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ABSTRACT

Drilling horizontal and highly deviated wells is almost always accompanied
by hole cleaning issues and cuttings transport problems. This study was conducted to
gain more in-depth understanding of cuttings transport in this type of wells. A flow
loop was designed to address the whirling and orbital motion of a self-eccentric
drillpipe under various conditions of hole inclinations, fluid velocity and viécosity as
well as particle size. In this study, it has been observed that the orbital motion of the
drillpipe plays a crucial role in the rate of cuttings-bed erosion and transport pattern
under the action of streaming fluid and hence affect hole cleaning capabilities of the
drilling fluid in highly deviated and horizontal sections of the well. Pipe rotation was
seen to improve hole cleaning to up to 74 %. Annular velocity and degree of
turbulence is also shown to be critical for efficient hole cleaning requirements.
Increasing hole inclination from 60° to 90° has a substantial effect on hole cleaning,
in most situations a 28% improvement was established as the angle turns from 60° to
90°. However, the effect of increasing fluid viscosity at velocities of this study
adversely affect hole cleaning. Increasing the system kinematic viscosity from 1 ¢St
to 10 cSt turns the system from turbulent to laminar flow and resulted in about 38 %
reduction in hole cleaning. Finally cuttings size was found to have a minor effect on
hole cleaning. In this study, cuttings of 1.2 and 2.4 mm were used. Higher velocities
and pipe rotation as well as higher viscosities and hole inclination seemed to assist

transportation of large particles than smaller ones.
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CHAPTER1

INTRODUCTION

1.1 Introduction

Horizontal and extended reach drilling have undergone rapid development in
the past decade and expected to see more evolution in the near future. Horizontal
and extended reach wells are considered a practical approach to develop offshore
fields through accessing impossible targets and replace uneconomic infill
conventional vertical drilling around faults and other obstructions. Utilization of this
technique, however, is often associated with serious problems during drilling, which
in more than one occasion minimize the advantages gained by such drilling.
Excessive torque/drag, upright equivalent circulation densities, lost circulation, barite
sag, inefficient hole cleaning and frequent sticking are some of the problems

encountered while drilling horizontally (Cameron, 2001).

With the introduction of these applications, reduction in cuttings transport
performance becomes serious and hole cleaning aggravated as hole deviation and
well depths and/or out reach increase (Sifferman and Becker, 1992). The cuttings
tend to accumulate and concentrate at the bottom hole. If the accumulation of
cuttings continues, the cuttings aggregations tend to form beds at the low sidewall of
the annulus which impede drillpipe movement into and out of the wellbore and often
the drillpipe gets stuck. This increases non-drilling time and cost considerably
(Sifferman and Becker, 1992). Cuttings beds greatly increase drag, hindering
drillpipe sliding and limit the lateral reach of the well (Azar and Sanchez, 1997).



This severe impedance, oppose the rotation of the drillpipe and greatly reduce the

amount of torque delivered at the bit.

Hole cleaning is essential for the drilling practices to succeed; good hole
cleaning efficiencies are required to complete the well at lower costs. Inadequate
hole cleaning can trigger other wellbore problems such as mechanical drillstring
sticking, increase in torque and drag, lost of circulation, bottom hole and bit balling,
formation damage and difficulties in running casing strings and deploying logging

equipment. These problems add to the well cost significantly.

This chapter will provide an introduction to the wellbore problems that are
related to hole cleaning. Problem statement, objectives and scope of the study will

be finally presented.

1.2 Drill-Cuttings Generation and Transportation

Cuttings are generated during drilling as the drill bit scrapes, gauges and/or
grinds the formations that are being drilled (Aird, 2000). This action is achieved by
applying weight to the bit to overcome the compressive strength and crushes the rock
surface; further application of rotation produces a tearing or shearing action. As
drilled cuttings are generated by the bit during drilling operation, they must be
removed from the well. This task is normally achieved by circulating the so called
drilling fluid down the drillstring and via bit nozzles, flushing the bit teeth, sweeps
and/or entrains cuttings up the annulus to the surface. For the drilling fluid to

success in its job it must be of the right velocity, density and rheology.

