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ABSTRACT 
 
 
 
 

Interests in the application of sliding mode control technique in variable 
speed drives have increased in recent years.  It is well known that a distinguished 
property of a sliding mode control technique is its insensitivity to system 
uncertainties and external disturbances.  Compared to the conventional PI controller, 
the system is sensitive to the parameter variations and inadequate rejection of 
external disturbances or load variations.  Furthermore in order to design PI 
controller, the challenge faced by the researchers due to multi loop system structure 
and trial and error design approach which make the control design time consuming 
and expensive.  This has lead to the development of the sliding modes control 
technique, which is very attractive for its excellent performance, easy to implement 
with simple control algorithm.  It is desirable to achieve robust performance against 
external disturbances especially sudden or step load applications.  In this thesis, a 
control system of DC motor for speed and torque control based on variable structure 
systems with sliding mode control approach is discussed.  The choice of switching 
functions for different control goals using a method of the switching function 
estimation based on control error and armature current information is presented.  The 
current limiter mechanism to limit the current during startup, acceleration and 
deceleration for speed control loop is proposed and the external torque observer is 
constructed.  The simulations of the performance comparisons between sliding mode 
control and PI control show that variable structure system with sliding mode control 
approach is less sensitive to parameter variations, produce faster dynamic response, 
eliminates overshoot and performs better in rejecting disturbance.  The excellent 
features of the sliding mode control based on variable structure system are mainly 
due to the high gain effect, which suppresses influence of disturbances and 
uncertainties in system behavior. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Background of the Variable Structure Control 
 
 

Variable structure system (VSS) with sliding mode control was first proposed 

and elaborated in the early 1950’s in the Soviet Union by Emelyanov and several co 

researchers.  At the very beginning, VSS is well known as special class of nonlinear 

systems for solving several specific control tasks in second order linear and nonlinear 

systems.  However VSS did not receive wide acceptance among engineering 

professionals until the first survey paper that is IEEE Transactions on Automatic 

Control in 1977 was published by Utkin.  The most interesting fact is that robustness 

has becomes a major requirement in modern control application [1]. 

 
 
 
 
1.2 Variable Structure System with Sliding Mode Approach 
 
 

The most distinguishing property of VSS is its ability to result in very robust 

control systems.  In other words, the system is completely insensitive to parametric 

uncertainty and external disturbances.  Due to its excellent invariance and robustness 

properties, the VSS concepts have been developed into practical application mainly 

in the field of control of DC servo motors [2][3], robotic manipulators [4][5], PM 

synchronous servomotors, induction motors, aircraft control, spacecraft control and 

flexible space structure control [6].  These experiments confirm the theoretical 

results regarding robustness of VSS with sliding modes.  
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However, in some of these experimental results [2][4][5], it was found that 

the resulting control is discontinuous and the chattering phenomenon which can leads 

to low accuracy in control system.  These problems can be solved by replacing a 

continuous control [4][5] into the computation of the control input (a sign function).  

As a result, the large error behavior of a system is identical to that with discontinuous 

control.  It can be assumed that, the behavior of the system in small error region as a 

high gain system and this is similar to that of system with discontinuous control.  

Hence, this high gain effect of sliding mode control based on VSS, suppressed the 

uncertainties due to parametric variations, external disturbances and variable 

payloads [5].  Besides that the proper selection of the switching functions will avoid 

chattering problem in the DC drive systems, hence result in high accuracy control.  

The choice of switching functions to control the system states, such that current, 

speed or position has been discussed and examined in detail in literature [7].  In [8], 

the control of a permanent magnet synchronous motor under sliding mode controller 

has been presented which uses a hyperbolic tangent switching function in order to 

overcome the chattering problem.  Under this control strategy, the dynamic 

performance of the system can be shaped according to the system specification by an 

appropriate choice of switching function. 

  
 

It is well known, that the sliding mode control is a popular robust control 

method.  However it has a reaching phase problem and an input chattering problem 

(as discussed aboved).  These problems cause the sliding mode control (SMC) is 

very conservative to be used with other controller design methods because the state 

trajectory of the sliding mode control system is determined by sliding mode 

dynamics, which cannot have the same order dynamics of the original system.  This 

leads to the introduction of robust controller design with novel sliding surface.  To 

overcome the conservatism of the SMC, the novel sliding surface has been used 

which has the same dynamics of the nominal original system controlled by a nominal 

controller.  The reaching phase problem, can be eliminated, by using an initial virtual 

state that makes the initial sliding function equal to zero.  Therefore, it is possible to 

use the SMC technique with various types of controller.  The proposed controller 

design with novel sliding surface is discussed in detail in [9].  
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Besides that, as discussed in [10], although SMC systems are qualitatively 

well known for possessing robust performance, the quantitative analysis of the 

robustness and synthesis of the control system to enhance the robust performance, 

especially against a step load disturbance for DC drive is necessary.  The reason why 

the quantitative analysis is necessary, because of the step load application may vary 

due to certain factors such as an integral action and smooth control algorithms which 

are often incorporated in the practical system.  In [10], the analysis in terms of the 

time domain expressions of the transient speed deviation and its maximum value due 

to a step load application under sliding mode control was performed.  As a result, the 

fast response speed and robust performances can be achieved.  

