondary structure classes (helices, strands, and coils) are 

implemented in this research. The seven prediction methods developed or studied in 

this work are presented and discussed. The assessment of the performance and 

quality of the investigated methods is accomplished by several methods ranging from 

the accuracy per protein (Q3), segment overlap measure (SOV3), Matthews 

Correlation Coefficients (MCC), and the Receiver Operating Characteristic (ROC) 

procedure. 

 

The results of the prediction methods together with the two newly developed 

methods are investigated and analysed in this research. The performances of GOR-

IV and neural network (NN-I) method without utilizing multiple sequence alignment 

are shown to show the importance of including biological information in the 

prediction process. The newly developed methods NN-GORV-I and NN-GORV-II 

outperform all the investigated methods in terms of accuracy, quality, and reliability. 

 

The effect of the five reduction methods on the NN-GORV-II performance 

and quality is discussed. The ANOVA procedure attests that the five reduction 

methods are significantly different in their predictions accuracies. The results show 

that it is advisable to use Method I or Method II rather than Method V in globally 

assessing the accuracy of a new prediction algorithm or method.  

 

Chapter VIII explores the performance of a blind or an independent data set 

test on the NN-GORV-II method. CASP3 protein targets are predicted by the newly 

developed method. The output of NN-GORV-II method is then compared to the PHD 

algorithm prediction for the same targets. The performance of NN-GORV-II 

algorithm is found high and stable compared to other methods. The same conclusion 

applies for the SOV measure and the Mathew’s Correlation Coefficients (MCC). 

 

Observing the results of Chapter 9, Method V reduces the eight secondary 

structure states into almost 50% coils and 50% helices and strands structures. The 
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Receiver Operating Characteristics (ROC) is intelligently introduced to the multi-

class classifier to assess it as a binary classifier. The ROC curve and the area under 

ROC curve (AUC) proved that the NN-GORV-II effectively and correctly classified 

72% of the coil states. 

 
 
 
 

10.3  Conclusions 
 
 

The conclusions of this research may be listed and summarised in the 

followings remarks: 

 

The accuracy of protein secondary structure has been significantly increased 

by the new methods NN-GORV-I and NN-GORV-II that are designed and developed 

in this research. NN-GORV-II method achieved 80.5 % prediction accuracy which is 

a very high accuracy in this domain. 

 

The newly developed NN-GOR-V-II protein secondary structure prediction 

method achieves 5.46% additional accuracy over the one of the best prediction 

methods (PROF) in this domain. This is a significant improvement in the prediction 

accuracy. 

 

The statistical bases of GOR-V information theory and the power of the 

neural networks are combined together to yield a new method of protein secondary 

structure prediction which is superior to both methods. 

 

The effective and procedural implementation and generation of multiple 

sequence alignments enables the GOR-V and the neural network to fully utilize the 

evolutionary information of similar sequences in the searched repository sequence 

data bases which made the newly developed NN-GORV-II a high performing and 

high quality classifier. 

 

The test of performance Q3 and the test of quality and usefulness (SOV) 

conducted in this research proved that the NN-GORV-II method is of high accuracy 
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and good quality and more useful.  The high values of Mathew’s Correlation 

Coefficients (MCC) analysis conducted in this research provides strong evidence that 

the high accuracy and quality results obtained from NN-GORV-II method are 

reliable and consistent. 

 

The newly developed method proved that it is highly stable and consistent 

when tested against the different DSSP secondary structure reduction methods 

conducted in this research. The output accuracies of NN-GORV-II according to each 

reduction methods also are also shown high accuracies compared to other existing 

methods. 

 

The NN-GORV-II method proved additional high performance and high 

quality when the blind test is used for the method. An independent data from the 

CASP dataset is used for this test.  

 

The NN-GORV-II method proved that it is capable of correctly and 

efficiently predict coils from non coils 72% of the times. The ROC curve has been 

intelligently introduced and implemented here to partially assess a multi-class 

prediction method (NN-GORV-II) by observing the composition of the secondary 

structure states in the data base.  

 

The ROC curve has been intelligently introduced and implemented to 

partially assess a multi-class prediction method (NN-GORV-II) by observing the 

composition of the secondary structure states in the data base.  

 

The new method for predicting protein secondary structure from the amino 

acid sequences developed by combing neural networks and GOR-V and hence 

named NN-GORV-I and further enhanced and improved to NN-GORV-II, provided 

evidence from the several tests conducted that the method is highly accurate, highly 

reliable,  and robust. 
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10.4  Contributions of the Research 
 
 

 This research proposes two new methods for predicting protein 

secondary structures from amino acid sequences. The proposed methods 

are then designed, developed, and implemented and proved highly 

accurate and robust. 

 

 This research introduces and implemented several assessment or 

evaluation procedures to measure the success of the new methods. It has 

been proven that the newly developed methods (NN-GORV-I and NN-

GORV-II) are highly accurate and reliable. The test also proved that the 

newly developed methods are highly consistent. 

 

 The ROC test has been introduced as a novel procedure to test the ability 

of NN-GORV-II method to discriminate between two classes (coils/not-

coils). This novel approach considers a multi-class classifier as a binary 

classifier or predictor. This new approach can be adopted to assess newly 

prediction methods developed in this domain in instances where the 

dataset consists 50% coils in its composition. 

 
 
 
 
10.5  Recommendations for Further Work 
 
 

Inspired from the work presented in this project, the recommendations of the 

author of this report for further work in the domain of protein secondary structure 

prediction are shown in the following points: 

 

 A larger database for training and testing can be used instead of the 480 

proteins used in this research. That is possible due to the collaborative 

sequencing projects in Bioinformatics where many proteins are added to 

the databases every time. This will allow the NN-GORV-II method to 

utilize more biological knowledge and evolutionary information in 

sequence data. 
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 Fine tuning the parameters of the neural network with better 

implementations of the different and optimized neural networks 

algorithms will enhance the prediction accuracy of NN-GORV-II 

method. 

 

 NN-GORV-II exploits the biological information found in neighbouring 

residues and homologues sequences. A procedure for extracting 

biological information from the protein-protein interactions processes 

will add significantly extra reliable and biological information to the 

prediction process. 

 

 The novel approach of using the ROC curve and the AUC to partially 

assess the multi-class prediction algorithm can further be validated and 

adopted to represent a powerful assessment tool when the data set 

consists 50% coils. 

 

 The DSSP eight-to-three secondary structure states reduction methods 

together with other secondary structure assignments like DEFINE and 

STRIDE can be standardized and given unique names for each method. 

This will facilitate and standardize the comparison between prediction 

algorithms with more accuracy and minimum error. 

 

 Similar methods of prediction and classification in domains rather than 

Bioinformatics can successfully utilize variety of techniques and tools 

used in this research. 

