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ABSTRACT 

 

 

 

 

Recent introduction of microarray technology allows researchers to monitor 

thousands of gene expression levels in a microarray experiment.  Classification of 

tissue samples into tumor or normal is one of the applications of microarray 

technology.  When classifying tissue samples, gene selection plays an important role.  

In this research, some existing gene selection techniques are studied and better gene 

selection techniques are proposed and developed.  The proposed approach is carried 

out by first grouping genes with similar expression profiles into distinct clusters, 

calculating the cluster quality, calculating the discriminative score for each gene by 

using statistical techniques, and then selecting informative genes from these clusters 

based on the cluster quality and discriminative score.  The selected subset of genes is 

then be used to train the classifiers for constructing rules for future tissue 

classification problem.  Various k-means clustering algorithms and model-based 

clustering algorithms are proposed to group the genes.  The statistical techniques 

used are Fisher Criterion, Golub Signal-to-Noise, Mann-Whitney Rank Sum Statistic 

and traditional t-test.  Support Vector Machine (SVM) and k-nearest neighbour (k-

nn) are used for the classification purposes.  The proposed approach is validated 

using leave one out cross validation (LOOCV). Receiver operating characteristic 

(ROC) score is used to analyze the results.  Colon data with 2000 genes and 62 tissue 

samples is used for the testing.  Highest ROC score recorded from the experiments 

achieved 0.95, corresponding to five misclassifications. This should be of significant 

value for diagnostic purposes as well as for guiding further exploration of the 

underlying biology. 
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ABSTRAK 

 

 

 

 

Pembangunan teknologi microarray membolehkan penyelidik mengawal 

beribu-ribu tahap ekspresi gen dalam satu eksperimen microarray.  Pengkelasan 

sampel tisu kepada tisu tumor atau tisu biasa merupakan salah satu aplikasi teknologi 

microarray.  Semasa pengkelasan sampel tisu, pemilihan gen memainkan peranan 

penting. Dalam penyelidikan ini, beberapa teknik pemilihan gen sedia ada telah 

dikaji dan teknik yang lebih baik telah dicadangkan dan dibangunkan.  Pendekatan 

cadangan dilakukan dengan pertamanya kumpulkan gen yang profail ekspresinya 

sama dalam gugusan yang sama, kira kualiti setiap gugusan, kira nilai diskriminasi 

setiap gen dengan menggunakan teknik statistik, dan akhirnya pilih gen berdasarkan 

kualiti gugusan dan nilai diskriminasi.  Gen terpilih kemudiannya digunakan untuk 

melatih algoritma pengkelas supaya mendapat peraturan yang dapat mengkelaskan 

sampel tisu baru.  Untuk mengumpulkan gen, beberapa algoritma gugusan k-means 

dan algoritma gugusan model-based telah dicadangkan.  Teknik statistik yang 

digunakan adalah Fisher Criterion, Golub Signal-to-Noise, Mann-Whitney Rank Sum 

Statistic dan traditional t-test.  Support Vector Machine (SVM) dan k-nearest 

neighbour (k-nn) digunakan untuk tujuan pengkelasan.  Prestasi teknik cadangan 

disahkan dengan menggunakan teknik leave one out cross validation (LOOCV).  

Receiver operating characteristic (ROC) digunakan untuk menganalisa keputusan 

prestasi pendekatan cadangan.  Data kolon yang terdiri daripada 2000 gen dan 62 

sampel tisu digunakan untuk tujuan pengujian.  Nilai ROC tertinggi yang direkod 

daripada eksperimen yang dijalankan adalah 0.95, bersamaan dengan lima nyah-

klasifikasi.  Pencapaian keputusan ini adalah penting bagi tujuan diagnostik dan 

memberi panduan kepada eksplorasi biologi seterusnya. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 
1.1 Introduction 

 

  

Almost every cell in the body of an organism contains an identical copy of 

the deoxyribonucleic acid (DNA) (Avers, 1985).  Genes are segment of this DNA 

that carry genetic information for encoding specific cellular ribonucleic acid (RNA) 

and proteins.  Central dogma of biology states that the coded genetic information in 

DNA is transcribed into messenger ribonucleic acid (mRNA), which is then 

translated into protein (Figure 1.1).  Of these molecules it is known that proteins do 

the majority of the cellular functions.  Gene expression is the transcription and 

translation events that allow a gene to be expressed as protein.  Although each cell of 

the organism has the exact same copy of the DNA, the genes in a genome do not 

have any effect on cellular functions until they are expressed.  Different types of cells 

express different sets of genes, thereby exhibiting various shapes and functions.  

