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ABSTRACT 

 

 

 

 

Mitigation of interference due to multiple signals coexisting in the same 

frequency band can be achieved through the implementation of a smart antenna 

system that employs scanning of multiple and simultaneously available beams. These 

multiple and simultaneously available beams can be generated through beamforming 

networks such as the Butler Matrix, of which its design is the focus of this thesis. By 

employing passive devices in a butterfly layout configuration, a completely planar 

microstrip 8x8 Butler Matrix to perform in the ISM Band of 2.4 GHz to 2.5 GHz was 

designed. Recently, research has been focusing on the miniaturization of passive 

microwave devices and components. Artificial Transmissions Lines is a relatively 

new method that achieves miniaturization of a transmission line through periodically 

loading the line capacitively in order to lower the phase velocity characteristic of a 

high impedance line to an appropriate value. The higher the impedance of the line in 

question, the greater the level of miniaturization obtained. 40 percent area savings 

and 59 percent area savings were achieved in the design of the passive component 

hybrid and crossover structures, respectively, compared to conventional design 

methods.  Through the implementation of 12 hybrids, 8 fixed phase shifters and 16 

crossover structures, the final layout of a compact Butler Matrix can be designed. 

Simulations were performed using Microwave Office electromagnetic packages. 

Design calculations were verified using MatchCad. 

 



 vi

ABSTRAK 

 

 

 

  

 Kesan gangguan yang disebabkan kewujudan pelbagai isyarat pada jalur 

frekuensi yang sama dapat dikurangkan melalui implementasi sistem antena cerdas 

yang dapat mengimbas rangkaian pelbagai alur serentak. Rangkaian pelbagai alur 

serentak ini dapat dihasilkan menerusi rangkaian membentuk alur seperti Matriks 

Butler yang rekabentuknya menjadi fokus utama tesis ini. Dengan menggunakan 

peranti pasif dalam suatu konfigurasi rama-rama, Matriks Butler 8x8 mikrojalur yang 

planar dapat direkabentuk untuk kegunaan dalam Jalur ISM yang merangkumi 2.4 

GHz hingga 2.5 GHz. Baru-baru ini, penyelidikan juga tertumpu kepada pengecilan 

rekabentuk peranti gelombang mikro pasif serta komponennya. Talian Penghantaran 

Buatan merupakan kaedah baru yang berjaya mengecilkan talian penghantaran 

melalui pembebanan kapasitif berkala bagi mengurangkan ciri halaju fasa talian 

penghantaran bergalangan tinggi kepada nilai yang dikehendaki. Galangan yang 

lebih tinggi akan dapat mencapai tahap pengecilan yang lebih besar. Penjimatan 

keluasan sebanyak 40 peratus untuk rekabentuk komponen hibrid pasif dan 59 

peratus untuk rekabentuk komponen litar crossover dapat dicapai berbanding dengan 

kaedah konvensional. Menerusi implementasi 12 hibrid, 8 penganjak fasa tetap dan 

16 litar crossover, konfigurasi akhir Matrix Butler yang padat dapat direkabentuk. 

Simulasi telah dilaksanakan melalui pakej perisian elektromagnet Microwave Office 

manakala pengiraan rumus rekabentuk telah disahkan melalui perisian MathCad.     
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Project Background 

 

 

Increasing importance is placed upon the mobility of portable devices for 

embedded information and telecommunication, including PDAs, pagers, cellular 

phones and active badges. Advances in sensor integration and electronic 

miniaturization make feasible the production of sensing devices equipped with 

significant processing memory and wireless communication capabilities to create 

smart environments where scattered sensors can coordinate to establish networks. 

 

 

 Increasing wireless technologies are developed, e.g. IEEE 802.11, Bluetooth, 

and Home Radio Frequency (HomeRF) that promises to outfit portable and 

embedded devices with high bandwidth, localized wireless communication 

capabilities that may reach the globally wired Internet. 

 

 

 The 2.4 GHz Industry, Scientific and Medical (ISM) unlicensed band 

constitutes a popular frequency band suitable to low cost radio solutions such as 

those proposed for Wireless Personal Area Networks (WPANs) and Wireless Local 

Area Networks (WLANs), more so due to its almost global availability. Sharing of 
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the spectrum among various devices in the same environment, however, may lead to 

severe interference and significant performance degradation [1]. 

 

  

Primary and secondary users are allowed in the 2.4 GHz ISM band. 

Secondary use are unlicensed, although may have to follow rules of respective 

national communications commissions relating to total radiated power and use of the 

spread spectrum modulation schemes. As long as these rules are adhered to, 

interference among the various uses is not addressed. Therefore, the major downside 

of the unlicensed ISM band is that the frequencies must be shared and potential 

interference tolerated.  Although spread spectrum and power rules are quite effective 

when dealing with multiple users in the band of radios that are physically separated, 

the same cannot be said for close proximity radios. 

 

 

 Smart Antenna Systems are defined when multiple antenna elements are 

combined with a signal-processing capability to optimize the radiation and/or 

reception pattern automatically in response to the signal environment. An antenna is 

defined as the structure associated with the region of transition between a guided 

wave and a free-space wave, or vice versa. Antennas convert electrons to photons or 

vice versa. An antenna is the port through which radio frequency (RF) energy is 

coupled from the transmitter to the outside world and, in reverse, to the receiver from 

the outside world. 

 

 

 Antennas have typically been the most neglected of all personal 

communication system components. However, the way energy is distributed and 

collected from the ambient space has a profound influence on the spectrum 

efficiency, cost in setting up new networks and the network service quality. 

