RAINFALL EFFECTS TO THE PERFORMANCE OF SUBSURFACE FLOW CONSTRUCTED WETLANDS IN LEACHATE TREATMENT

LEE YUN FOOK

A project report submitted in partial fulfillment of the requirements for The award of the degree of Master of Engineering (Environmental Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > OCTOBER, 2004

ACKNOWLEDGEMENT

I would like to dedicate deepest gratitude to my main thesis supervisor Associate Prof. Dr. Mohd. Razman Salim, for his encouragement, guidance and friendship. I also wish to express my sincere appreciation to my co-supervisor, Prof. Dr. Zaini Ujang, for his guidance, advices, critics and motivation.

I would like to thank my beloved family for their support throughout the years in Universiti Teknologi Malaysia. Not forgotten my project partner, **Miss Aeslina Abdul Kadir** for her companionship. Special thanks to **En. Razman**, from landfill authorities, **Dr. Eddy Soedjono**, **En Tamizee**, and **En, Mohd. Fadhil** for their assistances in preparing this thesis. My sincere appreciation also extends to all my course mates, friends and others who have provided assistance at various occasions.

I would also like to express my appreciation to IRPA for their support in this study.

ABSTRAK

Tanah bencah buatan sudah semakin luas diterima sebagai cara pengolahan air sisa. Kesan hujan perlu diambil kira dalam merekabentuk tanah bencah buatan tempatan terutamanya di negara-negara tropikal. Kajian ini dijalankan untuk mengkaji kesan-kesan cuaca tropikal (hujan) terhadap prestasi tanah bencah buatan aliran subpermukaan mendatar (HSFCW) yang ditanam dengan tumbuhan tempatan, Typha angustifolia untuk pengolahan air larut lesap. Prestasi tanah bencah buatan dikaji dengan tujuh parameter iaitu nitrat, fosforus, ammonia nitrogen, kromium, kadmium, permintaan oksigen biokimia (BOD5) dan permintaan oksigen kimia Dua reactor HSFCW berskala loji pandu telah digunakan dalam (COD). Keberkesanan HSFCW dalam pengolahan lair larut lesap telah eksperiment. diselidik dengan membuat perbandingan dengan reaktor "blank" yang berfungsi sebagai kawalan. Eksperiment telah dijalankan di bawah "hujan monsoon buatan" di Malaysia. Keputusan menunjukkan kesan hujan terhadap prestasi tanah bencah berbeza daripada satu parameter ke parameter yang lain (-1% ke 41% peningkatan), bergantung kepada sifat-sifat masing-masing. Kesemua parameter kecuali kromium menunjukkan peningkatan dalam keberkesanan pengolahan selepas hujan. Kesan hujan (peningkatan keberkesanan pengolahan) adalah lebih ketara dalam reaktor kawalan berbanding dengan reaktor yang ditanam dengan tumbuhan.

ABSTRACT

Constructed wetlands have gained wide acceptance as a wastewater treatment practice. Rainfall effect needs to be taken into account in designing local constructed wetlands particularly in tropical countries. This study was carried out to evaluate the effects of tropical climate (rainfall) towards the performance of horizontal subsurface flow constructed wetlands (HSFCW) planted with local plant, Typha angustifolia for landfill leachate treatment. The performance of the constructed wetlands was evaluated using seven parameters i.e nitrate, phosphorus, ammonical nitrogen, chromium, cadmium, biochemical oxygen demand (BOD₅) and chemical oxygen demand (COD). Two pilot scale constructed wetlands reactors were used in the experiments. Performance of HSFCW in leachate treatment was evaluated with comparison to a blank reactor (without plants) serving as control. Experiments were run under artificial "monsoon rainfall intensity" in Malaysia. Results show that rainfall effects towards the performance of wetlands in leachate treatment vary from parameter to another (-1% to 41% enhancement) depending on the characteristic of each parameter. All parameters except chromium have better performance in leachate treatment after rainfall. Rainfall effects (increasing of removal efficiency) are more critical in control reactor as compared to the vegetated reactors.