Moreover, many of the genes are strongly regulated and only expressed in certain 

environmental conditions.  Additionally, the amount of mRNA being expressed plays 

an important role.  The more mRNA produced, the more likely that more of the 

protein will be produced.   
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Figure 1.1: Central Dogma of biology 

 

 

Some of the tumors occur because of the alteration of certain genes, which 

means the genes are expressed abnormally (or differentially expressed) in that 

particular cell (Figure 1.2), which will either be up-regulated (express in a higher 

amount), down-regulated (express in a lower amount) or not being expressed.  The 

difference between the gene expression levels (i.e. how much mRNA is produced) 

produces a specific profile for each gene.  Many biological experiments have been 

carried out to analyze the gene expression profiles.  In the tumor cancer analysis, the 

biologists wish to distinguish and select genes that are responsible for the growth of 

tumor cells from the experiment.  One usage of this information is that it can be used 

to help them to identify and classify future new patient’s sample tissue into their 

category respectively.  A fast and reliable experiment and data analysis tool is 

needed for this problem. 
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Figure 1.2: Alteration of certain genes in different cells (Sebastiani et al., 

2002) 

  

 

 The recent introduction of microarray technology (Lander, 1999; Schena, 

2002; Schena, et al., 2003; Stears et al., 2003) allows researchers to monitor gene 

expression levels in a microarray experiment.  Therefore, microarray experiments 

can be constructed to measure the gene expression level, and the data from 

microarray experiments can be further analyzed in order to select genes which are 

responsible for the tumor from the normal tissue (Aliferis et al., 2003; Bhattacharjee 

et al., 2001; Ben-Dor et al., 2000; Bittner, 2000; Furey et al., 2000; Lu and Han, 

2003; Mukherjee et al., 1999).  In computer science, selecting informative genes for 

tissue separation (or classification) can be solved by using machine learning 

techniques, in which selecting subset of informative genes which are responsible for 

the tumor from the normal tissue is referred to as feature selection or the gene 

selection problem and classifying the tissue into tumor or normal is referred to as 

tissue classification problem.   

 

  

This research focuses on developing better gene selection techniques to select 

informative genes in a tumor and normal tissue.  The selected subset of genes is used 

to train the classifiers to construct rules for future tissue classification problem.  The 

next section discusses some background of microarray and in Section 1.3, the 

motivations, that is, why gene selection is needed prior to tissue classification is 
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presented.  The goal and objectives of the research is presented in Section 1.4 and the 

scope of the research is presented in Section 1.5.  The thesis outlines for the 

following chapters closes the chapter in Section 1.6. 

 

 

 

 

1.2 The Background of Microarray  

 

 

 On a typical microarray, there are several thousands of genes or expressed 

sequence tags (ESTs) spotted on a microarray (Affymetrix spots 20 matching and 20 

mismatching oligonucleotides from one gene, other arrays usually only spot one 

longer oligonucleotide or a complete complementary deoxyribonucleic acid (cDNA)) 

(Schena, 2002).  This microarray is used for the experiment and data is gathered for 

further analysis.  The experimental design can be simplified by the five steps in the 

microarray analysis cycle (Schena, 2002): 1) biological question, 2) sample 

preparation, 3) biochemical reaction, 4) detection, and 5) data analysis and modeling 

(Figure 1.3).  The experiment starts with defining a biological question.  If the goal 

of the work is to understand the profiles of gene expression in tumor and normal 

tissue, the researcher might begin by asking “How do expression levels of gene differ 

in tumor and normal tissue”.  Sample preparation includes DNA and RNA isolation 

and purification, target synthesis, probe amplification and preparation and microarray 

manufacture.  The biochemical reaction involves the incubation of the fluorescent 

sample with the microarray to allow productive biochemical interactions to occur 

between target and probe molecules, which exploit hybridization for this step.  

Detection, the forth step in the microarray life cycle, involves capturing an image 

from the microarray using a scanning or imaging instrument.  Captured images are 

processed to produce the gene expression data in numerical form and the data is 

analyzed and modeled to complete the five step procedure.   
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Figure 1.3: Microarray analysis cycle 

 

 

 Figure 1.4 illustrates an example of microarray experiment.  Firstly, the 

biological question is asked and then the sample of interest is prepared, then the 

mRNA is extracted and copied into cDNA in Step 2.  This cDNA will be 

radioactively or fluorescently labeled and poured over the microarray in Step 3 for 

the biochemical reaction to happen.  After a certain annealing time, the rest of the 

probe mixture is washed away and only the cDNA complimentary to the genes 

spotted will remain on the array and detected.  The main idea here is that the more 

complimentary cDNA present in the probe, the more cDNA will anneal and the 

brighter the spot will be.  The microarray will then be put in a scanner or on a screen 

as in Step 4; the data is collected in the form of a digital picture of the microarray.  