 

 Since the research in Bioinformatics field in general and the protein 

secondary structure prediction domain in particular is increasing rapidly, 

the need for a “utility and statistical package for Bioinformatics” that 

successfully arranges data for input and helps in the analysis and 

assessment of the output becomes crucial. This will save considerable 

time for the research in Bioinformatics. 
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10.6  Summary 
 
 

This chapter concludes and summarizes the research work discussed in this 

project. The chapter also presents and highlights the contributions and findings of 

this research. Recommendations for further work and future research directions in 

the domain of this work are also coined and proposed in this chapter. 
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Appendix A 
 
 
 

PROTEIN STRUCTURES  
 
 
 

 

 
a) Amino acid sequences and peptide bond linking 
 
 

 
b) Primary structure of a protein (Amino acid sequences)  
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c) Secondary structure of a protein  
 
 
 
 
 
 
 

 
d) Tertiary or 3D structure of a protein  
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e) Quaternary structure of a protein  
 
 
 
 
Source: http://www.rothamsted.bbsrc.ac.uk/notebook/courses/guide/prot.htm 
 



 
 
 
 
 

Appendix B 
 
 
 
 

CUFF AND BARTON’S 513 PROTEIN DATA SET 
 
 
 
 
 

Name PHD Length Class Fold 
1aozb-1-AS 82.3 130.0 All beta Cupredoxins 
1atpi-1-DOMAK 85.0 20.0 Peptides Protein kinases (PK) Inhibitor 
1ayab-1-GJB 83.1 101.0 Alpha and beta (a+b) SH2-like 
1bsdb-1-DOMAK 74.7 107.0 Alpha and beta (a+b) Microbal ribonucleases 
1coi-1-AS 96.5 29.0 Peptides Antifreeze polypeptide HPLC-6 
1cthb-1-DOMAK 59.4 79.0 Small proteins Cytochrome c3 
1ctm-2-DOMAK 81.6 60.0 All beta Barrel-sandwich hybrid 
1ctn-1-AS.1 80.7 109.0 All beta Immunoglobulin-like beta-sandwich 
1edmc-1-AUTO.1 97.4 39.0 Small proteins EGF-like module 
1fc2c 65.1 43.0 All alpha Immunoglobulin-binding protein A, fragment B 
1gln-3-AS 75.0 48.0 All alpha Anticodon-binding (C-terminal) domain of 

glutamyl-tRNA Domain I 
1gp2a-1-AUTO.1 89.2 28.0 Peptides Mellitin 
1grj-2-AS 71.4 77.0 Alpha and beta (a+b) FKBP-like 
1hcgb-1-AS 80.3 51.0 Small proteins EGF-like module 
1htrp-1-AS 67.4 43.0 Small proteins Acid protease presegment 
1hup-1-AS.1 100.0 24.0 All alpha Oligomers of long helices 
1ilk-2-AS 95.5 45.0 All alpha 4-helical cytokines fragment 
1isub-1-DOMAK 66.1 62.0 Small proteins HIPIP (high potential iron protein) 
1lpe-1-DOMAK 84.0 144.0 All alpha Four-helical up-and-down bundle 
1mcti-1-AUTO.1 53.5 28.0 Small proteins Small inhibitors, toxins, lectins 
1mdta-1-AS 74.3 187.0 Alpha and beta (a+b) ADP-ribosylation toxins 
1mrt 100.0 31.0 Small proteins Metallothionein 
1ndh-2-AS 69.3 147.0 Alpha and beta (a/b) Ferredoxin reductase-like, C-terminal NADP-linked 

domain 
1ovoa 69.6 56.0 Small proteins Ovomucoid/PCI-like inhibitors 
1pga-1-DOMAK 75.0 56.0 Alpha and beta (a+b) beta-Grasp 
1powb-4-DOMAK 77.2 44.0 All alpha Pyruvate oxidase and decarboxylase, C terminal 

domain 
1ppt 100.0 36.0 Peptides Pancreatic polypeptide 
1reqc-1-AS 69.8 53.0 Unknown Unknown 
1rpo-1-AUTO.1 96.7 61.0 All alpha ROP protein 
1svb-2-AS 69.7 96.0 Unknown Unknown 
1tabi-1-DOMAK 86.1 36.0 Small proteins Small inhibitors, toxins, lectins 
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1ubdc-1-AS 70.3 27.0 Small proteins Classic zinc finger 
1ubq 80.2 76.0 Alpha and beta (a+b) beta-Grasp 
1wapv-1-AUTO.1 73.1 67.0 All beta Double-stranded beta-helix, jelly-roll domain 
1wfbb-1-AUTO.1 97.3 37.0 Peptides Antifreeze polypeptide HPLC-6 
2aaib-2-DOMAK 69.3 124.0 All beta beta-Trefoil 
2erl-1-AUTO.1 45.0 40.0 Unknown Unknown 
2mhu 90.0 30.0 Small proteins Metallothionein 
2mltb-1-GJB 80.7 26.0 Peptides Mellitin 
2or1l 84.1 63.0 All alpha lambda repressor-like DNA-binding domains 
2tgpi 87.9 58.0 Small proteins BPTI-like 
3b5c 62.3 85.0 Alpha and beta (a+b) Cytochrome b5 
3pmgb-2-AS 76.3 114.0 Alpha and beta (a/b) Phosphoglucomutase, first domains 
6rlxd-1-DOMAK 64.0 25.0 Small proteins Insulin-like 
9wgaa 59.6 171.0 Small proteins Small inhibitors, toxins, lectins 
1nga-2-AS.1 78.4 190.0 Alpha and beta (a/b) Ribonuclease H-like motif 
1gpmd-5-AS 78.0 178.0 Alpha and beta (a/b) ATP pyrophosphatases 
1asw-1-AUTO.1 82.4 148.0 Alpha and beta (a/b) Ribonuclease H-like motif 
1eca 80.8 136.0 All alpha Globin-like 
1fuqb-1-AUTO.1 75.0 136.0 Unknown Unknown 
1zymb-2-AUTO.1 87.5 128.0 Unknown Unknown 
2cab 75.7 256.0 All beta Carbonic anhydrase 
5lyz 65.1 129.0 Alpha and beta (a+b) Lysozyme-like Domain I 
1cnsb-1-AUTO.1 68.7 243.0 Alpha and beta (a+b) Lysozyme-like 
1mspb-1-AS 79.5 122.0 All beta Immunoglobulin-like beta-sandwich 
1mai-1-JAC 70.5 119.0 Unknown Unknown 
1dlc-1-AS.1 83.8 229.0 Membrane and cell surface 

proteins and peptides 
Toxins' membrane translocation domains 

1dynb-1-AUTO.1 63.7 113.0 All beta PH domain-like 
2hmza 80.7 114.0 All alpha Four-helical up-and-down bundle 
3mddb-2-AS 72.0 111.0 All beta Acyl-CoA dehydrogenase (flavoprotein), middle 

domain, barrel like 
1vcab-2-AUTO.1 68.1 110.0 All beta Immunoglobulin-like beta-sandwich 
1acx 81.4 108.0 All beta Immunoglobulin-like beta-sandwich 
1cewi-1-DOMAK 69.4 108.0 Alpha and beta (a+b) Cystatin-like 
1ilk-1-AS 77.3 106.0 All alpha 4-helical cytokines Short chain 
1sesa-2-AS 64.9 317.0 Alpha and beta (a+b) Class II aaRS and biotin synthetases 
1irk-2-AS 76.4 204.0 Alpha and beta (a+b) Protein kinases (PK), catalytic core C terminal 

