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Abstract-A new approach to robot motion planning is
proposed by applying Ant Colony Optimization (ACO) with
the probabilistic roadmap planner (PRM). The aim of this
approach is to apply ACO to 3-dimensional robot motion
planning which is complicated when involving mobile 6-dof or
multiple articulated robots. An ant colony robot motion
planning (ACRMP) method is proposed that has the benefit of
collective behaviour of ants foraging from a nest to a food
source. A number of artificial ants are released from the nest
(start configuration) and begin to forage (search) towards the
food (goal configuration). During the foraging process, a 1-
TREE (uni-directional) searching strategy is applied in order
to establish any possible connection from the nest to goal.
Results from preliminary tests show that the ACRMP is
capable of reducing the intermediate configuration between
the initial and goal configuration in an acceptable running
time.

Index Terms- Ant colony, robot path planning, search
technique

I. INTRODUCTION

This paper describes a novel application of swarm
intelligence to robotic arm manipulator motion planning.
The probabilistic roadmap (PRM) is among the most
efficient methods for planning robot motion. A PRM is a
discrete representation of a continuous configuration space
(C-space) generated by randomly sampling the free
configurations of the C-space and connecting the points
into a graph. The Single query Bi-directional with Lazy
collision checking PRM (SBL-PRM) [11], [13] is a
variation of the PRM which, instead of pre-computing the
roadmap, uses two input query configurations as seeds to
explore the space. It explores the robot's free space by
concurrently building a roadmap made of two trees rooted
at the query configurations (bi-directional). It delays
collision tests along the edges of the roadmap until they are
needed (lazy collision checking). Ant Colony Optimisation
(ACO) is a swarm intelligence approach to solving
optimisation problems. ACO has been successfully used to
optimise the travelling salesman problem (TSP) and the
quadratic assignment problem (QAP) [5]. To date, the
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applications of swarm intelligence in robotics have been
primarily with collections of robots or with sets of transfer
functions in factory production lines to solve one major
task. References [16], [17] managed to solve the robot path
planning for 2-dimensional space which involved a mobile
robot of 2 to 3 degrees of freedom (dof). Applying ACO to
a robot motion planner in which a mobile robot has 6-dof
or more in 3-dimensional space, it is not straightforward.
This paper introduces a new approach by applying ACO to
robot motion planning, of manipulator arm type robots. It
focuses on applying ant colony behaviour to search the
robot's C-space. Preliminary experiments have been
undertaken using SBL-PRM multi-goal motion planning as
a benchmark for this new algorithm. Our aim is to get a
faster planner and reduce the number of intermediate
configurations between the two query configurations start
and goal).

II. RELATION TO PREVIOUS WORK

A. Works on Probabilistic Roadmap
The problem of robot motion planning in known

workspaces has been studied extensively over the last two
decades [8]. PRM's have been proven to be an effective
tool in solving motion-planning problems with many
degrees of freedom [7], [13]. PRM applies a roadmap
approach where it constructs a roadmap of paths in the free
configuration space [8]. A roadmap is a pre-computed
undirected graph covering the entire free space. Once the
roadmap is constructed, it is used as a set of standardized
paths. Path planning is then applied by connecting the
initial and goal configurations to points in the roadmap and
then searching the roadmap for the path between these
points. Kavraki and Latombe presented the randomized
techniques ofPRM in [6], [7].

The work in [1] introduced PRM with lazy collision-
checking (lazy-PRM). This planner assumes all nodes and
paths are collision-free during the pre-computation phase. It
then searches the roadmap at hand for the shortest path.
The nodes and path are checked for collisions afterwards. If
collisions have occurred, the corresponding nodes and
edges are removed. The planner either finds the new
shortest path, or first updates the roadmap with the new
nodes and edges, then searches for the shortest path.

The approach in [11], [13] introduced single-query bi-
directional path planning with lazy collision-checking
(SBL-PRM). This single-query approach, instead of pre-
computing a roadmap covering the entire free space, uses
the two input query configurations to explore as little space
as possible. The bi-directional approach explores the
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robot's free space by building a roadmap made of two trees
rooted at the query configurations. Lazy collision-checking
means that the collision tests are delayed along the edges of
the roadmap until they are absolutely needed. The SBL-
PRM is applied to multi-robot path planning in [12].
A continuation of SBL-PRM is performed in [10] a

problem of multi-goal motion planning which combines
two problems: the shortest path and traveling-salesman
problem. The planner uses a greedy algorithm that assumes
the number of goals are relatively small and the
computational cost of finding a good path between two
goals dominates that of finding a good tour in a graph with
edges of given costs.