TABLE OF CONTENTS

CHAPTER	SUBJECT TITLE	PAGE i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF APPENDIXES	xiii

CHAPTER 1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Scope of Work	5

CHAPTER 2 LITERATURE REVIEW

2.	.1	Leach	ate Charac	terization	6
		2.1.1	Introduct	ion	6
		2.1.2	Factors A	ffecting Leachate Quality	7
			2.1.2.1	Processed Refuse	7
			2.1.2.2	Depth of Refuse	7
			2.1.2.3	Age of Fills	8
2.	.2	Constr	ructed Wet	lands	11
		2.2.1	Introduct	ion	11
		2.2.2	Types of	Constructed Wetlands	12
			2.2.2.1	Free Water Surface Treatment	12
				Wetlands	
			2.2.2.2	Subsurface Flow Treatment Wetland	13
		2.2.3	Applicati	on of Constructed Wetland in	15
			Leachate	Treatment	
2.	.3	Heavy	Metals		16
		2.3.1	Chromiu	n	17
			2.3.1.1	Effect of Chromium to Environment	17
			2.3.1.2	Effect of Chromium to Human	18
				Health	
		2.3.2	Cadmium	1	
			2.3.2.1	Effect of Chromium to Environment	19
			2.3.2.2	Effect of Chromium to Human	19
				Health	
		2.3.3	Metal ren	noval	20
			2.3.3.1	Adsorption and Cation Exchange	21
			2.3.3.2	Microbial Mediated Processes	21
			2.3.3.3	Filtration	22
			2.3.3.4	Plant Uptake	23
2.	.4	Nutrie	nts		23
		2.4.1	Nitrogen		23
			2.4.1.1	Ammonia Volatilization	24

6

			2.4.1.2	Ammonification (Mineralization)	25
			2.4.1.3	Nitrification / Denitrification	25
			2.4.1.4	Plant Uptake	27
		2.4.2	Phospho	rus	28
	2.5	Organ	ics		28
	2.6	Role c	of Wetland	ls Vegetation in Wastewater Treatment	t 29
	2.7	Rainfa	ıll in Mala	ysia	31
CHAPTER 3	MET	ГНОDC	LOGY		33
	3.1	Leach	ate Sampl	e Collection	33
	3.2	Labora	atory Desi	gn	34
		3.2.1	Compo	nent of Wetlands Design	39
	3.3	Plants			40
	3.4	Rainfa	ll Design		42
		3.4.1	Summa	ry of Experimental Design	43
	3.5	Sampl	ing of We	tlands Effluents	44
	3.6	Labora	atory Ana	lysis	44
CHAPTER 4	RES	ULTS A	AND DIS	CUSSIONS	45
	4.1	Heavy	Metal Re	moval	45
		4.1.1	Contribu	tion of Wetlands Components ir	n 47
			Heavy N	Ietal Removals	
	4.2	Nutrie	nt Remov	al	47
	4.3	Organ	ic Remov	al50	50
	4.4	Perfor	mance of	T. angustifolia in Leachate Treatment	52
	4.5	Rainfa	ll Effect t	o the Performance of HSFCW	53
CHAPTER 5	CON	ICLUSI	ONS AN	D RECOMMENDATIONS	59
	5.1	Concl	usions		59
	5.2	Recon	nmendatio	ns	60
	REF	ERENG	CES		61
	APP	ENDIX			65

LIST OF TABLES

TABLE N2.1	NO. TITLE Typical Data on the Composition of Leachate from New and	PAGE 10
2.1	Mature Landfills	10
2.2	Roles of macrophytes in constructed wetlands	30
3.1	Summary of experimental design	43
3.2	Analytical methods for every parameter	44
4.1	Performance of reactor for heavy metal removal	46
4.2	Heavy metal concentrations in wetlands components	47
4.3	Performance of reactor for nutrient removal	49
4.4	Performance of reactor for organic removal	51
4.5	Comparison between performance of Reactor A and Reactor B	52
4.6	Percentage increase of removal efficiency after rainfall (%)	54

LIST OF FIGURES

FIGURI 2.1	E NO. TITLE FWS wetland containing rooted, floating leaf plants	PAGE 13
2.2	Typical arrangement of horizontal system SSFCW	14
2.3	Typical arrangement of vertical SFCW system	15
2.4	Processes of metal removal in constructed wetlands	20
3.1	Equipments for leachate collection	34
3.2	New plants were reproduced during the growing period before	35
	experiment started	
3.3	Schematic plan of HSFCW used in experiment	36
3.4	Storage tank and control tank	37
3.5	Arrangement of HSFCW reactors on site	37
3.6	Longitudinal section of HSFCW that used in the experiment	38
3.7	Influent perforated pipe (left) and effluent perforated pipe (right)	38
3.8	Short description of <i>T. angustifolia</i>	41
3.9	Ten-year monthly rainfall pattern in Johore Bahru	42
3.7	Rainfall piping	43
4.1	Average removal efficiency for 7 parameters with and before rainfall	51
4.2	Rainfall effect to the performance of wetlands	53
4.3	Chromium removal	55
4.4	Cadmium removal	55
4.5	Phosphorus removal	56
4.6	Ammonical-nitrogen removal	56