Domain 
1cfb-1-AS 79.2 101.0 All beta Immunoglobulin-like beta-sandwich 
2alp 67.6 198.0 All beta Trypsin-like serine proteases Domain I 
1stfi-1-DOMAK 77.5 98.0 Alpha and beta (a+b) Cystatin-like 
1thtb-1-AUTO.1 67.5 293.0 Alpha and beta (a/b) alpha/beta-Hydrolases 
1nal4-1-AUTO.1 84.1 291.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1ris-1-DOMAK 67.0 97.0 Alpha and beta (a+b) Ferredoxin-like 
1tml-1-AS 84.2 286.0 Alpha and beta (a/b) Cellulases 
2ebn-1-AS 81.4 285.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1gep-2-AS 81.0 179.0 Unknown Unknown 
1dpgb-1-AUTO.1 87.5 177.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1tig-1-AUTO.1 78.4 88.0 Alpha and beta (a+b) IF3-like 
1celb-1-AUTO.1 65.1 433.0 Unknown Unknown 
2hpr-1-DOMAK 72.4 87.0 Alpha and beta (a+b) Histidine-containing phosphocarrier proteins (HPr) 
1cc5 72.2 83.0 All alpha Cytochrome c 
1fuqb-2-AUTO.1 75.6 250.0 Unknown Unknown 
1pht-1-AUTO.1 48.1 83.0 All beta SH3-like barrel 
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2spt-2-DOMAK 81.7 82.0 Small proteins Kringle modules 
1mdta-3-AS 77.3 159.0 All beta Common fold of diphtheria toxin/transcription 

factors/cytochrome f 
1onrb-1-AUTO.1 77.2 316.0 Unknown Unknown 
1mns-2-AS 71.4 228.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1nfp-1-AS 77.6 228.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
3icb 85.3 75.0 All alpha EF-hand 
1latb-1-AUTO.1 74.3 74.0 Small proteins Glucocorticoid receptor-like (DNA-binding 

domain) 
4fisb-1-DOMAK 84.9 73.0 All alpha FIS protein 
1fdlh 73.3 218.0 All beta Immunoglobulin-like beta-sandwich 
3cln 89.5 143.0 All alpha EF-hand 
1il8a 78.8 71.0 Alpha and beta (a+b) Interleukin 8-like chemokines 
1oacb-4-AS.1 69.9 426.0 All beta Supersandwich 
2utga 84.2 70.0 All alpha Uteroglobin-like 
1ctf-1-DOMAK 76.4 68.0 Alpha and beta (a+b) Ribosomal protein L7/12, C-terminal fragment 
1rsy-1-AS 71.8 135.0 All beta Immunoglobulin-like beta-sandwich 
1fuqb-3-AUTO.1 86.3 66.0 Unknown Unknown 
1dik-2-AS.1 62.3 130.0 Alpha and beta (a+b) ATP-grasp sub-domain II 
1dsbb-2-AUTO.1 79.6 64.0 All alpha Disulphide-bond formation facilitator (DSBA), 

insertion domain 
2pgd-2-AUTO.1 79.8 253.0 All alpha 6-phosphogluconate & Acyl-CoA dehydrogenases, 

C-terminal domain 
1csei 71.4 63.0 Alpha and beta (a+b) CI-family of serine protease inhibitors 
7rsa 68.5 124.0 Alpha and beta (a+b) Ribonuclease A-like 
2nadb-2-AS.1 74.5 185.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1qbb-2-AUTO.1 77.0 122.0 Unknown Unknown 
3inkd-1-DOMAK 59.5 121.0 All alpha 4-helical cytokines 
2pgd-1-AUTO.1 70.7 181.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1dnpb-2-AUTO.1 68.8 180.0 Unknown Unknown 
1esl-1-GJB 74.1 120.0 Alpha and beta (a+b) C-type lectin 
1gp2g-2-AS 83.2 298.0 All beta 7-bladed beta-propeller 
1bncb-4-AS 76.2 118.0 All beta Barrel-sandwich hybrid 
6cpp 75.8 405.0 All alpha Cytochrome P450 
1sftb-2-AS 70.0 230.0 Unknown Unknown 
1seib-2-AUTO.1 68.4 57.0 Unknown Unknown 
9apia 71.6 339.0 Multi-domain (alpha and beta) Serpins 
2bat-1-GJB 70.8 388.0 All beta 6-bladed beta-propeller 
2gsq-2-AS 85.5 111.0 All alpha Glutathione S-transferases, C-terminal domain 
821p-1-DOMAK 80.7 166.0 Alpha and beta (a/b) P-loop containing nucleotide triphosphate 

hydrolases 
1isab-2-GJB 80.7 109.0 Alpha and beta (a+b) Fe,Mn superoxide dismutase (SOD), C-terminal 

domain 
1fkf 72.9 107.0 Alpha and beta (a+b) FKBP-like 
1tcba-1-AS 57.7 317.0 Alpha and beta (a/b) alpha/beta-Hydrolases 
1hxn-1-AS 76.1 210.0 All beta 4-bladed beta-propeller 
1pnt-1-AS 77.7 157.0 Alpha and beta (a/b) Phosphotyrosine protein phosphatases I 
1chbe-1-DOMAK 73.7 103.0 All beta OB-fold 
1hiws-1-AS 64.0 103.0 All alpha Retroviral matrix proteins 
1dpgb-2-AUTO.1 73.0 308.0 Alpha and beta (a+b) Glyceraldehyde-3-phosphate dehydrogenase-like, 

C-terminal domain 
1kinb-1-AUTO.1 71.7 308.0 Unknown Unknown 
3mddb-3-AS 84.4 154.0 All alpha Four-helical up-and-down bundle 
1bncb-3-AS 64.7 51.0 Alpha and beta (a+b) ATP-grasp sub-domain II 
1gdj 87.5 153.0 All alpha Globin-like 
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2hft-1-AS 65.6 102.0 All beta Immunoglobulin-like beta-sandwich 
1gky-2-AS 60.0 50.0 Alpha and beta (a+b) P-loop containing nucleotide triphosphate 

hydrolases, inserted domain in Guanylate Kinase 
1krca-1-AUTO.1 78.0 100.0 Alpha and beta (a+b) Urease, gamma-subunit 
1smpi-1-AS 69.0 100.0 All beta Streptavidin-like 
7cata 72.0 498.0 All alpha Heme-linked catalases N-terminal fragment 
1ncg-1-AUTO.2 76.7 99.0 All beta Immunoglobulin-like beta-sandwich 
1gln-4-AS 81.6 98.0 All alpha Anticodon-binding (C-terminal) domain of 

glutamyl-tRNA Domain II 
1hmy-2-AS 56.1 98.0 Alpha and beta (a/b) S-adenosyl-L-methionine-dependent 

methyltransferases Domain II 
1dnpb-1-AUTO.1 85.4 289.0 Unknown Unknown 
1lap 74.8 481.0 Alpha and beta (a/b) Leucine aminopeptidase, N-terminal domain 
1sh1 62.5 48.0 Small proteins Defensin-like 
1wsyb 73.7 385.0 Alpha and beta (a/b) Tryptophan synthase, beta-subunit Domain I 
1clc-2-AS.1 80.3 239.0 All alpha Glycosyltransferases of the superhelical fold 

Domain I 
2ltnb 80.8 47.0 All beta ConA-like lectins/glucanases 
2sns 75.1 141.0 All beta OB-fold 
3pmgb-1-AS 75.5 188.0 Alpha and beta (a/b) Phosphoglucomutase, first domains 
1cpcl-1-DOMAK 82.8 140.0 All alpha Globin-like 
1bcx-1-DOMAK 82.7 185.0 All beta ConA-like lectins/glucanases 
1s01 71.2 275.0 Alpha and beta (a/b) Subtilases 
1powb-1-DOMAK 76.3 182.0 Alpha and beta (a/b) Thiamin-binding 
4rhv1 73.6 273.0 All beta Viral coat and capsid proteins 
1vcab-1-AUTO.1 78.6 89.0 All beta Immunoglobulin-like beta-sandwich 
1mdta-2-AS 72.3 177.0 Membrane and cell surface 

proteins and peptides 
Toxins' membrane translocation domains 

1han-1-AUTO.1 78.7 132.0 Alpha and beta (a+b) 2,3-Dihydroxybiphenyl dioxygenase (DHDB, 
BPHC enzyme) 