B. Ant Colony Optimization
Ant Colony Optimization (ACO) studies the artificial

systems that take inspiration from the behaviour of ant
colonies which is one of the swarm intelligence
approaches. Swarm intelligence is the property of the
system whereby the collective behaviour of ants (agents)
interacting locally with their environment collectively carry
out distributed problem solving. As far as this is paper
concerned, the ACO is a new approach to the robot motion
planning field. The current applications of ACO are on
routing, assignment, scheduling, subset and network type
problems.
Works in [2]-[5] describe the most common problem in

routing as the famous traveling salesman problem. In
assignment type problems, [9] apply ACO in the quadratic
assignment.

11. BACKGROUND
In general terms, PRM is a two stage motion planner, the

first is the pre-processing phase and the second is path
planning. In the pre-processing phase, a set of collision-free
configuration spaces are generated and interconnected onto
a network using a simple path planning technique applied
to pairs of neighbouring nodes. This path planning
technique is a local planner that does not store the
information of connections in the roadmap since it is fast,
although not so powerful, and the call to the planner is
inexpensive. This kind of planner is called a deterministic
local planner. The network may contain one or more
connected components depending on the robot free space
and pre-processing time. At the end of inter-connections
between nodes phase, the narrow parts of C-space are
enhanced by adding a few nodes to cover the difficult parts
and gives the planner greater probability to form a large
component. The path planning phase is the process of
connecting between two configurations to two nodes, A and
B in the network. Then the network is searched for a
sequence of edges connecting A and B. A smoothing
technique can be used to improve the path found. The
planner is considered to fail if it cannot connect two input
configurations to the network or if A and B lie in two
different connected components.

During the generation of a random configuration, each
degree of freedom (dof) is drawn uniformly from its
allowed range. The resulting configuration is checked for
collision with obstacles and self collision. A local planner
that has been used is a straight line in C-space. The other

planner is one that can be used for the robots which can
move a few of its dof's in a certain direction and adjust the
others. It works in the following manner. The odd joints are
simultaneously translated each time period along a straight
line in the workspace that connects its workspace
configuration p to its workspace at configuration q. Then,
the position of even joints is adjusted by computing the
inverse kinematics of the robot. For roadmap enhancement,
a number of nodes between 1/3 and 1/2 of the initial nodes
are generated. A node x that is to be expanded with a
probability distribution function is selected. To expand
configuration x, let each dof take a random value in an
interval centered on its value at x about 1/6 of range of the
dof.

In the ACO, an ant is described as an agent that has the
following characteristics:

* Lays a trail on edge (i, j) when moving between town
i and townj.

* Chooses to go to the town with the probability
function of town distance and the amount of trail
present on the connecting edge.

* To force ants to make legal tours, transitions to
already visited towns are inhibited till a tour is
completed.

Trail intensity r is dependent on two parameters which
are:

* p that represents the evaporation of trail.

* 8 quantity unit of length of trail substance
(pheromone in real ants) laid on edge of k-th ant at a
period of times.

Tabu list is an ant's data structure that memorizes the
towns already visited up to a certain time and forbids ants
to visit them again before the tour has been completed.
Tabu list is emptied when tour is finished and the ant is free
to choose its own way.

The transition probability of moving from i toj at certain
times is dependent on four parameters:

* Trail intensity, r .

* Visibility, 77.

* a and , ( user's control parameters) which chooses
the importance between trail versus visibility, i.e.
transition probability is considering the visibility
(closest town should be chosen) and trail intensity (if
the edge has been passed by lots of ants, it is highly
desirable).

k
* N1, next city is allowed to be visited (feasible

neighbourhood of ant k when being at city i).
During the initialization phase the ants are positioned on

different towns and initial values for trail intensity are set
on edges. The first element of each ant tabu list is set to be
equal to the starting town. Thereafter, every ant moves
from town i to town] choosing the town to move to with a
probability that is a function (parameters a and / ) of two
measures: the first is trail, that gives information about how
many ants in the past have chosen that same edge. The
second is visibility the closer a town the more desirable it
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is. Each time an ant makes a move, the trail it leaves on
edge (i, j) is summed to trail on the same edge in the past.
When the ant has moved, transition probabilities are
computed using new trail values.