1.3 Hole Cleaning and Other Wellbore Problems

Aird (2000) reported a number of drilling problems that may be possible to
take place when the drilling fluid has failed to efficiently transport drill-cuttings out



of the wellbore. Of these problems is the formation of cuttings bed that can produce
excessive drags while drilling or tripping and induce high resistance to pipe rotation
(torque and drag); increase in equivalent circulation density and pump pressure that
may develop to formation breakdown and lost of circulation (lost circulation); poor
bit and/or bottom hole cleaning that will slow down rate of penetration (bit and
bottomhole balling); excessive regrinding of cuttings that may facilitate fines
invasion to reservoir rock, in case of conventional overbalanced drilling and result in
permeability impairment (formation damage); hole pack-off; wellbore instability;

and in severe cases pipe sticking.

1.3.1 Drillstring Sticking

It is a condition when part of the drillstring get stuck in the hole which in one
way or another inhibit pipe movement and in turn, further drilling progress (Rabia,
1985). Many reasons have been reported for pipe sticking since 1937 (Darley and
Gray, 1988). Pipe sticking may be due to key seating or due to an accumulation of
cuttings around the pipe or balling up of the bit (mechanical sticking) or a result of

differential pressure.

In differential sticking, differential pressure (difference between hydrostatic
pressure of mud and formation pore pressure) is imposed by the magnitude of the
hydrostatic pressure because formation pressures are at fixed levels. Differential
force, however, is sensitive to changes in mud density, contact area and friction
forces (Rabia, 1985). Inefficient hole cleaning will indeed result in an increase in
mud density and in turn, an increase in differential force that promote pipe sticking.
During such sticking the drillstring can not be moved up or down but free circulation

is easy to establish.

Hole cavings and cuttings that accumulate in bottomhole due to insufficient
hole cleaning offer potential hazards for pipe to become stuck as shown in Figure

1.1. When pipe is stuck in this manner, free fluid circulation is generally shut off or



the pressure required for circulation increased substantially. This may violate the

optimized ECD and give rise to formation fracturing and lost of circulation problems.

Figure 1.1: Mechanical drillstring sticking while tripping out of the well
(Rasi, 1994)

1.3.2 Torque and Drag

Torque is the force required to rotate the drillstring, it is the difference
between the torque applied at the rig floor and the torque available at the bit. While
drag is the incremental force above the string weight required to move the pipe
vertically, in other words it is the difference between the static and tripping weight of
the drillstring. Excess torque can cause drillstring twist off while high drag forces
can cause pipe sticking and pipe parting. Torque and drag are accounted for in
planning and drilling extended-reach and horizontal wells to ensure the rig rotary and

hoisting equipment are adequately sized and the drillstring is properly designed.

Torque and drag problems are associated each other and may be profound in
extended-reach and horizontal wells. A variety of sources for excess torque/drag
may exist: drillstring sticking, improper hole cleaning and the general friction
interaction associated with side forces along the drillstring (Sheppard et al., 1987,
Aarrestad and Blikra, 1994).



Total surface torque is comprised of frictional string torque, dynamic torque,
drill-bit torque and mechanical torque. Frictional torque is generated by contact
loads between the string and casing or open hole and depend largely on the
magnitude of contact loads, which in turn determined by drillstring tension and/or
compression, dogleg severities, drillpipe/hole size, drillstring weight, well profile,
inclination and tortuousity. Whereas drill bit torque depend on type of drill bit and
formation to be drilled. However, mechanical torque is a result of cuttings beds been

accumulated at bottom hole and/or borehole ledges (Payne and Abbassian, 1997).

1.3.3 Lost Circulation

Lost circulation is defined as the partial or complete loss of drilling fluid.
Lost circulation occurs when the mud hydrostatic pressure exceeds the breaking
strength of the formation, which creates cracks along which the fluid will flow
(Rabia, 1985).

Lost circulation is perhaps the most costly drilling problem encountered in oil
and gas exploration, with exception of blowouts. The cost factors include lost rig
time, expensive remedial techniques, loss of drilling mud and costly constituents,
plugging potentially productive zones, blowouts resulting from decreased hydrostatic
pressure subjected to formations other than the thief zone and in severe cases

potential loss of the hole.