1kuh-1-AS 67.4 132.0 Alpha and beta (a+b) Metzincins, catalytic (N-terminal) domain 
1aazb-1-DOMAK 78.1 87.0 Alpha and beta (a/b) Thioredoxin-like 
1pda-3-AS 79.3 87.0 Alpha and beta (a+b) dsRBD & PDA domains 
1dkza-1-JAC 80.9 215.0 Unknown Unknown 
1pdo-1-GJB 86.0 129.0 Unknown Unknown 
1svb-1-AS 66.5 299.0 Unknown Unknown 
1trb-2-AS 67.1 128.0 Alpha and beta (a/b) FAD (also NAD)-binding motif 
1cei-1-GJB 82.3 85.0 Unknown Unknown 
1r092 62.7 255.0 All beta Viral coat and capsid proteins 
1vid-1-JAC 78.8 213.0 Unknown Unknown 
1rie-1-GJB 77.1 127.0 Unknown Unknown 
2sil-1-AS 72.7 381.0 All beta 6-bladed beta-propeller 
1masb-1-AUTO.1 78.3 295.0 Unknown Unknown 
1powb-2-DOMAK 73.3 169.0 Alpha and beta (a/b) Pyruvate oxidase and decarboxylase, middle 

domain 
1cgu-3-GJB 75.0 84.0 All beta Immunoglobulin-like beta-sandwich 
1isab-1-GJB 67.4 83.0 All alpha Long alpha-hairpin 
1vpt-1-JAC 74.9 291.0 Unknown Unknown 
1epbb-1-DOMAK 81.1 164.0 All beta Lipocalins 
2npx-3-AS.1 65.8 123.0 Alpha and beta (a+b) FAD/NAD-linked reductases, dimerisation (C-

terminal) domain 
2polb-1-AS 75.6 123.0 Alpha and beta (a+b) DNA clamp 
2fxb 77.7 81.0 Alpha and beta (a+b) Ferredoxin-like 
1scud-1-AS 76.8 121.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1chd-1-AS 80.8 198.0 Alpha and beta (a/b) CheB methylesterase domain (C-terminal residues 



 237

152-349) 
1hjrd-1-AUTO.1 79.7 158.0 Alpha and beta (a/b) Ribonuclease H-like motif 
1srja-1-DOMAK 78.8 118.0 All beta Streptavidin-like 
1hvq-1-AUTO.1 67.7 273.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
3pmgb-3-AS 70.9 117.0 Alpha and beta (a/b) Phosphoglucomutase, first domains 
1din-1-AS 81.1 233.0 Unknown Unknown 
1gln-2-AS 75.8 116.0 Alpha and beta (a/b) ATP pyrophosphatases inserted Domain I 
1ghsb-1-GJB 70.9 306.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1gog-1-AS.1 75.1 153.0 All beta Galactose-binding domain-like 
1ktq-1-AUTO.1 73.2 153.0 Alpha and beta (a/b) Ribonuclease H-like motif 
2rsla-1-GJB 72.1 115.0 Alpha and beta (a/b) gamma,delta Resolvase, large fragment 
6cpa 80.4 307.0 Alpha and beta (a/b) Zn-dependent exopeptidases 
1lehb-3-AS 77.2 229.0 Unknown Unknown 
1pnmb-2-AS 70.6 191.0 All alpha N-terminal nucleophile aminohydrolases (Ntn 

hydrolases) B chain Domain 
1tnfa 75.0 152.0 All beta Tumor necrosis factor 
2paba 74.5 114.0 All beta Prealbumin-like 
2tsca 70.8 264.0 Alpha and beta (a+b) Thymidylate synthase 
1hyp-1-DOMAK 70.6 75.0 All alpha Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin 
2afnc-1-AUTO.1 76.5 149.0 All beta Cupredoxins 
2tgi-1-DOMAK 51.7 112.0 Small proteins Cystine-knot cytokines 
154l-1-AUTO.1 56.2 185.0 Alpha and beta (a+b) Lysozyme-like 
1dih-2-AS 76.3 110.0 Alpha and beta (a+b) Glyceraldehyde-3-phosphate dehydrogenase-like, 

C-terminal domain 
2dln-3-AS 61.6 73.0 Alpha and beta (a+b) ATP-grasp sub-domain II 
1cem-1-GJB 71.9 363.0 Unknown Unknown 
1nol-1-AUTO.2 70.0 107.0 All alpha Hemocyanin, N-terminal domain 
4xiaa 77.8 393.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
5sici-1-DOMAK 80.3 107.0 Alpha and beta (a+b) Subtilisin inhibitor 
3cd4 69.1 178.0 All beta Immunoglobulin-like beta-sandwich 
1wsya 86.2 248.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1aorb-1-AS 75.3 211.0 Alpha and beta (a+b) Aldehyde ferredoxin oxidoreductase, N-terminal 

domains 
1kptb-1-AUTO.1 52.3 105.0 Alpha and beta (a+b) Virally encoded KP toxin 
1mla-2-AS.1 68.5 70.0 Alpha and beta (a+b) Ferredoxin-like 
1rbp 72.9 174.0 All beta Lipocalins 
1cpn-1-DOMAK 67.7 208.0 All beta ConA-like lectins/glucanases 
1ecl-1-AS 64.0 139.0 Alpha and beta (a/b) Type I DNA topoisomerase Rossmann-fold like 

domain 
3rnt 76.9 104.0 Alpha and beta (a+b) Microbal ribonucleases 
1bovb-1-DOMAK 69.5 69.0 All beta OB-fold 
5cytr 66.0 103.0 All alpha Cytochrome c 
1clc-1-AS.1 70.5 102.0 All beta Immunoglobulin-like beta-sandwich 
1find-1-AUTO.1 78.6 136.0 Unknown Unknown 
1pkyc-2-AUTO.1 66.1 68.0 All beta Pyruvate kinase beta-barrel domain 
1ecpf-1-AUTO.1 76.3 237.0 Alpha and beta (a/b) Purine and uridine phosphorylases 
1vhrb-2-AUTO.1 78.2 101.0 Unknown Unknown 
1xvab-1-GJB 65.4 269.0 Unknown Unknown 
1euu-2-JAC 80.0 100.0 All beta Immunoglobulin-like beta-sandwich 
1oyc-1-AS 74.1 399.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
2cpo-1-AUTO.1 68.7 298.0 Unknown Unknown 
1gcmc-1-AUTO.1 87.8 33.0 All alpha Oligomers of long helices 
2aat 76.0 396.0 Alpha and beta (a/b) PLP-dependent transferases Domain I 
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2trt-1-AUTO.1 86.8 198.0 Unknown Unknown 
1fnd 70.2 296.0 All beta Reductase/elongation factor common domain 
1rlr-2-JAC 67.6 526.0 Unknown Unknown 
1l58 73.1 164.0 Alpha and beta (a+b) Lysozyme-like Domain I 
1lib-1-DOMAK 83.2 131.0 All beta Lipocalins 
1ctu-2-AUTO.1 56.1 130.0 Alpha and beta (a/b) Cytidine deaminase 
1tupc-1-AUTO.1 68.2 195.0 All beta Common fold of diphtheria toxin/transcription 

factors/cytochrome f 
1gnd-2-JAC 67.0 97.0 Unknown Unknown 
1tplb-3-AS 79.8 129.0 Alpha and beta (a/b) PLP-dependent transferases Domain III 
2ak3a 80.9 226.0 Alpha and beta (a/b) P-loop containing nucleotide triphosphate 

