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ABSTRACT

A single error occurs in the non fault-tolerant Multistage Interconnection
Networks (MINs) render a catastrophe to the MINs. The new scheme is to design a
fault-tolerant MIN. Multiple paths between an input port and output port in the
proposed network are established by chaining switching elements which have the
same partition in the same stage. To enhance the performance and reliability of the
proposed switch, sub-switches are straddled across the stages in the proposed
network. This thesis examines the performance and design issues of fault-tolerant
MINS. It first presents a survey of the current state of the art in MINs. Then, it
investigates one of the most important design issues: cost-effectiveness. Following
this comprehensive study, the thesis proposed a fault-tolerant MIN model.
Analytical models for evaluation of the proposed network survivability and
performance are presented . Finally the thesis presents fault-diagnosis methods to
locate possible single fault occurs in the proposed network. Because maximum
alternatives paths in the network are exploited, the proposed fault-tolerant switch has
long lifetime and high bandwidth. Compared to other switches, it performs better in
term of cost-effectiveness and throughput. In conclusion, we have successfully
developed a fault-tolerant MIN which is: high survivability, simple control

algorithm, full connecting capability and high bandwidth.
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CHAPTER1

INTRODUCTION

11 Introduction of Multistage Interconnection Networks (MINs)

The discipline of interconnection networks (including MINs ) is based on a
strong mathematical foundation. Today’s multistage switching networks have their
origins in the theory of circuit-switched telephone networks of the 1950’s, pioneered
by Clos and Benes [1-5]. Many problems in the topological design and analysis of
the interconnection networks lend themselves to elegant formulations in terms of
problems in graph theory, combinatorics, and group theory. In MINS, researchers use
different mathematical models to analysis the properties and topological equivalence

among MINSs.

In spite of active research for more than four decades, research activities in
interconnection networks (including MINs) remain strong today, with a large number

of papers continued to be published in various journals and conference proceedings.

The interconnections designed for use in multiprocessor systems range from a
common bus to a crossbar network. The network design involves trade-off between
cost, performance, and control complexity. Ideally, we would like any processor in
the system to connect to any other processor or memory unit so that many processors
can communicate simultaneously without contention. Such an ideal network is the

crossbar network [6].
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With a crossbar network, N processors can simultaneously access data from
N memory modules, and any degradation in performance occurs only due to memory
conflicts. Such nonblocking crossbar networks [7], however, are difficult to design
for large multiprocessors because of their hardware cost. Furthermore, a crossbar
network is difficult to expand and its failure (single point) can seriously affect the
reliability of the system. Therefore, to reduce the cost, many networks have been
designed using large number of small crossbars organized in stages. The Clos [1] and

Benes [2] networks are examples of such multistage networks.

Over the years, a variety of multistage interconnection networks were
proposed for use in multiprocessor systems. These include the Omega network [8],
indirect binary n-cube network [9], baseline network [10], delta networks [11],
banyan networks [12], data manipulator type network [13], and a number of their
variants and derivatives. These networks generally use fewer gates than the crossbar
network, and are typically constructed for N = 2" inputs and outputs with multiple
“stages” (columns) of switching elements; the networks differ in the interconnection
pattern between stages, the type and operation of individual switching elements, and
the control scheme for setting up the switching elements. A basic requirement in the
design of these networks is to provide full access capability, which means that any
input terminal of the network should be able to access any output terminal in one

pass through the network.

Most of the multistage networks proposed in the literature can be constructed
with a 2 x 2 crossbar switches as basic elements, and have »n = log, N switching
stages with each stage consisting of N/2 elements. Thus, the total number of gates in
these networks is O(N log N), as compared to O(N?) for a crossbar. These networks
can also be constructed with larger switching elements, with corresponding fewer
stages. The properties of these networks can be mathematically studied with respect
to networks constructed from 2 x 2 switches, and the results are easily extended to

network designed with larger switches.



1.2  Major Characteristics of MINs

In the past, many parallel/distributed computing systems processing and
ATM switches used Multistage interconnection networks (MINs) due to their
simplicity and distributed processing capability [14]. Recently, optical MINs draw
much attention from research communities [15-18]. In this thesis, we only focus on
fault-tolerant switches which are based on MINs. The interconnection of several
basic switching building blocks (also called switching elements) in a network formed
MIN. The size of MIN ranges from a few inputs and outputs to some hundred or tens
of thousands thereof. Basically MIN is composed of a large number of identical basic
switching building blocks. Figure 1.1 shows a particular type of MIN called baseline
network [10] with 8 input ports and 8 output ports (i.e. 8 x 8 switch).