Lost of circulation may be a slow seepage into formation while in some other
cases, a major seepage may result and in most severe conditions, a complete loss of
drilling fluid may take place. Lost circulation occurs as a result of a sudden increase
in hydrostatic pressure of drilling fluid which can arise from a sudden increase in

mud density or surge pressures.

Improper hole cleaning will result in an increasing number of cuttings resting
at bottomhole. As result of bit action and drillstring smashing these cuttings are

subjected to severe regrinding and pulverized into small fines. Fines that are not



removed by solid control equipment are suspended, build up and permanently
entrained in drilling fluid. Mud density increases substantially which give rise to lost
circulation. This also increases pump pressures and increases mud equivalent
circulation density. Flow past restrictions such as cuttings beds contribute also to the
possible increase in ECD particularly in horizontal and extended-reach wells.
Formation breakdown occurs if the mud ECD exceeds formation fracture pressure.
Mud pressure may then induce a fracture or open a natural fracture leading to losses
and/or differential sticking if drilled with too high an overbalance.

1.3.4 Bottomhole and Bit Balling

Bit balling may be described as the accumulation and possible adherence of
drill-cuttings on or about the bit face and/or bottom hole assembly. Cuttings pad
could also accumulate in front of the bit face that would impede the overall

performance of the bit without actually sticking to the bit itself.

If drilled cuttings are not removed from beneath the bit as fast as they are
generated, they would be reground and a layer of broken rock will build up between
the bit and true bottomhole (bottomhole balling) as well as between the bit teeth (bit
balling). These phenomena greatly reduce penetration rate and preventing further
drilling progress. Bit balling worsens if the drilled formation is soft shale or swelling

shale that absorbs water from water-based drilling fluid (Darley and Gray, 1988).

1.3.5 Formation Damage

Physically, formation damage is generally caused by invasion of foreign
fluids and/or solids into reservoir rock. Invading solids can block the pore channel
and impede production. However, possible effects of foreign fluids are
emulsification with formation fluids, resulting in capillary blocking of pore throats
(Gatlin, 1960).



Chemically, the formation can be damaged by chemical reaction between the
filtrate and pore contents and/or matrix materials. Main factors are swelling or
dispersion of clays and precipitation by chemical reaction between mud filtrate and
the pore contents as well as the solution of salts and minerals from the matrix. The
sensitivity of pay zone to damage by fluids filtrate is largely depending on its clay
content because these interstitial clays hydrate or swell when in contact with the

invaded filtrate resulting in a substantial reduction in void space and permeability.

Cuttings fines may invade and precipitate in pore space and hence, plug the
internal pores and result in a serious blocking to oil flow. For fines to migrate deep
inside the formation, they must be smaller than pore openings (< 1/3 pore size). An

extreme case of whole mud invasion is loss of circulation into reservoir rock.

Horizontal and highly deviated wells are more susceptible to formation
damage than vertical and near vertical ones. That is because horizontal drilling takes
a longer time, resulting in a conical shape damage zone; this damage can
significantly reduce the productivity of a horizontal well. In horizontal and highly
deviated well, cuttings beds are more likely to settle at the low sidewall of the
annulus; the drillstring is always resting on the same side due to gravity. This fact
facilitates cutting-fines production and thus formation damage occurrence.
Furthermore, ECD is expected to increase dramatically because of inefficient hole
cleaning and cuttings beds formation. With increase in ECD the overbalance
pressure on formation pore pressure increase. Hence, more force acts on the mud

solid particles and drill-cuttings fines to enter into formation pores.

1.3.6 Shale Stability

Efficient hole cleaning is very important to avoid sticking problems after
shale failure has occurred. However, inefficient transport of cuttings will indeed lead
to annulus overload and thus, effectively raise mud pressure and in general ECD.
Mud pressure exerted on shale formations will increase, which in turn causes an

increase in pore penetration and destabilization of the shale formations.



14 Problem Statement

Cuttings removal and hole cleaning is a function of many factors. The most
important factors are hole inclination, hole geometry (annulus dimensions and
eccentricity), drilling fluid properties (rheology, density and type), annular velocity
of the drilling fluid, characteristics of drill-cuttings (cuttings size, shape and density),
drillstring rotation and rate of penetration (Azar and Sanchez 1997). However, the
empirical cuttings transport literature contains confusing observations and
recommendations. Conflicting observations were made in particular regarding the
effect of drillpipe rotation, hole inclination, cuttings size and fluid rheological

properties.