 

 

 Utilizing adaptive beamforming techniques allows an antenna array to reject 

interfering signals having a direction of arrival different from that of a desired signal. 

Additionally, interfering signals having different polarization states from the desired 
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signal can also be rejected should a multi-polarized array be used, even if the signals 

have the same direction of arrival. Improvements in capacity of wireless 

communication systems can be improved by exploiting these capabilities. 

 

 

 Two or more antenna elements that are spatially arranged and electrically 

interconnected to produce a directional radiation pattern is termed as an array. The 

feed network which forms the interconnection between elements can provide fixed 

phase to each element or can form a phased array. In optimum and adaptive 

beamforming, optimal received signal is obtained by adjusting the phases (and 

usually the amplitudes) of the feed network. Performance of an array is influenced by 

the geometry of an array and the patterns, orientations, and polarizations of the 

elements. 

 

 

 Multiple simultaneously available beams can be generated using array beam 

forming techniques [2, 3, 4]. Furthermore, the formed beams can be shaped to have 

high gain and low sidelobes, or controlled beamwidth. Adaptive beamforming 

techniques can adjust the array pattern dynamically to optimize certain 

characteristics of the signal received. In beam scanning, a single main lobe of an 

array is steered and the direction varied either continuously or in discrete steps. 

Antenna arrays using adaptive beamforming techniques can reject interfering signals 

having a direction of arrival different from that of a desired signal. Multi-polarized 

arrays can also reject interfering signals having different polarization states from the 

desired signal, even if the signals have the same direction of arrival. 

 

 

 Beamforming is defined as focusing the energy radiated by an aperture 

antenna along a specific direction. The beamformer is therefore the device or 

apparatus that performs this function [4]. To form multiple beams, an array of N 

antenna elements in connected to a beamformer of N beam ports. This architecture 

acts as though the antennas are directional, forming beams in orthogonal directions 

with increased directivity and described as a beamforming network. 

 



 4

 The Butler Matrix (BM) is an example of a multiple-beamed antenna system. 

The system measures angle of arrival on multiple input signals when multiple 

receivers are used in conjunction with the Butler Matrix. Linear arrays and a beam-

forming network are utilized and it characteristically has binary numbers of input 

antennas, 2n, where n is an integer.  

  

 

 One characteristic of NXN Butler Matrices is that the overall circuit grows 

exponentially as N increases. Although increased N will mean more multiple beams 

in an 8X8 design compared to a 4X4, this advantage comes with it the expense of 

increased circuit size.  

 

 

 This dissertation utilizes capacitive loading of transmission lines to reduce 

the size of the passive components of the Butler Matrix, specifically the branch line 

hybrid and crossover circuits. By implementing these components in a final 8x8 

Butler Matrix design, an overall decreased area can be obtained. A planar design was 

simulated for microstrip implementation.  

 

 

 A further contribution of this dissertation is the reusability of the hybrid and 

crossover structures in other microwave circuit designs.  

 

 

 

 

1.2 Objectives 

 

 

 To design a compact planar 8x8 Butler Matrix for use in an ISM band Smart 

Antenna System. 
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1.3 Scope Of Project  

 

 

The scope of this dissertation relates to the design of the 8X8 Butler Matrix to 

function over the ISM band constituted by a frequency band of 2.4 GHz to 2.5 GHz. 

A Butler Matrix comprises of 12 hybrids, 8 fixed phase shifters and 16 crossovers as 

shown in Figure 1.1. 

 

 
Figure 1.1 Block Diagram of a Conventional 8X8 Butler Matrix 

 

 

 The individual passive components were designed in microstrip. The 

quadrature hybrid, as shown in Figure 1.2 is a power divider that generates a 90 

degree phase shift between its two outputs. In Figure 1.1, it is evident that the 

crossing of lines between the various components is unavoidable. This crossing of 

lines poses a design problem issue to the layout of a planar design. By implementing 
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a crossover circuit that will have isolation between series ports but allow the good 

coupling between diagonal input and output ports, the crossing of lines issue can be 

resolved. This circuit is shown in Figure 1.3.   

 

 
Figure 1.2 Quadrature hybrid 

 

 

 
Figure 1.3 Crossover circuit 

 

 

 Electromagnetic simulations were performed on the individual passive 

components and the final 8X8 design. Design calculations were verified using 

MathCad. Analysis of the S-parameters of the component designs and final matrix 

was performed to give an indication of performance.  
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1.4 Summary of Chapters 

 

 

The first chapter gives an introduction to the dissertation, providing relevant 

information concerning the project background, objective and the scope of the 

project.  

 

 

The second chapter deals with transmission line theory related to microstrip 

implementation. A general description of the microstrip material is also given, 

together with an overview of circuit and antenna requirements.  

 

 

In chapter three, antenna array and beamforming theory are examined in 

detail. Equations related to array factor derivations and beam space representation 

are presented here. 

 

 

An overview of the relevant theory related to the passive components 

required in the final design in considered in chapter four. In this chapter, a 

conceptualization of passive component theory is shown and the corresponding 

number of components required for the design is also presented. 

 

 

In chapter five, the theory related to the method of miniaturization, artificial 

transmission lines is examined. Details of the methodology and design procedure are 

expounded in the sixth chapter. The entire design process is discussed in detail in this 

chapter.  

 

 

Simulation results are analyzed in the seventh chapter. Finally, the whole 

project is concluded in the final chapter. Suggestions for future work were given. 

 

 