—

B > :
<

(i (ii)

)

(a)
Fig. 1.1. : (a) Baseline network, (b) Operation of basic switching in
(a): (i) Direct connection, (ii) Crossed connection.

Basically all MINs have the same major characteristics, i.e. to build an N x N
switching, and they are as follows:-
(1)  Only a unique path is provided between each input-output pair of the network.
(2)  They are constructed of identical b x b switching elements (SEs).
(3)  Their regularity and interconnection pattern makes them very suitable for
very large scale chip integration.

(4)  They have the self-routing property, requiring log, N (where N is the

number of inputs) digits to route a cell from input to output.
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(5)  They consist of log, N stages, each stage having N/b basic switching

elements.

1.3 Problem Formulation

From chapter 2, we conclude that all the networks under consideration are not
perfect if the network is examined based on (i) high reliability; (ii) simple control
algorithm; (iii) full connecting capability; (iv) low hardware complexity; (v) high
bandwidth; and (vi) short average delay. Some networks achieve high reliability by
sacrificing its simplicity and vice versa. Some networks even double the hardware
cost to achieve higher reliability. Moreover, also a network fortified its reliability
within SEs only and not the overall network.

By observing the weaknesses of these networks, We derive our proposed
network. Our proposed network is based on solving some questions exist in the
weaknesses of these networks. They are: (i) It is possible to mitigate the looping
problems in Tzeng’s and Cyclic networks? (ii) It is possible to increase the
reliability in Tzeng’s and Cyclic networks? (iii) How to maintain the simplicity in
routing in our proposed network? (iv) How to keep the hardware cost as low as
possible without double the hardware cost? (v) How to keep the out of sequence

problem as minimum as possible in Itoh’s network?

14 Contributions of this Thesis

The purpose is to modify and improve the weaknesses in these networks
at the same time maintain its advantages. Analytical methods will be used in our
analysis and comparison is made between these networks architectures based on
the same parameters. Hence, this thesis will make the following 4 major

contributions
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Contribution 1: Creation of a new fault-tolerant network architecture
based on Tzeng’s network architecture. However, the concept of our proposed
network can also be extended to other networks like Banyan-class networks and

cyclic network.

Contribution 2: Development of the analytical model that is, our
proposed network for evaluating the parameters like expected faulty element,

and cost-effectiveness.
Contribution 3: Development of the analytical model for evaluating its
performance in term of throughput under error-free and single-error

environment.

Contribution 4: Development of a diagnostic method to locate the

corresponding error in a specific location.

As shown in the following chapters of this thesis, contributions 1,2, and 3

will surpass Tzeng’s network architecture.

1.5  Objective and Scope

The main objective is to solve the weaknesses of networks in chapter 2

(especially Tzeng’s network architecture). The weaknesses will be improved to

build a robust new MIN fault-tolerant switch. Since there are many MIN switches in

existing literature, it is impossible to cover all of them, so our scope is narrowed
down to fault-tolerant MIN switches by maintaining their advantages and

improve their disadvantages.
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1.6 Thesis Outline

This thesis is divided into seven chapters. This chapter is an introduction to
the thesis, and it describes briefly about MINs. Following that, we outlined the major
characteristics of MINs. Then, we outlined the development of our proposed network
and its 4 major contributions. Finally in this chapter, we defined the objective and

scope of this thesis.

Chapter 2 is a literature review of various fault-tolerant MINs, and there we
investigate existing fault-tolerant MINs, understand their characteristics; and give
their advantages and disadvantages. From there, we consider Tzeng’s network

architecture design and study its nitty-gritty; and the weaknesses in its design.

Chapter 3, sets out our proposed fault-tolerant MIN network that is based on
Tzeng’s architecture. Its configuration and its types of SEs are discussed in detail.
Some calculations of the numbers of various SEs to be used in our proposed network

is presented.

Chapter 4 is focused on devising an analytical model for later use in

calculating parameters like expected faulty element k , and cost-effectiveness in our
proposed network architecture. We will devise it by using probabilistic approach. We
will formulate the formulas for calculating corresponding parameters. Since the
calculations are colossal and complicated, we will program them using Mathematica

(version 4). The code is given in Appendix of this thesis.

Chapter § is focused on devising another analytical model for evaluating the
performance of our proposed network architecture. We also focus on our
performance analysis in term of throughput based on some stated assumptions. The
performance analysis is divided into two sub-analysis, one in an error-free

environment and the other in a single-error environment.



Chapter 6 is a fault-diagnosis. We devise procedures to detect single error in
our proposed network architecture and outline the corresponding fault model.

Finally, methods for detecting the error are presented.

Chapter 7 sets out conclusions and further work of this thesis. We will also

give some suggestions for further research on our proposed network architecture.
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