hydrolases 
3blm 77.4 257.0 Alpha and beta (a+b) beta-Lactamase/D-ala carboxypeptidase Domain I 
1cgu-2-GJB 70.8 96.0 All beta alpha-Amylases, beta-sheet domain 
1fxia 77.0 96.0 Alpha and beta (a+b) beta-Grasp 
1ptx-1-AS 62.5 64.0 Small proteins Small inhibitors, toxins, lectins 
1vnc-1-JAC 68.5 576.0 Unknown Unknown 
2ccya 82.6 127.0 All alpha Four-helical up-and-down bundle 
1chkb-2-AUTO.1 76.8 95.0 Unknown Unknown 
1cyx-1-AUTO.1 76.5 158.0 All beta Cupredoxins 
1cfr-1-GJB 65.3 283.0 Unknown Unknown 
1dts-1-AUTO.1 79.0 220.0 Alpha and beta (a/b) P-loop containing nucleotide triphosphate 

hydrolases 
3bcl-1-DOMAK 58.1 344.0 All beta Bacteriochlorophyl A protein 
1gpc-1-AS 59.6 218.0 All beta OB-fold 
1gal-3-AS 59.1 186.0 Alpha and beta (a+b) FAD-linked reductases, C-terminal domain 
1knb-1-AS 76.8 186.0 All beta Adenovirus type fiber protein, knob domain 
6dfr 75.9 154.0 Alpha and beta (a/b) Dihydrofolate reductases 
1tcra-2-GJB 78.0 91.0 Unknown Unknown 
1sra-1-AS 67.5 151.0 All alpha EF-hand 
1regy-1-AUTO.1 64.1 120.0 Alpha and beta (a+b) Ferredoxin-like 
3mddb-1-AS 70.8 120.0 All alpha Acyl-CoA dehydrogenase (flavoprotein), N-

terminal domain 
9insb 83.3 30.0 Small proteins Insulin-like 
1trkb-1-AS 79.0 329.0 Alpha and beta (a/b) Thiamin-binding 
1gog-2-AS.1 63.9 388.0 All beta 7-bladed beta-propeller 
1comc-1-DOMAK 79.8 119.0 Alpha and beta (a+b) Chorismate mutase 
1vjs-3-GJB 80.9 89.0 All beta alpha-Amylases, beta-sheet domain 
2reb-2-DOMAK 64.4 59.0 Alpha and beta (a+b) Anti-LPS factor/recA domain 
1ecl-4-AS 80.3 117.0 All alpha Winged DNA binding like 
1lmb3 75.8 87.0 All alpha lambda repressor-like DNA-binding domains 
1rhgc-1-DOMAK 90.3 145.0 All alpha 4-helical cytokines 
1ubdc-2-AS 62.0 29.0 Small proteins Classic zinc finger 
2gn5 64.3 87.0 All beta OB-fold 
2gcr 73.4 173.0 All beta Crystallins/protein S 
1oacb-3-AS.1 75.6 115.0 Alpha and beta (a+b) Cystatin-like 
1amg-2-AS 77.1 57.0 All beta alpha-Amylases, beta-sheet domain 
1bncb-1-AS 75.4 114.0 Alpha and beta (a/b) Biotin carboxylase N-terminal domain-like 
2asr-1-DOMAK 86.6 142.0 All alpha Four-helical up-and-down bundle 
2hhmb-1-DOMAK 60.5 142.0 Alpha and beta (a+b) Sugar phosphatases alpha+beta N terminal domain 
1fbab-1-DOMAK 80.8 360.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
5er2e 70.0 330.0 All beta Acid proteases Domain I 
1ctu-1-AUTO.1 59.7 164.0 Alpha and beta (a/b) Cytidine deaminase 
1lbu-1-AS 82.9 82.0 Unknown Unknown 
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1pii-2-DOMAK 73.3 191.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1cbg-1-AS 72.8 490.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1powb-3-DOMAK 75.2 190.0 Alpha and beta (a/b) Thiamin-binding 
1fdx 70.3 54.0 Alpha and beta (a+b) Ferredoxin-like 
1horb-1-AUTO.1 76.3 266.0 Alpha and beta (a/b) Glucosamine 6-phosphate deaminase 
2spt-1-DOMAK 75.4 53.0 Small proteins Kringle modules 
3ecab-1-AS 72.6 212.0 Alpha and beta (a/b) Glutaminase/Asparaginase Domain I 
1aorb-3-AS 60.0 185.0 All alpha Aldehyde ferredoxin oxidoreductase, C-terminal 

domain 
1cxsa-4-AUTO.1 74.6 158.0 Unknown Unknown 
3pgk-2-AS 71.4 210.0 Alpha and beta (a/b) Phosphoglycerate kinase Domain II 
1lbu-2-AS 71.7 131.0 Unknown Unknown 
1hcra-1-DOMAK 82.6 52.0 All alpha DNA-binding 3-helical bundle 
1sfe-1-AS 74.3 78.0 Unknown Unknown 
1umub-1-AS 69.2 104.0 Unknown Unknown 
3gapa 71.6 208.0 All beta Double-stranded beta-helix, jelly-roll domain 
1rvvz-1-AUTO.1 79.2 154.0 Unknown Unknown 
1znbb-1-AS 74.7 230.0 Unknown Unknown 
1pda-2-AS 73.5 102.0 Alpha and beta (a/b) Periplasmic binding protein-like II Domain II 
4sgbi 80.3 51.0 Small proteins Ovomucoid/PCI-like inhibitors 
1oxy-3-AS 75.4 228.0 All alpha Hemocyanin, middle domain II 
1hnf-1-AS 45.5 101.0 All beta Immunoglobulin-like beta-sandwich 
1ese-1-AUTO.1 67.5 302.0 Alpha and beta (a/b) Flavodoxin-like 
1otgc-1-AS 58.4 125.0 Alpha and beta (a+b) Tautomerase/MIF 
1ptr-1-AUTO.1 64.0 50.0 Small proteins Protein kinase cystein-rich domain (cys2) 
8adh 72.4 374.0 All beta GroES-like 
1qrdb-1-AUTO.1 66.3 273.0 Unknown Unknown 
1oacb-2-AS.1 69.7 99.0 Alpha and beta (a+b) Cystatin-like 
1gep-3-AS 60.1 148.0 Unknown Unknown 
1grj-1-AS 77.0 74.0 All alpha Long alpha-hairpin 
1gym-1-AUTO.1 72.6 296.0 Unknown Unknown 
1dlc-3-AS.1 74.1 197.0 All beta beta-Prism I 
6hir 83.6 49.0 Small proteins Thrombin inhibitors 
1jud-1-GJB 79.5 220.0 Unknown Unknown 
1find-2-AUTO.1 77.0 122.0 Unknown Unknown 
1pbwb-1-AS 70.7 195.0 Unknown Unknown 
1rhd 76.1 293.0 Alpha and beta (a/b) Rhodanese 
1lba-1-DOMAK 73.9 146.0 Alpha and beta (a+b) Bacteriophage T lysozyme (Zn amidase) 
1seib-1-AUTO.1 75.3 73.0 Unknown Unknown 
1hplb-1-AS 60.6 338.0 Alpha and beta (a/b) alpha/beta-Hydrolases 
1qbb-3-AUTO.1 69.3 483.0 Unknown Unknown 
1nar-1-DOMAK 64.3 289.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1reqc-2-AS 75.8 506.0 Unknown Unknown 
1smnb-1-AUTO.1 64.3 241.0 Alpha and beta (a+b) Endonuclease 
1dik-3-AS.1 59.7 144.0 Alpha and beta (a/b) The "swivelling" beta/beta/alpha domain 
1gmpb-1-DOMAK 76.0 96.0 Alpha and beta (a+b) Microbal ribonucleases 
2olba-3-AS 81.4 216.0 Alpha and beta (a/b) Periplasmic binding protein-like II Domain II 
1edd-1-DOMAK 67.1 310.0 Alpha and beta (a/b) alpha/beta-Hydrolases 
1gd1o 72.1 334.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1daab-1-AS 73.9 119.0 Alpha and beta (a+b) D-amino acid aminotransferase Domain I 
5ldh 67.5 333.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1tie-1-DOMAK 78.3 166.0 All beta beta-Trefoil 
1spbp-1-AS 64.7 71.0 Alpha and beta (a+b) Ferredoxin-like 
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1pyta-1-AS 77.6 94.0 Alpha and beta (a+b) Ferredoxin-like 
2glsa 74.5 468.0 Alpha and beta (a+b) Glutamine synthetase smaller domain 
1ppi-2-AS 67.7 93.0 All beta alpha-Amylases, beta-sheet domain 
1gal-2-AS 69.8 116.0 All alpha Inserted domain into FAD (also NAD)-binding 