 
 

In recent years the automation in manufacturing industries has becomes 

popular and shown significant interest in automation in order to increase the 

productivity as well as increases in intelligence of the process.  In this context, the 

automated Guided Vehicle (AGV) system is the important part in a computer 

integrated manufacturing (CIM) facility.  The comparison of various VSS techniques 

based on sliding mode control including a novel approach for the control of AGV has 

been proposed in [11].  There are three types of approach proposed.  The first 

approach is classical SMC based on Lyapunov design.  The second approach is 

classical SMC with the estimation of the equivalent control, and the third one is a 

novel approach to eliminate the chattering.  As investigated in this literature, it was 

concluded that the novel approach is most powerful method and easily applicable in 

real systems.  Furthermore this approach is capable of achieving a good chatter free 

trajectory following performance without an exact knowledge of plant parameters. 

 
 

An advanced discrete time chattering free SMC scheme is presented in [12].  

By using this scheme the chattering of control input can be eliminated and the 

excitation of the dynamic system without high frequency oscillations can be 

achieved.  It is different with other techniques, especially the algorithm used to avoid 

chattering problem.  This approach uses only the information about the distance from 

the sliding mode manifold to derive the control.  The advantage of this approach 

prevails over those conventional control schemes, since no precise knowledge of 

mathematical model is necessary. 



 4

1.3 Comparison with Classical Linear Approach 
 
 

Many papers [8][10][13] discussed about the comparison between the SMC 

and classical linear approach that is proportional integral (PI) control. 

 
 

In [8], the performance comparisons between the sliding mode and PI 

controllers have been analyzed.  A simple SMC is applied to a permanent magnet 

synchronous motor.  The comparisons of the performance responses for both control 

schemes are analyzed in terms of which technique results an excellent robustness in 

responses to system parameter uncertainties, load disturbances and in case of noisy 

measurement.  The simulation results show that the SMC performs better compared 

to the classical PI control. 

 
 

As discussed in literature [10], the PI control is subject to limitations due to 

the intrinsic conflict between the steady state accuracy and dynamic response speed.  

In PI control, the dynamic performance specification can be achieved only if the 

compromise has been made to solve the conflict between excessive oscillation or 

overshoot and long settling time.  Besides that, to meet higher system specification, 

the challenge faced by the design engineers due to multi loop system structure and 

trial and error design approach which lead to the control design time consuming and 

expensive.  It was concluded that the principal weakness of the PI control is its 

sensitivity to parameter system variations and also not capable of rejecting any 

external disturbances or load variations.  

 
 

In [13], the experimental comparison between second-order SMC of DC 

drives (a novel class of SMC algorithm) and PI control has been reported.  The major 

drawback for linear control system design in order to get proper design of PI 

controllers was stated.  Some adjustment or tuning process is necessary, in order to 

achieve the desired tradeoff between precision, bandwidth and disturbance rejection.  

These required precise knowledge of motor parameters.  Therefore the robust control 

techniques such that second order SMC has been proposed to overcome these 

problems.  Furthermore, this approach does not require current feedback, and 

demands only rough information about actual motor parameters.  The experimental 
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results for the comparison was performed, it is shown that the proposed control 

scheme that is characterized by the absence of current loop, is more robust against 

parameter and load variations, compare to results obtained for the PI control.  In 

addition, the results of the proposed control scheme show improvements with regard 

to robustness, dynamic response and chattering reduction. 

 
 
 
 
1.3 Thesis Objectives and Scope of Work 
 
 

The objectives of this thesis are listed as follows: 

 
i. To study and understand Variable Structure System (VSS) approach 

to control system design. 

 
ii. To simulate and design the VSS with SMC that shows good steady 

state and dynamic behavior in the presence of plant parameters 

variation and disturbances. 

 
iii. To make the performance comparisons of controller responses 

between classical method (PI control) and sliding mode technique. 

 
iv. To implement hardware of DC drives that is torque control, using 

SMC and PI control.  

 
 
 In this thesis project the scope of work will be undertaken in the following 

five developmental stages: 

 
i. Study of the control system of DC motor for speed and torque control 

based on VSS with SMC approach. 

 

ii. Design the current limiter mechanism to limit the current during 

startup, acceleration or deceleration for speed control loop and 

construct the external torque observer in order to estimate the load 

torque.  



 6

iii. Perform simulation of SMC and PI control. This simulation work will 

be carried out on MATLAB platform with Simulink as it user 

interface. 

 
iv. The comparisons between PI control and sliding mode techniques are 

investigated. 

 
v. Development of the algorithm using C programming and implements 

the hardware of torque control of DC drives for SMC and PI control 

using TMS320C31 Digital Signal Processor (DSP). 

 
 
 
 
1.4 Thesis Organisation 
 
 

The rest of the thesis is organized as follows:  
 

Chapter 2  describes the basic theory of DC motor such as the model and 

related equations of the permanent magnet DC motor.  The chapter also briefly 

discussed 4 quadrant operations using full bridge DC-DC converter. 

 
 

Chapter 3  discusses the basic of VSS with sliding mode to the control 

system and mathematical formulation of the control system requirements.  The 

design process of VSS with sliding mode approach to control torque and speed are 

also presented.  

 
 
Chapter 4  presents the performance comparisons of speed control between 

SMC and PI control.  Simulation and experimental results of torque control using 

SMC and PI control are presented.  In this chapter, the design procedures of the PI, 

speed and current controllers for a DC drive are also described. 

 
 
Chapter 5  describes each the hardware components used in the experimental 

set-up.  Some constraints of the hardware implementation in this project especially to 

control speed, are described.  
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Chapter 6  gives the conclusions to the thesis and recommendations to 

improve and further research in this work. 