4.7	Nitrate removal	57
4.8	BOD removal	57
4.9	COD removal	58

LIST OF APPENDIX

APPENDIX	TITLE	PAGE

A1	Removal efficiency of chromium in Rector A & B before	66
	rainfall	
A2	Removal efficiency of chromium in Rector A & B after	67
	rainfall	
A3	Removal efficiency of cadmium in Rector A & B before	68
	rainfall	
A4	Removal efficiency of cadmium in Rector A & B after	69
	rainfall	
A5	Removal efficiency of phosphorus in Rector A & B before	70
	rainfall	
A6	Removal efficiency of phosphorus in Rector A & B after	71
	rainfall	
A7	Removal efficiency of ammonical-nitrogen in Rector A &	72
	B before rainfall	
A8	Removal efficiency of ammonical-nitrogen in Rector A &	73
	B after rainfall	
A9	Removal efficiency of nitrate in Rector A & B before	74
	rainfall	

A10	Removal efficiency of nitrate in Rector A & B after	75
	rainfall	
A11	Removal efficiency of biochemical oxygen demand	76
	(BOD) in Rector A & B before rainfall	
A12	Removal efficiency of biochemical oxygen demand	77
	(BOD) in Rector A & B after rainfall	
A13	Removal efficiency of chemical oxygen demand (COD) in	78
	Rector A & B before rainfall	
A14	Removal efficiency of chemical oxygen demand (COD) in	79
	Rector A & B after rainfall	
B1	Analysis ANOVA for chromium removal	80
B2	Analysis ANOVA for cadmium removal	81
B3	Analysis ANOVA for phosphorus removal	82
B4	Analysis ANOVA for ammonical-nitrogen removal	83
B5	Analysis ANOVA for nitrate removal	84
B6	Analysis ANOVA for BOD removal	85
B7	Analysis ANOVA for COD removal	86

CHAPTER I

INTRODUCTION

1.1 Background study

In many countries including Malaysia, sanitary landfills have been the most popular method of municipal solid waste disposal. Although attention has been drawn to increased recycling, waste reduction, and incineration, the sanitary landfill will remain its dominant in the solid waste disposal methods for the next decade due to the rapid population growth (Oasim, S.R. and Chiang, W. 1994). In conjunction with the increasing number of sanitary landfills, more leachates are generated. Landfill leachates will cause environmental problems if it is not properly handled. Increase in landfill leachate creates challenges for those seeking cost effective treatment methods to process this wastewater.

Leachate may be defined as liquid that has percolated through waste and has extracted dissolved or suspended materials from it. It arises from the biochemical and physical breakdown of wastes (Lu *et. al.*,1985). The leakage of leachate which contains high organic, inorganic, suspended solids, heavy metals and other pollutants will contaminate ground water and surface water sources.

For the past fifty years, conventional wisdom has mandated the development of extensive waste water collection systems directed to a centralized treatment plant. More attention is now being given to the benefits of a decentralized approach in waste water treatment where on site treatment is applied. In many situations, a decentralized systems of waste water treatment, potentially with constructed wetlands, can provide not only a more economical and energy efficient means of achieving treatment objectives, but also a resource in the form of reclaimed water available for landscape irrigation or creation of wildlife habitats (Campbell C.S., 1999).

The principal development of wetlands systems in Europe begun in the late 60th. The wetlands systems were develop rapidly in Europe in the 70th. Since then a large variety of design lines has been established. Especially in the late 15 years there has been a significant interest in reed bed (Platzer C.2000).

As a developing country, Malaysian government has shown interest in wastewater treatment using constructed wetland. This can be seen in the construction of Putrajaya wetlands which is the largest constructed freshwater wetlands in the world, which cover a total of 650 hectares. Under the concept of sustainable development, Putrajaya Wetlands was created using the latest environmental technology to function as a flood control system and a natural filter system for the Putrajaya Lake and provides flood mitigation measures for the whole area. It contains over 12 million plants from some 70 exclusively indigenous species.

Constructed wetlands system has high efficiency in treating wastewater from unknown sources with low operating and maintenance cost. It can be used in the wastewater treatment by treating the organic content, non-organic content, heavy metals, nutrients, suspended solids and other pollutants from point source and non point source before allowing the wastewater to flow into the natural water body. The characteristic properties of wetlands make them unique ecosystems; they contain anoxic soil, have varying hydrology, distinct nutrient cycling and are composed of plants tolerant of flooded conditions. Since wetlands are often found as a transitional zone between aquatic and terrestrial ecosystems, they can receive a wide array of dissolved substances through storm water runoff as well as through rivers, streams and water channels. Wetlands are able to transform and reduce these compounds, so they have been utilized for water treatment (Fraser *et. al.*, 2004).