motif for Glucose oxidase 
1trh-1-AS 61.8 534.0 Alpha and beta (a/b) alpha/beta-Hydrolases 
1crn 41.3 46.0 Small proteins Crambin-like 
1gflb-1-AS 59.5 230.0 Unknown Unknown 
1gtqb-1-AUTO.1 71.7 138.0 Alpha and beta (a+b) Tetrahydrobiopterin biosynthesis enzymes 
1ignb-2-GJB 71.7 92.0 Unknown Unknown 
1mjc-1-DOMAK 81.1 69.0 All beta OB-fold 
3pgm 73.0 230.0 Alpha and beta (a/b) Phosphoglycerate mutase-like 
1udh-1-AUTO.1 75.0 228.0 Alpha and beta (a/b) Uracil-DNA glycosylase 
4pfk 79.3 319.0 Alpha and beta (a/b) Phosphofructokinase Domain I 
1gcb-2-AS 79.9 204.0 Alpha and beta (a+b) Cysteine proteinases Domain II 
1inp-1-AS.1 66.4 247.0 Alpha and beta (a+b) Sugar phosphatases alpha+beta N terminal domain 
1eceb-1-AUTO.1 72.6 358.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1efud-2-AUTO.1 79.7 89.0 Unknown Unknown 
2gbp 78.6 309.0 Alpha and beta (a/b) Periplasmic binding protein-like I Domain I 
1qbb-1-AUTO.1 72.0 154.0 Unknown Unknown 
2dkb-2-AS 75.7 264.0 Alpha and beta (a/b) PLP-dependent transferases Domain II 
2reb-1-DOMAK 70.4 220.0 Alpha and beta (a+b) P-loop containing nucleotide triphosphate 

hydrolases, small a+b insert 
1inp-2-AS.1 52.9 153.0 Alpha and beta (a/b) Sugar phosphatases alpha/beta C terminal domain 
1tfr-1-GJB 53.3 283.0 Unknown Unknown 
1bbpa 74.5 173.0 All beta Lipocalins 
1scue-3-AS 84.5 149.0 Alpha and beta (a/b) Flavodoxin-like 
1lpba-1-DOMAK 48.2 85.0 Small proteins Small inhibitors, toxins, lectins 
1azu 73.8 126.0 All beta Cupredoxins 
1kte-1-AS 75.2 105.0 Alpha and beta (a/b) Thioredoxin-like 
2mtac-1-AS 70.7 147.0 All alpha Cytochrome c 
3cox-1-AS.1 69.7 314.0 Alpha and beta (a/b) FAD (also NAD)-binding motif 
2phy-1-GJB 54.4 125.0 Alpha and beta (a+b) Profilin-like 
4sdha 82.0 145.0 All alpha Globin-like 
7icd 74.8 414.0 Alpha and beta (a/b) Isocitrate & isopropylmalate dehydrogenases 
3cox-2-AS.1 67.2 186.0 Alpha and beta (a+b) FAD-linked reductases, C-terminal domain 
1fua-1-AUTO.1 77.6 206.0 Unknown Unknown 
1rec-2-DOMAK 68.6 102.0 All alpha EF-hand 
1scue-2-AS 80.2 81.0 Alpha and beta (a+b) ATP-grasp sub-domain II 
1stme-1-AUTO.1 70.2 141.0 Unknown Unknown 
1mdaj-1-GJB 61.4 342.0 All beta 7-bladed beta-propeller 
2ltna 81.2 181.0 All beta ConA-like lectins/glucanases 
1bdo-1-AS 70.0 80.0 Unknown Unknown 
1nox-1-GJB 77.0 200.0 Unknown Unknown 
1ovb-1-GJB 66.0 159.0 Alpha and beta (a/b) Periplasmic binding protein-like II Domain II 
1irk-1-AS 72.7 99.0 Alpha and beta (a+b) Protein kinases (PK), catalytic core N terminal 

Domain 
6tmne 58.5 316.0 Alpha and beta (a+b) Metzincins, catalytic (N-terminal) domain 
2fox 78.9 138.0 Alpha and beta (a/b) Flavodoxin-like 
2admb-1-AUTO.1 65.2 216.0 Unknown Unknown 
1gog-3-AS.1 79.5 98.0 All beta Immunoglobulin-like beta-sandwich 
1hnf-2-AS 73.0 78.0 All beta Immunoglobulin-like beta-sandwich 
2dnja-1-AS 77.0 253.0 Alpha and beta (a+b) DNase I-like 
1dupa-1-AS 68.3 136.0 All beta beta-Clip 
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2olba-2-AS 58.0 136.0 Alpha and beta (a+b) Phosphate binding protein-like inserted domain 
1csmb-1-AUTO.1 76.1 252.0 All alpha Chorismate mutase II 
3tima 77.5 249.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
2i1b 69.2 153.0 All beta beta-Trefoil 
1hmpb-1-AUTO.1 76.0 209.0 Alpha and beta (a/b) Phosphoribosyltransferases (PRTases) 
1tif-1-AS 77.6 76.0 Alpha and beta (a+b) beta-Grasp 
2tmdb-3-AS 75.6 152.0 Alpha and beta (a/b) FAD (also NAD)-binding motif 
1vokb-1-AS 73.9 188.0 Unknown Unknown 
1bmv2 64.4 374.0 All beta Viral coat and capsid proteins 
3hmga 59.4 328.0 All beta Segmented RNA-genome viruses' proteins 
4rhv3 77.9 236.0 All beta Viral coat and capsid proteins 
1mmoh-1-AS 76.5 162.0 All alpha Methane monooxygenase hydrolase, gamma 