After a number (of city) moves (or a tour is complete)
the tabu list of each ant will be full, the shortest path found
by the number of ants is computed and memorized and all
lists are emptied. This process is iterated until the tour
counter reaches a maximum (user-defined) number of
cycles or all ants make the same tour. Computation
complexity can be expressed as a function of the number of
ants, number of towns and number of cycles.

IV. ANT COLONY ROBOT MOTION PLANNING

In this section, the ACO is proposed to be implemented
for robot motion planning. The idea is taken from the
combination of the ant behaviour ofACO and the roadmap
characteristic ofPRM.

The problem of existing multi-goal path planning is
modelled in the hierarchical form. A roadmap (RM) is built
by nodes and edges in C-space. The Single query Bi-
directional Lazy algorithm is applied to find a path between
the initial and goal configurations. A multi-goal problem is
tackled by using the traveling salesman problem (TSP)
solving approach.

* The basic program is (PRM multi-goal):
RM -* SBL - TSP
* The objective is to apply the swarm algorithm in the

PRM and replace the PRM (if possible).
* The first stage is to replace PRM with foraging-ants

(F-ANTS).
F-ANTS -* SBL -* TSP
* The second stage is to replace the SBL with trail-ants

(T-ANTS).
F-ANTS -* T-ANTS -* TSP
* The third stage is to optimize the top level by

applying ACO to TSP
F-ANTS -* T-ANTS -* ACO-TSP

In this approach, there is the global table which will
record all ants, trails dropped, and the distances. There are
two groups of ants, ants located in nest and ants located at
food. Both locations have the same amount of ants. The
start location determines the initial configuration of the
robot, s, and the food location is the robot goal
configuration, g. Each ant has a limited number of trails to
be dropped.

In the first iteration T-ANTS is applied where an ant is
released from the nest and moves randomly away from the
nest for a distance of d. This distance in the robot space is
determined by the configuration of all the robot joints from
the initial configuration to the new randomly generated
configuration. Then the path along the nest to the new
configuration is checked for collisions as well as a new
configuration being found.

If the location (configuration) is forbidden because of the
existence of obstacles (or the configuration is colliding
against the robot body) a random location is generated and
it is checked for collisions again until it is in an allowed

location (configuration free). The number of times
collisions are checked is counted and recorded in the global
table for the ks-th ant (k-th ant of the nest, s) at the q
position (configuration), the trail is dropped at this location
q(k5 -th) (configuration of robot at q for the nest's k-th ant).
If it reaches the food it will stop, if its distance is closer to
the food (less than d) than the previous trail, the ant will
move to the food, if it doesn't, the ant will move randomly
and drop the trails after the same period oftime before.
Each time the ant drops the trail, the global table is

updated with information about k-th ant, its trail position,
and the number of trails that particular ant has dropped.
Ants will stop moving either if the food is reached, or the
trail is finished.
When all ants from the nest (s-ants) have stopped, the

global table is updated. The second iteration now is started
from the food location, g. This stage is where the T-ANTS
is applied. First the kg -th ant will move randomly within a

distance d from food. Then it will check in the global table
for any closest trail with less-attempts and within d
distance. The kg -th ant will choose the trail if it satisfies

the function of less-attempts and distance, or if none of
them are in the d range, the ant will move randomly to a
new free-collision location and check the table again for the
trails within the function of less-attempts and distance. An I
number of attempts are set for the attempts upper bound,
restricting the ants from doing a mass number of attempts.
If the kg-th ant fails to get to the new location, the kg-th ant
will be terminated, and the (k+1) g -th is released and does

the same thing but on a same or different free-location from
the nest.

Then, if the (k+1) g -th ant managed to get to the new

location the trail is released and the table is updated. The
range within its new location is checked again for the
existing trails and this will repeat until the g-ants find the
nest. The g-ants might use, or not use, the same path from
the s-ants but the paths connected from the food, g, to any
of s-ants trail will definitely give the path to the food, s.
However, the g-ants will get the shortest path by choosing
the appropriate trails with the heuristic provided in the
global table. Finally when all g-ants have made the journey
to the nest, and the table is updated, the shortest path can be
checked against the global table.

V. EXPERIMENTAL RESULTS

The preliminary experiments aimed to investigate
reducing the size of the search trees in the existing roadmap
in SBL-PRM in order to get to F-ANTS stage. The existing
trees are grown from both start and goal configurations of
the robot manipulator. After tree reduction, only one tree
remains - grown from the start configuration. Reduced tree
SBL-PRM is called 1-TREE planners.