For an example of the image, refer to Figure 1.5.  Image analysis software then reads 

in the picture, tries to identify the spots, and outputs the intensities and colors for 

these spots in numerical data in Step 5.  These values might be corrected for the 

surrounding background and overflowing spots (Yang et al., 2000).  

 

1. Biological Question

“How do expression level of 
gene differ in tumor and 
normal tissue?” 

2. Sample Preparation 

mRNA isolation, probe 
labeling, PCR, microarray 
manufacture 

3. Biochemical 
Reaction

Hybridization, substrate 
processing, blocking, 
washing 

5. Data Analysis & 
Modeling 

Quantitative data, calculate 
ratio, cluster, classification 

4. Detection 

Select channels, laser 
settings, produce images 

Microarray 
Analysis 

“Lifecycle” 
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Figure 1.4: An example of microarray experiment (Diagram courtesy of Jeremy 

Buhler. jbuhler@cs.washington.edu) 
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Figure 1.5: Sample Image 

 

 

A final step called data normalization takes place after obtaining the 

numerical data from the image.  The purpose of this step is to counter systematic 

variation (e.g. difference in labeling efficiency for different dyes) and to allow a 

comparison between different microarrays (Yang et al., 2002).   

 

 

For a microarray experiment dataset, normally there are replications in the 

tissue samples.  Therefore, in tumor and normal tissue microarray dataset, there will 

be more than one tissue sample for tumor tissue and more than one tissue sample for 

normal tissue.  This replication is important because microarray experiments are 

inherently noisy.  Replication is the key to estimate realistic expression levels despite 

such noise for a more consistent and reliable findings (Lee et al., 2000).  Refer Table 

2.1 in Chapter 2 for an example of gene expression data.   
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1.3 Motivations of the Research 

 

 

Cancer constitutes 10.3% of medically certified deaths, which is the fourth 

leading cause of death in Malaysia (Table 1.1) (Lim, 2002).  The proportion of 

deaths due to cancer would very likely be higher if all deaths had been medically 

certified.  In a regional cancer registry survey, the 10 leading cancers among males 

were lung, nasopharynx, stomach, urinary bladder, rectum, non-Hodgkin’s 

lymphoma, larynx, liver, colon and esophagus and in females cervix, breast, ovary, 

lung, nasopharynx, esophagus, thyroid, colon, rectum and non-Hodgkin’s lymphoma.  

A fast and reliable experiment and data analysis tool is needed for identification of 

the onset of the tumor cells before any further treatment and diagnosis is carried out. 

 

 

Table 1.1: Causes of death due to cancer among medically certified deaths in 

Malaysia in 1998 (% of medically certified deaths)  

No Cancer Percentage 

1 Lung 20.9 

2 Liver 9.6 

3 Breast 7.6 

4 Leukemia 6.9 

5 Stomach 5.9 

6 Colon 5.3 

7 Nasopharynx 4.8 

8 Cervix 4.0 

9 Lymphoid 3.6 

10 Ovary 2.7 

11 Others 28.7 

 

 

Microarray technology is becoming exceedingly popular to analyze gene 

expression data for cancer study.  With the help of microarray, scientists can study 

cancers based on the informative genes that are responsible for the growth of tumor 
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cells based on the gene expression profiles provided by the microarray experiments.  

Not only can microarray technology helps to identify and select genes which are 

related to the cancers, the information and knowledge gathered can be further used to 

identify/classify future unknown tissue sample into normal or tumor tissue.  Since the 

expression of all genes in an organism can be studied simultaneously in a microarray 

experiment, microarray experiment is creating a wealth of gene expression data.  

Typically these datasets have a high dimensionality corresponding to the large 

number of probes used in the technology and there are often comparatively few 

examples, leading to a curse of dimensionality problem.  Many of the data are 

redundant and are irrelevant to the experiments.  They might also contain noise and 

are unclassifiable.  Moreover, genes are only expressed at certain times, in certain 

environmental conditions, and in certain cell types, not all genes are responsible for 

the targeted tissue.  Without computer, selecting the informative genes manually is 

time consuming.  Therefore, there is a great need to develop analytical methodology 

to select informative genes that have the biggest impact on separating the tissue 

sample and drop the genes with little or no effect by using the advancement of 

computer technology (Liu et al., 2002; Xing et al., 2003).   