subunit 
1nlkl-1-DOMAK 74.1 143.0 Alpha and beta (a+b) Ferredoxin-like 
1mof-1-AS 69.8 53.0 Unknown Unknown 
1ndh-1-AS 76.4 123.0 All beta Reductase/elongation factor common domain 
1tsp-1-AS 55.1 544.0 All beta Single-stranded right-handed beta-helix 
1dar-3-AS 42.8 35.0 Unknown Unknown 
1sfe-2-AS 77.0 87.0 Unknown Unknown 
2wrpr 79.8 104.0 All alpha Trp repressor 
1taq-2-AS 44.9 69.0 Unknown Unknown 
1brse-1-DOMAK 70.9 86.0 Alpha and beta (a/b) Barstar (barnase inhibitor) 
1krcb-1-AS 76.7 86.0 All beta beta-Clip 
2hft-2-AS 68.9 103.0 All beta Immunoglobulin-like beta-sandwich 
6cts 77.6 429.0 All alpha Citrate synthase Domain I 
4gr1 70.0 461.0 Alpha and beta (a/b) FAD (also NAD)-binding motif 
1delb-2-AUTO.1 62.1 119.0 Unknown Unknown 
1hslb-2-DOMAK 65.6 102.0 Alpha and beta (a/b) Periplasmic binding protein-like II Domain II 
2bopa-1-DOMAK 60.0 85.0 Alpha and beta (a+b) Ferredoxin-like 
2phh 62.9 391.0 Multi-domain (alpha and beta) p-Hydroxybenzoate hydroxylase as a single domain
2sodb 78.1 151.0 All beta Immunoglobulin-like beta-sandwich 
1qbb-4-AUTO.1 76.1 67.0 Unknown Unknown 
1alkb-1-AS 63.4 449.0 Alpha and beta (a/b) Alkaline phosphatase 
1aozb-3-AS 64.3 216.0 All beta Cupredoxins 
2cmd-2-GJB 75.9 166.0 Alpha and beta (a+b) Lactate & malate dehydrogenases, C-terminal 

domain 
2afnc-2-AUTO.1 64.8 182.0 Unknown Unknown 
1nbac-1-AS 74.3 214.0 Alpha and beta (a/b) N-carbamoylsarcosine amidohydrolase 
2rspa 68.7 115.0 All beta Acid proteases Domain I 
1oacb-1-AS.1 52.4 82.0 Alpha and beta (a+b) Copper amino oxidase, domain 1 
1vmob-1-AS 73.0 163.0 All beta beta-Prism I 
1pmi-2-GJB 79.8 114.0 Unknown Unknown 
3ecab-2-AS 79.8 114.0 Alpha and beta (a/b) Glutaminase/Asparaginase Domain II 
1amp-1-AS 74.5 291.0 Alpha and beta (a/b) Zn-dependent exopeptidases 
2yhx-3-DOMAK 48.8 129.0 Alpha and beta (a/b) Ribonuclease H-like motif 
6acn 71.2 753.0 Alpha and beta (a/b) Aconitase, Domain I 
1mdam-1-DOMAK 64.2 112.0 Small proteins Methylamine dehydrogenase, L-chain 
3chy-1-DOMAK 83.5 128.0 Alpha and beta (a/b) Flavodoxin-like 
1hplb-2-AS 72.0 111.0 All beta Colipase binding domain-like 
3pmgb-4-AS 71.8 142.0 Alpha and beta (a+b) TBP-like 
1bfg-1-DOMAK 65.0 126.0 All beta beta-Trefoil 
1lki-1-AS 68.0 172.0 All alpha 4-helical cytokines 
1vcc-1-AS 83.1 77.0 Alpha and beta (a+b) A DNA topoisomerase I domain 
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2stv 67.9 184.0 All beta Viral coat and capsid proteins 
1gp1a 67.7 183.0 Alpha and beta (a/b) Thioredoxin-like 
2end-1-DOMAK 75.1 137.0 All alpha T endonuclease V 
9pap 65.0 212.0 Alpha and beta (a+b) Cysteine proteinases Domain I 
1dik-1-AS.1 70.5 241.0 Alpha and beta (a+b) ATP-grasp sub-domain I 
1dfnb-1-DOMAK 83.3 30.0 Small proteins Defensin-like 
1fdt-1-AS 72.6 285.0 Alpha and beta (a/b) NAD(P)-binding Rossmann-fold domains 
1nozb-2-AUTO.1 71.5 225.0 Unknown Unknown 
1paz 76.6 120.0 All beta Cupredoxins 
3ait 70.2 74.0 All beta alpha-Amylase inhibitor 
1dik-4-AS.1 59.3 354.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1pyp 74.6 280.0 All beta OB-fold 
1lis-1-DOMAK 68.7 131.0 All alpha Lysin 
1tndb-2-DOMAK 80.1 116.0 All alpha Transducin (alpha subunit), insertion domain 
1daab-2-AS 77.2 158.0 Alpha and beta (a+b) D-amino acid aminotransferase Domain II 
1vhh-1-AS 76.4 157.0 Alpha and beta (a+b) Hedgehog/DD-peptidase 
1rlds-1-DOMAK 84.2 114.0 Alpha and beta (a+b) RuBisCO, small subunit 
1fjmb-2-AS 81.9 111.0 Unknown Unknown 
1rec-1-DOMAK 78.3 83.0 All alpha EF-hand 
1cqa-1-AUTO.1 82.9 123.0 Alpha and beta (a+b) Profilin-like 
1eft-3-DOMAK 72.6 95.0 All beta Elongation factor Tu (EF-Tu), the C-terminal 

domain 
1thx-1-AUTO.1 71.3 108.0 Alpha and beta (a/b) Thioredoxin-like 
3hmgb 67.4 175.0 Membrane and cell surface 

proteins and peptides 
Influenza hemagglutinin (stalk) 

1bet-1-DOMAK 63.5 107.0 Small proteins Cystine-knot cytokines 
2cyp 61.4 293.0 All alpha Heme-dependent peroxidases Domain I 
1ceo-2-AUTO.1 33.9 53.0 All alpha small domain attached to TIM barrel 
1bmv1 74.5 185.0 All beta Viral coat and capsid proteins 
1cksc-1-AUTO.1 64.1 78.0 Alpha and beta (a+b) Cell cycle regulatory proteins 
4bp2 64.9 117.0 All alpha Phospholipase A2 
1tul-1-JAC 57.8 102.0 Unknown Unknown 
1dfji-1-AUTO.1 55.0 456.0 Unknown Unknown 
1yrna-2-AS 84.1 63.0 All alpha DNA-binding 3-helical bundle 
1bam-1-AS 60.0 200.0 Alpha and beta (a/b) Restriction endonucleases 
1trkb-3-AS 78.1 137.0 Alpha and beta (a/b) Transketolase, C-terminal domain 
4ts1a 69.0 317.0 Alpha and beta (a/b) ATP pyrophosphatases 
1gtmc-2-AUTO.1 61.9 134.0 Unknown Unknown 
1tssb-2-DOMAK 64.3 73.0 All beta OB-fold 
1hip 58.8 85.0 Small proteins HIPIP (high potential iron protein) 
1mrrb-1-DOMAK 76.4 340.0 All alpha Ferritin like 
1aozb-2-AS 68.9 206.0 All beta Cupredoxins 
2admb-2-AUTO.1 53.8 169.0 Unknown Unknown 
1cdta 75.0 60.0 Small proteins Snake toxin-like 
1tiic-1-GJB 66.6 36.0 Peptides Antifreeze polypeptide HPLC-6 
9apib 86.1 36.0 Multi-domain (alpha and beta) Serpins 
2mev4 46.5 58.0 All beta Viral coat and capsid proteins 
1gpmd-4-AS 66.5 206.0 Alpha and beta (a/b) Class I glutamine amidotransferases 
1han-2-AUTO.1 69.0 155.0 Alpha and beta (a+b) 2,3-Dihydroxybiphenyl dioxygenase (DHDB, 