Generally, constructed wetlands can be divided into two major types which are free water surface (FWS) constructed wetlands and subsurface flow (SF) constructed wetlands. There are two types of subsurface flow constructed wetlands, which are horizontal systems and vertical systems. In this study, horizontal subsurface flow constructed wetlands (HSFCW) is being used to treat landfill leachate collected from one of the sanitary landfill in Johore Bahru.

1.2 Problem Statement

Malaysian government has introduces recycling campaign to reduce the solid waste generation due to the population growth in the country. However, the recycling programme is not able to balance the increased solid waste generation due to the rapid population growth. As a result, more sanitary landfills need to be prepared for solid waste disposal. In conjunction with the increasing number of landfills, leachate treatment has become an important issue.

Many studies have been conducted for leachate treatment in wastewater treatment using constructed wetlands (Rash and Liehr, 1999). Nevertheless, this technology is not utilised in Malaysia. Thus, study is required to develop leachate treatment facilities using constructed wetlands by incorporating local components and expertise. It had been proven that local tropical plants such as *Scirpus* *globulosus, Ericaulon sexangulare, Scleria Sumatrensis Retz and T. angustifolia* are suitable to be used in constructed wetlands for various applications which including heavy metals, nutrients, organics and solids removal. However, the effect of local tropical climate to the performance of the constructed wetlands has not been emphasised. Therefore this study was carried out to study the tropical rainfall effect to leachate treatment using HSFCW planted with *T. angustifolia*.

1.3 Objective

Hypothetically, the performance of subsurface flow constructed wetlands in leachate treatment will be enhanced after rainfall. Two objectives were set in this study as listed below.

- i. To study the performance of HSFCW planted with *T. angustifolia* in leachate treatment.
- ii. To study the tropical rainfall effect to the performance of the HSFCW system

1.4 Scopes of Work

The scopes of the study are:

- To study the efficiency of leachate treatment in the HSFCW by checking 7 parameters: BOD, COD, chromium, cadmium, phosphorus, ammonical nitrogen and nitrate.
- ii. To evaluate the removal efficiency of the HSFCW system under an artificial monsoon rainfall

REFERENCES

- Badkoubi, A., Ganjidoust, H., Ghaderi, A. And Rajabi, A. (1998). Performance of a subsurface constructed wetland in Iran. *Wat. Sci. Tech* 38(1):345-350.
- Baker, L.A. (1998). Design Considerations and Applications for Wetland Treatment of High-Nitrate Waters. *Wat. Sci.Tech*, 38(1):389-395.
- Brix, H. (1994). Function of Macrophytes in Constructed Wetlands. *Wat. Sci.Tech* 29:71-78.
- Boyle, W.C. and Ham, R.K. (1974). Biological Treatability of Landfill Leachate. *Journal Water Pollution Control Federation*, 46(5):860-872.
- Calmona, W., Hong, J. and Forstner, U. (1993). Binding and Mobilization of Heavy Metal in Contaminated Sediment Affected by pH and Redox Potential. *Wat.Sci.Tech*, 8(9): 223-235.
- Campbell, C.S. and Ogden, M. (1999). *Constructed Wetlands In The Sustainable Landscape*. New York : John Wiley & Sons, Inc.
- Cooper, P.F., Job, G.D., Green, M.B. and Shutes, R.B.E. (1996). *Reed beds and constructed wetlands for wastewater treatment*. Medmenham, Marlow, UK: WRC Publications.
- DeBusk, T.A., Langston, M.A., Burgoon, P.S., and Reddy, K.R. (1990). A Performance Comparison of Vegetated Submerged Beds and Floating Macrophytes for Domestic Wastewater Treatment. In: Cooper, P.F. and

Findlater, B.C. ed. *Constructed Wetlands in WaterPollution Control*. Pergamon Press, Oxford, UK. 301-308.

