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ABSTRACT 

 

 

 

Polyamide 6 (PA6) with different linear low density polyethylene grafted 

maleic anhydride (LDPE-g-MAH) and montmorillonite (MMT) loadings were 

produced by melt compounding using single screw extruder. In this study a mixture 

design of experiment covered three ingredients which contribute to the rheological 

properties, PA6, LLDPE-g-MAH and MMT multiple level setting were studied on 

their rheological properties. The rheological test conducted via capillary rheometer to 

obtain apparent rheological properties which were been converted to real rheological 

properties through Bagley correction. The additional of LLDPE-g-MAH has 

increased the viscosity of the system at low shear rate contributed by the interfacial 

reaction between PA6 with functional group of LLDPE-g-MAH. The bonding 

between PA6 and LLDPE-g-MAH was sensitive to shear thus no significant different 

in viscosity observed at high shear rate with different level of LLDPE-g-MAH. 

However, the incorporation of MMT has shown to lower the overall viscosity due to 

good dispersion of MMT results in higher interaction induced between polymer 

chain which was stronger than the adhesion forces between the polymer chain and 

the die surface wall. The rheological data used to predict the fluid consistency 

coefficient (m) and flow behavior index (n) within the design space.  

 

 

   

 

where  

PA6 is PA6 content in wt % from 85% to 100% 

   LLDPE is LLDPE-g-MAH content in wt % from 0% to 10%  

MMT is MMT content in wt % from 0% to 5%  

MMTLLDPEPAm 73.84067.448607.28 −+=

MMTLLDPEPAn 02946.001099.0600560.0 +−=
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ABSTRAK 

 

 

 

Poliamida 6 (PA6) dengan polietilena lelurus berketumpatan rendah dicantum 

melaikanhadrida (LDPE-g-MAH) dan montmorillonite (MMT) dihasilkan dengan 

cara pengadunan menggunakan penyempertitan berskru tunggal. Dalam kajian ini, 

reka bentuk campuran meliputi tiga bahan yang menyumbang kepada sifat-sifat 

reologi, PA6, LLDPE-g-MAH dan MMT telah dikaji. Ujian reologi dijalankan 

menggunakan  reometer kapilari untuk mendapatkan sifat-sifat reologi sebenar 

melalui pembetulan Bagley. Tambahan LLDPE-g-MAH telah meningkatkan 

kelikatan sistem pada kadar ricih rendah disumbangkan oleh tindak balas di antara 

PA6 dengan kumpulan fungsi LLDPE-g-MAH. Ikatan antara PA6 dan 

LLDPE-g-MAH adalah sensitif kepada ricih, menyebabkan tiada perbezaan kelikatan 

yang ketara diperhatikan pada kadar ricih yang tinggi. Walaubagaimanapun, 

penambahan MMT telah menunjukkan pengurangkan kelikatan keseluruhan 

disebabkan oleh penyebaran MMT yang baik dalam polimer menyumbang kepada 

interaksi yang lebih tinggi antara rantaian polimer lebih kuat daripada kuasa-kuasa 

melekat antara rantai polimer dan dinding permukaan. Data reologi digunakan untuk 

meramalkan pekali konsisten leburan (m) dan indeks kelakuan aliran (n) seperti 

ditunjukkan: 

   

 

 

 

dimana 

PA6 adalah kandungan PA6 dalam wt % dari 85% hingga 100% 

   LLDPE adalah kandungan LLDPE-g-MAH dalam wt % dari 0% hingga 10%  

MMT adalah kandungan MMT dalam wt % dari 0% hingga 5%  

 

MMTLLDPEPAm 73.84067.448607.28 −+=

MMTLLDPEPAn 02946.001099.0600560.0 +−=
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Polymers are important parts of everyday life. Polymers are not only 

important in industry which commonly known in electric, electronic, automotive and 

packaging, they are also common in sophisticated biological product such as 

prosthetic hip and knee joints to disposable food utensils. Polymers are complex to 

understand as they consist of both viscous and elastic properties which is the key 

behavior making polymers one of the most interesting and challenging material. 

Polymers properties are influence by many factors such as molecular structure, 

molecular weight and molecular weight distribution of repeating units, side chain 

branching, length and polarities, degree of crystallinity, copolymerization, 

modification through enormous range of additives and polymer blends. Nevertheless 

another important part is polymer rheology.  

 

Rheology is a fundamental prerequisite for processing polymers in a 

controlled manner (Chiu and Pong, 1999). In order to bring out polymers value in 

certain application, appropriate knowledge of rheological behavior of polymer is 

crucial to predict and control the properties of relevance to the various stages of 

processing. Rheology is the science of deformation and flow of fluids in which they 

respond with plastic flow rather than deforming elastically in response to an applied 

force. In other words, rheology generally accounts for the behavior of 

non-Newtonian fluids, by characterizing the minimum number of functions that are 

needed to relate stresses with rate of change of strains or strain rates. The rheological 

properties of molten polymers influence many aspect of processing for example 
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throughput rate, screw speed, generation of mechanical heat and die pressure. While 

in molten state, polymers are viscous fluids which continue to deform as long as a 

stress is applied. Depends on the screw design and processing parameter rapid shear 

stress applied is dissipated as heat. In a situation when the amount of heat produced 

is greater than the heat transfer or removed, the melt temperature raises and 

consequently reduces its viscosity (Hay et al, 2000). The raises of polymer melt 

temperature might be helpful to processor but overheating will be detrimental to 

polymer properties.  