There are four different cases in which one or two
manipulators move from the starting to goal configurations.
These cases were tested on the 1-TREE and the original
SBL-PRM algorithms for comparison.
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on fixed platform as the obstacles.

TABLE I
NUMBER OF CONFIGURATIONS GENERATED FOR THE DIFFERENT CASES

USING SBL-PRM AND I-TREE

Case Algorithm

A.
B

D

SBL-PRM
1-TREE
SBL-PRM
1-TREE
SBL-PRM
1-TREE
1SBL-PRM
1-TREE

rig. z '.ase t3, a ruiviA nou roout on tnie lioor ancu a car on iixec piatiorIm
as the obstacles. This view is from the inner part of the car.

Configurations

Average Maximum Minimum

5
5
20
19
8
7
41
39

11
12
46
34
14
12
87
85

.n

3
7
5
5
3
1 1
19

TABLE II
RUNNING TIME FOR EACH CASE

Case Algorithm Running time (s)

Average Maximum Minimumii

A
B

D

SBL-PRM
1-TREE
SBL-PRM
1-TREE
SBL-PRM
1-TREE
SBL-PRM
1-TREE

0.1409
0.1459
3.2420
3.4169
0.2178
0.2284
13.8453
14.092;8

0.2030
0.2500
11.8750
12.1880
0.4060
0.4690
70.0940
69.9530

0.1100
0.1250
0.1710
0.1560
0.1400
0.1250
0.9380
1.2190

plafor and a car on fVixe JpUlatorD,CaslI 01 LIICIII IIIOULCU the obsllt

platform and a car on fixed platform as the obstacles.
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Fig. 5. The comparisons of generated configurations. The average,
maximum, and minimum numbers of configurations are shown for each
case and the algorithm applied.
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Fig. 6. The comparisons of running time of all cases

In each of the experiments, the number of configurations
was calculated and the running time was recorded. The
figures in Table 1 and Table 2 shown were obtained on a
2.60 GHz Pentium4 processor with 512 MB of main
memory running Microsoft Visual C++ 6.0. The distance
threshold p was set to 0.15 and the resolution £ to 0.0 12.
The parameter p is used to determine how far the distance
of two configurations is, if their distance is less thanp,
both of them are considered close. A path in configuration
space between two configurations is considered collision
free if a series of points on the path in every successive
point are closer apart than some e.
As can be seen in Table 1 and Fig. 5, 1-TREE has shown

a smaller number of configurations generated on the
robot(s) path than the configurations generated by SBL-
PRM. For the situation of applying the algorithms for the
robot mounted on the platform, Fig. 1 and Fig. 2, the
average path configurations generated between start and
goal configurations are less than ten. However, when the

robot(s) are fixed on the floor (Fig. 2 and Fig. 4), the
averages are 19 and 39 configurations for one robot and
two robots respectively. The reason is the robot(s) have to
manage with the limited space in their own space instead of
moving away from the object as in the mobile-platform-
mounted-robot case (Fig. 1 and Fig. 3). This reason also
affected the computational time for both algorithms as
shown in Table 2 and Fig. 6. The computational times for
both algorithms are very close although 1-TREE is slightly
slower than SBL-PRM. This is probably because the 1-
TREE is the only at the preliminary stage of its application
on transition from SBL-PRM.

VI. CONCLUSIONS AND FUTURE PLANS

The benchmark against this new implementation is the
SBL-PRM. It has been tested against SBL-PRM to
determine their relative performances. The performance
metrics are time of planning and the number of
intermediate points (configurations) between two queries
(start and goal). The implementation of the modified SBL-
PRM to 1-TREE (unidirectional) reduces the number of
intermediate configurations. Although the time of planning
is slightly greater than the original planner, the difference is
relatively small. This can be improved by applying the
ACO to replace the PRM.

The future plan of this research is to fully implement the
ACO in robot motion planning. It will contribute to the
domain of intelligence motion planning. The following is
the future plan for 1-TREE. Implementation of F-ANTS -

the network or roadmap will be replaced by introducing a
new network built by the foraging-ants (F-ANTS).
Implementation of T-ANTS - each ant (agent) has the
capability of releasing the trail or virtual pheromone during
the F-ANTS stage, the trail will be tracked down by trail-
ants in order to reduce the distance travel to make the path
shorter. Implementation of ACO-TSP - the benchmark
program has a solver for multi-goal planning. A complete
F-ANTS and T-ANTS will make use of the existing ACO-
TSP algorithm to overcome the multi-goal planning
problem.
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