- Dunbabin, J.S., Pokorny, J. and Bowmer, K.H. (1988). Rhizosphere Oxygenation by *Typha domingensis* in Minature Artificial Wetland Filters Used for Metal Removal from Wastewaters. *Aquat.Bot.* 29:303-317.
- Fraser, L.H., Carty, S.N. and Steer, D. (2004). A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosm. *Bioresource Technology* 94:185-192.
- G. Tchobanoglous, H. Theisen, and S. Vigil (1993). *Integrated Solid Waste Management*. New York: McGrawHill.
- Howard, E.A., Emerick, J.C. and Wilderman, T.R. (1988) Design and Construction of a Research Site for Passive Mine Drainage Treatment in Idoho Springs, Colorada. In: Hammer, D.A. ed. *Constructed Wetlands for Wastewaste Treatment: Municipal, Industrial and Agricultural*, Chelsea, MI, USA: Lewis Publishers.761-764.
- IWA Specialist Group on Use of Macrophytes in Water Pollution Control (2000). Constructed Wetlands for Pollution Control: process, performance, design and operation. London: IWA Publishing.
- Lu, J.C.S., Eichenberger, B. and Stearns, R.J. (1985). Leachate from municipal landfills: production and management. Park Ridge, New Jersey: Noyes Publication.
- Maehlum, T., Jenssen, P.D. and Warner, W.S. (1995). Cold-climate Constructed Wetlands. *Wat. Sci. Technol.* 32 (2): 95-102.
- Martin, C.D. and Moshiri, G.A. (1994). The Use of In-Series Surface Flow Wetlands for Landfill Leachate Treatment. *Proceedings of The Fourth IAWQ Conference on Wetland Systems for Water Pollution Control*. November, 6-11. Guangzhou,

P.R. China: Center for International Development and Research, South China Institude for Environemtal Sciences. 513-522.

- Muna, M. (2003). Pengolahan Air Larut Lesap Melalui Tanah Bencah Buatan Aliran Sup-Permukaan Dengan Scirpus globulosus Dan Ericaulon sexangulare Bagi Penyingkiran Logam Berat. Universiti Teknologi Malaysia: Master Thesis.
- Nor Azmira, H.J. (2003). Kajian Potensi Spesies Tumbuhan Timbul Tempatan Di Dalam Tanah Bencah Buatan Jenis Aliran Sub-Permukaan Terhadap Penyingkiran Bahan Organik Dan Pepejal Terampai Bagi Pengolahan Air Larut Lesap. Universiti Teknologi Malaysia: Master Thesis.
- Oasim, S.R. and Chiang, W. (1994). *Sanitary Landfill Leachate-Generation, Control and Treatment*. Texas: Technomic Publishing Co. Inc.
- Platzer, C. (2000). Development of Reed Bed Systems A European Perspective. Proceedings of the 7th International Conference: Wetland System for Water Pollution Control. November 12-17. Florida, USA: IWA Publisher.
- Rah, J.K. and Liehr, S.K. (1999). Flow Pattern Analysis of Constructed Wetlands Treating Landfill Leachate. *Wat. Sci.Tech*, 40(3):309-315.
- Rafidah, H. (2002). Kajian Pengaruh Konfigurasi Tumbuhan Di Dalam Sistem Tanah Bencah Buatan Jenis Aliran Sub-Permukaan Terhadap Penyingkiran Bahan Organik Dan Logam Beart Di Dalam Air Larut Lesap. Universiti Teknologi Malaysia: Master Thesis.
- Soto, F., Garcia, M., de Luis, E., and Becares, E. (1999). Role of *Scirpus lacustris* in Bacteria and Nutrient Removal for Wastewater. *Wat. Sci.Tech* 40(3):241-247.
- Tanner, C.C. (2000). Plants as Ecosystem Engineers in Subsurface-flow Treatment Wetlands. Proceedings of the 7th International Conference: Wetland System for Water Pollution Control. November 12-17. Florida, USA: IWA Publisher.

- Tanner, C.C., Clayton, J.S., and Upsdell, M.P. (1995). Effect of Loading Rate and Planting on Treatment Dairy Farm Wastewaters in Constructed Wetlands II. Removal of Nitrogen and Phophorus. *Wat.Res*.29:27-34
- Ujang, Z., Soedjono, E., Salim, M.R., Shutes, R.B. (2003). Landfill Leachate Treatment by an Experimental Subsurface Flow Constructed Wetland in a Tropical Climate. *Water & Environmental Management Series*.
- Vymazal, J. (1995). *Algae and Element Cycling in Wetlands*. Boca Raton, Fl, USA: CRC Press/Lewis Publisher.
- Watson, J.T., Reed, S.C., Kadlec, R.H., Knight, R.L. and Whitehouse, A.E. (1989).
 Performance expectations and loading rates for constructed wetlands. In:
 Hammer, D.A. ed. *Constructes wetlands for wastewater treatment: municipal, industrial and agricultural.* Chelsea, MI, USA: Lewis Publishers. 319-351.
- Zulkifli, Y., Chan, C.H., Mohamed, M. and Ujang, Z. (2004). Characteristics of Storm Flow Hydrographs in an Oil Palm Catchment. Proceedings of International Conference on Water and Wastewater 2004 – Technology and Management in Asia. March 30-31, KL.