 

Generally, some equations will be used to develop the rheological model with 

the help of technology from relevant computer software. There are several types of 

polymer rheological model that have been developed before. Kinetic theory and 

statistical mechanics give important fundamental principles governing the systems at 

the molecular scale. The principles include: the concepts of statistical ensembles, 

Liouville’s equation and Boltzmann’s equation. Combined with the computing 

resources that have today, these statistical principles can be used to yield excellent 

predictions of the properties of polymeric liquids. This research will be very useful 

for the next researchers to easier their works in conducting the test with 

thermoplastic polymers. However there is very limited study reported on the use of 

statistical principle in predicting rheological behavior.  

 

Nowadays enormous Polyamides (PA) have been developed and are widely 

used in many fields in the group of aliphatic polyamide, semi aromatic polyamide etc. 

As far as environmental issue is concern, polyamides from renewable resources are 

another hot topic. PA are semi-crystalline polymer which often form crystal up to 

50% degrees of crystallinity and form excellent fibers (Vroom, 1997). There are 

many advantages with polyamide for example tough, strong, low coefficient of 

friction, abrasion resistance, high temperature resistance, good solvent and bases 

resistance. Although PA is a material with a number of desirable properties, it also 

consists of certain disadvantages such as high moisture adsorption with dimensional 

instability, electrical and mechanical properties influenced by moisture content. The 

idea to incorporate linear low density polyethylene grafted maleic anhydride 

(LLDPE-g-MAH) into polyamide 6 (PA6) matrix in order to reduce the compound 

moisture adsorption. Maleic anhydride grafted in order to improve the interfacial 

interaction between PA6 and linear low density polyethylene (LLDPE). LLDPE are 

grouped based on their differences of their molecular weight, branching and their 

melt flow index (MFI).  
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However, PA6 and LLDPE both are semi-crystalline polymers where they 

exhibit higher shrinkage during cooling compared to amorphous polymer. Addition 

of filler will helps in their dimensional stability. Thus this study will focus in the use 

of low aspect ratio filler to produce nanocomposite. Nanocomposites are known as a 

new era of composites, whereby the use of nano scales filler instead of micro scales 

filler. It has been proven that nanofillers were better in enhancing the tensile modulus 

and strength of a material compare to microfiller. Certain loading of nanofiller into 

the polymer matrix will increase significantly the tensile modulus and strength of the 

material without sacrificed its impact strength (Zhang et al., 2003; Liu et al., 1999). 

Although the increasing of nanofiller content can enhance the mechanical properties 

of the material, however over loading of nanofiller will in turn results the material to 

loss its properties (Ou et al., 1998). As a result, the optimum content of nanofiller is 

the limitation of the particular types of nanofiller. 

 

This research will focus on the study of the rheological behavior of 

PA6/LLDPE-g-MAH nanocomposites. Based on the data obtain, a predictive model 

will be proposed to predict the rheological properties of PA6/LLDPE-g-MAH 

nanocomposites.  

 

 

1.2 Problems Statement 

 

 

Excess processing condition will deteriorate the polymer properties by 

polymer chain scissoring. Although there is a possibility to optimize the processing 

condition with trial runs but this will incur some cost such as material wastage, 

machine time and man power. Understanding a material rheological behavior enable 

to reduce these wastage by utilizing rheological measurements, process condition can 

easily be determined. Thus the final product properties and performance can be 

predicted. The need to accurately set and control processing condition in order to 

optimize product performance and ensure product acceptance, accurate rheological 

measurements have become essential in the characterization of pseudoplastic 

material.  

 

PA6 are selected as one of the famous engineering plastic with incorporation 

of LLDPE-g-MAH to reduce its sensitivity to moisture. Moreover, there are very 

limited studies with regards to rheological behavior of PA6/LLDPE-g-MAH 

nanocomposites. There is no study reported on the use of statistical approach to 
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simulate a predictive model for rheological behavior of PA6/LLDPE-g-MAH 

nanocomposites. This study will bring value in solving the following rheological 

problems: 

 

i. What is the rheological effect of MMT in PA6/LLDPE-g-MAH 

nanocomposites? 

ii. What is the rheological effect of LLDPE-g-MAH into PA6 

nanocomposites? 

iii. What is the predictive model for PA6/LLDPE-g-MAH nanocomposites? 

 

 

1.3 Objective 

 

 

Based on the problem statement, the present work aims to study the effect of 

MMT and LLDPE-g-MAH content on rheological behavior of 

PA6/LLDPE-g-MAH/MMT system and to propose a predictive rheological behavior 

models for PA6/LLDPE-g-MAH/MMT system in term of MMT loading, shear rate 

and processing temperature as a function of shear viscosity. 

 

 

1.4 Scope 

 

 

In order to achieve the objectives of the research the following activities were 

carried out:  

 

1. Literature search on the overview of the definition of rheology, current 

development of models involved in rheological study and the latest 

development related to thermoplastic nanocomposites.  

 

2. Involve preparing various samples of polymer and additives to develop the 

specimen formulation. This involves compounding process to produce 

thermoplastic nanocomposites (PA6/LLDPE-g-MAH/MMT) from raw material 

feeding, extrusion, strand handling and pelletizing.  

 

3. Study the effects of nanofiller concentration on PA6, LLDPE-g-MAH and 

PA6/LLDPE-g-MAH blends on  
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i. Rheological properties 

Conduct rheological test using capillary rheometer to discover the 

rheological properties PA6/LLDPE-g-MAH/MMT. 

 

ii. Modeling   

Based on data obtained, several theoretical rheological equations used 

to develop a suitable model for PA6/LLDPE-g-MAH/MMT. Minitab 

is software which provided two modules suitable to be used in this 

study, surface response and mixture design as part of design of 

experiment. Surface response is widely used for 3 factors system and 

mixture design is developed for formulation purpose. 
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