BPHC enzyme) 
1pkyc-3-AUTO.1 76.6 120.0 Alpha and beta (a/b) Pyruvate kinase, C-terminal domain 
4rxn 64.8 54.0 Small proteins Rubredoxin-like 
3cla 70.8 213.0 Alpha and beta (a/b) CoA-dependent acetyltransferases 
1edn-1-AS 57.1 21.0 Small proteins Endothelin-like 
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2dln-1-AS 67.8 84.0 Alpha and beta (a/b) Biotin carboxylase N-terminal domain-like 
1cgu-4-GJB 77.8 104.0 All beta Prealbumin-like 
1chmb-1-DOMAK 61.9 155.0 Alpha and beta (a/b) Ribonuclease H-like motif 
1poc-1-DOMAK 50.7 134.0 All alpha Phospholipase A2 
2hipb-1-DOMAK 45.0 71.0 Small proteins HIPIP (high potential iron protein) 
1adeb-2-AUTO.1 78.0 100.0 All alpha P-loop containing nucleotide triphosphate 

hydrolases all helical domain 
4rhv4 50.0 40.0 All beta Viral coat and capsid proteins 
1add-1-AS 69.3 349.0 Alpha and beta (a/b) beta/alpha (TIM)-barrel 
1etu 73.4 177.0 Alpha and beta (a/b) P-loop containing nucleotide triphosphate 

hydrolases 
1pbp-2-DOMAK 55.1 176.0 Alpha and beta (a/b) Periplasmic binding protein-like II Domain II 
2scpb-1-DOMAK 66.6 174.0 All alpha EF-hand 
256ba 75.4 106.0 All alpha Four-helical up-and-down bundle 
1pdnc-2-AS 76.3 55.0 All alpha DNA-binding 3-helical bundle 
1colb-1-DOMAK 73.6 197.0 Membrane and cell surface 

proteins and peptides 
Toxins' membrane translocation domains 

1fbl-1-AS 69.7 175.0 Alpha and beta (a+b) Metzincins, catalytic (N-terminal) domain 
1bds 69.7 43.0 Small proteins Defensin-like 
2abk-2-AS 74.5 110.0 All alpha Endonuclease III 
1ahb-2-GJB 55.2 67.0 Alpha and beta (a+b) Ribosome inactivating proteins (RIP) Domain II 
1avhb-4-AS 67.5 74.0 All alpha Annexin Domain 
2bltb-2-AUTO.1 64.3 73.0 All alpha beta-Lactamase/D-ala carboxypeptidasea inserted 

domain 
1avhb-3-AS 76.7 86.0 All alpha Annexin Domain 
1clc-3-AS.1 68.0 200.0 All alpha Glycosyltransferases of the superhelical fold 

Domain II 
4cpai 75.6 37.0 Small proteins Small inhibitors, toxins, lectins 
1yptb-1-AUTO.1 57.1 280.0 Alpha and beta (a/b) Phosphotyrosine protein phosphatases II 
1bpha-1-DOMAK 57.1 21.0 Small proteins Insulin-like 
2hhmb-2-DOMAK 60.7 130.0 Alpha and beta (a/b) Sugar phosphatases alpha/beta C terminal domain 
1rlr-1-JAC 59.7 211.0 Unknown Unknown 
1whi-1-AS 66.3 122.0 Unknown Unknown 
1cdlg-1-DOMAK 75.0 20.0 Peptides Simple helix 
2tmvp 60.3 154.0 All alpha Four-helical up-and-down bundle 
1ctn-3-AS.1 60.2 73.0 Alpha and beta (a+b) FKBP-like 
1cbh 72.2 36.0 Small proteins Small inhibitors, toxins, lectins 
6rlxc-1-DOMAK 37.5 24.0 Small proteins Insulin-like 

 
Q3 Values for each sequence with DSSP as the definition model (PHD only is rendered here) 
Source: http://barton.ebi.ac.uk/



 
 
 
 
 

Appendix C 
 
 
 
 
 

DESCRIPTIVE STATISTICS 
 
 
 
 
Table C-1: Descriptive Statistics of the Q3 for the five reduction methods  
 

Method 
Num 

 of AA Range Min Max Mean 
Mean  

Std. Error 
Standard 
Deviation Variance 

Method I         
ALL 480 97.4 .0 97.4 79.876 0.462 10.1263 102.542 
H 480 100.0 .0 100.0 77.418 1.211 26.5348 704.094 
E 480 100.0 .0 100.0 69.494 1.252 27.4202 751.867 
C 480 80.0 20.0 100.0 80.306 0.537 11.7696 138.523 
Method II         
ALL 480 97.6 .0 97.6 80.491 0.466 10.2111 104.267 
H 480 100.0 .0 100.0 77.403 1.211 26.5316 703.926 
E 480 100 0 100 77.120 1.10 24.193 585.283 
C 480 72.7 27.3 100.0 79.989 0.536 11.7515 138.098 
Method III         
ALL 480 97.6 .0 97.6 80.484 0.466 10.2139 104.324 
H 480 100.0 .0 100.0 77.418 1.211 26.5348 704.094 
E 480 100 0 100 77.120 1.10 24.193 585.283 
C 480 72.7 27.3 100.0 79.965 0.537 11.7748 138.646 
Method IV         
ALL 480 98 0 98 80.38 0.45 9.788 95.802 
H 480 100.0 .0 100.0 87.031 0.939 20.5739 423.285 
E 480 100.0 .0 100.0 69.494 1.252 27.4202 751.867 
C 480 80.0 20.0 100.0 78.339 0.538 11.7773 138.705 
Method V         
ALL 480 98.4 .0 98.4 80.984 0.452 9.9042 98.094 
H 480 100.0 .0 100.0 87.031 0.939 20.5739 423.285 
E 480 100 0 100 77.12 1.10 24.193 585.283 
C 480 72.7 27.3 100.0 78.067 0.537 11.7615 138.332 
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Table C-2: Descriptive Statistics of SOV measure for the five reduction methods  
 

Method 
Num 

 of AA Range Min Max Mean 
Mean  

Std. Error 
Standard 
Deviation Variance 

Method I         
ALL 480 98.8 .0 98.8 75.830 0.747 16.3579 267.582 
H 480 100.0 .0 100.0 77.982 1.229 26.9282 725.130 
E 480 100 0 100 71.19 1.32 28.991 840.459 
C 480 90.0 10.0 100.0 73.414 0.652 14.2813 203.956 
Method II         
ALL 480 99.5 .0 99.5 76.265 0.799 17.4989 306.211 
H 480 100.0 .0 100.0 77.955 1.229 26.9177 724.565 
E 480 100.0 .0 100.0 79.938 1.122 24.5743 603.895 
C 480 87.5 12.5 100.0 74.349 0.709 15.5282 241.125 
Method III         
ALL 480 99.5 .0 99.5 76.248 0.800 17.5222 307.026 
H 480 100.0 .0 100.0 77.982 1.229 26.9282 725.130 
E 480 100.0 .0 100.0 79.938 1.122 24.5743 603.895 
C 480 87.5 12.5 100.0 74.323 0.711 15.5726 242.507 
Method IV         
ALL 480 99.3 .0 99.3 75.844 0.761 16.6689 277.851 
H 480 100.0 .0 100.0 87.633 0.974 21.3347 455.168 
E 480 100 0 100 71.19 1.32 28.991 840.459 
C 480 90.0 10.0 100.0 72.693 0.677 14.8422 220.291 
Method V         
ALL 480 99.5 .0 99.5 74.932 .857 18.7823 352.773 
H 480 100.0 .0 100.0 87.633 .974 21.3347 455.168 
E 480 100.0 .0 100.0 79.938 1.122 24.5743 603.895 
C 480 82.6 17.4 100.0 72.503 .745 16.3328 266.761 
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