Furthermore, vast majority of previous studies except Sanchez et al. (1999)
have considered the effect of pipe rotation to be either of minor or of intermediate
significance. However, the previous studies unless that of Sanchez et al. (1999),
force the inner pipe to rotate on its axis prohibiting whirling and orbital motion.
Since the whirling or whipping motion of the drillstring at near horizontal to
horizontal sections is well documented it becomes necessary to confirm its effect on

hole cleaning.

Hole cleaning worsened as hole inclination increases with the mid angles are
the most difficult to clean; however, there was either disagreement to define the
critical angles or doubt in their presence. Since horizontal and extended reach wells
involve long lateral sections, i.e. these wells are characterized by a high ratio of
horizontal departure to total vertical depth; therefore it is of importance to monitor

hole cleaning mechanism at these sections.

Cuttings size and shape are generally of little importance in hole cleaning
especially at highly deviated and horizontal parts of the well. Since the shape of drill
cuttings will definitely be irregular and the effect of cuttings size is more dominant
than particle shape therefore cuttings size is more important than particle shape.
However, as there was a considerable bias on whether large cuttings or smaller ones

are better to transport, it seems that this point warrant more attention.



This study was conducted to gain more in-depth understanding of cuttings
transport patterns in horizontal and highly inclined wells. Experiments were
conducted to investigate the transport mechanism of drill cuttings while transported
in highly deviated and horizontal wells using transparent fluids. A flow loop was
designed to address the effect of whirling and orbital motion of a self-eccentric
drillpipe on hole cleaning and cuttings transport under various conditions of hole
inclinations, fluid velocity and viscosity as well as particle size. The model also

allows cuttings patterns to be monitored and identified.

1.5 Objective of the Study

The objective of this study is to examine the effects of drillpipe whirling
motion on cuttings transport and hole cleaning in horizontal and highly deviated
wells. The effect of hole inclination (60° to 90°), cuttings size, fluid viscosity and

fluid velocity on cuttings transport will also be addressed.

1.6  Scopes of the Study

6] Fabrication of a laboratory-scale transport model and allow simulation

of cuttings transport process in annular space of oil wells.

(ii) Studying the effect of inner pipe whirling motion on hole cleaning and
cuttings transport, the effect of fluid velocity and viscosity, the effect
of hole inclination and the effect of particle size.

(iii)  Identify cuttings transport patterns at different set up parameters.

(iv)  Continuous injection of cuttings to simulate rate of penetration and

drill a head steady state conditions.
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Four annular fluid velocities were investigated: 43.59, 56.69, 69.80 and 82.91
cm/sec (1.43, 1.86, 2.29 and 2.72 ft/sec). These velocities allow turbulent flow to
exist for low viscous systems and laminar flow for high viscous systems. Generally

the Reynolds number ranged between 15661 and 705.

Four fluid viscosities were also investigated. Three systems were formulated
by adding glycerine in water to form aqueous solutions. Glycerine was added in
quantities of 20, 40 and 60 % by volume of the total solution volume. The
corresponding kinematic viscosities were: 1.71, 3.37 and 10.51 ¢St @ 25° C
respectively. The fourth system was local tap water whose kinematic viscosity was
found to be 0.90 cSt @ 25° C.

Four hole inclinations that simulates angles of highly deviated and horizontal
sections of oil wells were studied. These angles were 60°, 70°, 80° and 90° measured

from vertical position.

Coarse sands of irregular shape and average specific gravity of 2.6566 have
been prepared into two groups of different cuttings size. Small cuttings group has an
average cuttings size of 1.2 mm (0.0472 in) and the large cuttings group has an

average cuttings size of 2.4 mm (0.0945 in).

Two inner pipe rotational-speeds were used (0 RPM and 10 RPM);
" meanwhile the simulated rate of penetration was kept constant during the study.
Cuttings were injected at a rate of 162 g/min (0.357 Ib/min) which simulates

approximately a lower rate of penetration at 1.4 m/hr (4.5 ft/hr).

The annular section and the conveying medium used were transparent to
allow monitoring in order to identify the mode of cuttings transport under different

operating conditions.
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