 

 

 Many different gene selection techniques and classifiers have been 

investigated to the gene selection and tissue classification problem, with varying 

degrees of success.  For gene selection, both filter approach and wrapper approach 

are commonly used.  In filter approach, different threshold cutoff techniques, 

statistical techniques, clustering techniques and so on have been applied.  In the 

statistical techniques, redundancy problem still remains a great challenge due to the 

characteristics of the data where genes with similar functions are co-regulated and 

genes are not acting alone.  While in the clustering techniques, some researchers 

would select informative genes manually, which might lost some important 

information and are a time consuming process, or lately, Jaegar et al., (2003), 

proposed a new approach which combine statistic and clustering techniques for gene 

selection in order to solve the redundancy problem.  However, one problem arises by 

using their approach is that the user needs to choose the clustering model that best 

suits the dataset and the correct number of clusters that are hidden in the dataset 

manually.  This is a time consuming process because the user needs to run the 
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experiment for all trials in order to select the best parameter settings.  Different 

dataset has different properties, thus, the parameter settings for one dataset might not 

be suitable for the use of another dataset.  In the wrapper approach, some techniques 

like forward searching, branch and bound or genetic algorithm have been employed 

together with the classifiers to evaluate each and every possible subset of genes that 

provide the best results.  Therefore, wrapper approach is computational expensive to 

run. 

 

 

In the tissue classification problem, several machine learning techniques like 

Support Vector Machines (SVMs) (Mukherjee et al., 1999; Furey et al., 2000), 

Neural Network, k-nearest neighbor (k-nn), Self-Organizing Map (Cho and Won, 

2003) and so on are being applied.  The classification performance of these 

classifiers depends greatly on the input.  The input here is the genes.  Therefore, gene 

selection plays a very important role prior to the tissue classification problem.  Thus, 

in this research, the focus is on developing better gene selection techniques that can 

improve the classification performance.  For more details about the existing gene 

selection techniques and their problems, refer to Chapter 2 of this thesis. 

 

 

 

 

1.4 Objectives of the Study 

 

 

The goal of this research is to develop better gene selection techniques for 

selecting informative genes.  The selected subset of genes can then be used to train 

the classifiers in order to construct a rule to classify future unknown tissue sample 

into tumor or normal tissue.  To realize the goal, several specific objectives need to 

be achieved: 

 

i) To study and investigate existing gene selection techniques applied to the 

gene selection problem  



 11

ii) To develop better gene selection techniques using combination of 

clustering and statistical techniques 

iii) To train the classifiers and to construct decision rules for classification of 

future unknown tissue sample by using the selected genes 

iv) To assess the resultant decision procedure by estimation of the overall 

error rate from a test sample 

 

 

 

 

1.5 Scope of the Study 

 

 

 This research focuses on tumor and normal colon tissue classification.  The 

data is already background-corrected and normalized from the image from 

microarray experiment, and these problems are not the focus in this research.  Full 

dataset is needed for the experiment and no missing data is allowed.   

 

 

Gene selection problems are the focuses in this research where the goal is to 

develop better gene selection techniques for selecting informative genes.  Several 

different classifiers are studied.  Leave one out cross validation (LOOCV) technique 

is used to validate the developed techniques and Receiver operating characteristic 

(ROC) score is used to analyze the results.  The results are compared to other cited 

literature based on the classification performance from their research experiments.  

The selected genes are not examined per se. 
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1.6 Thesis Outline 

 

 

 This section gives a general description of the contents of subsequent 

chapters in this thesis.  Chapter 2 gives a review of the various techniques used for 

the gene selection and classification problem.  Chapter 3 describes the methodology 

adopted to achieve the objectives of this research.  In Chapter 4, the design, 

implementation and evaluation of the statistical techniques as the gene selection 

technique is presented.  Chapter 5 presents the design, implementation and 

evaluation of the combination of k-means clustering algorithm and statistical 

techniques as the gene selection technique while Chapter 6 presents the design, 

implementation and evaluation of the combination of model-based clustering 

algorithm and statistical techniques as the gene selection technique.  This thesis ends 

at chapter 7 where in this chapter it concludes the thesis and provides suggestions for 

future research. 
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