DETERMINATION OF OPTIMUM CONCENTRATION OF LIME SOLUTION FOR SOIL STABILIZATION

NG PUI LING

A thesis submitted of the fulfillment of the requirements for the award of the degree of Master of Engineering (Civil- Geotechnic)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MARCH, 2005

To my beloved family

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisor, Associate Professor Dr. Khairul Anuar Kassim, for encouragement guidance, critics and friendship. Without his continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to the librarians at Universiti Teknologi Malaysia (UTM) for their assistance in supplying the relevant literatures.

My sincere appreciation also extends to all the staff of Geotechnical Laboratory, Faculty of Civil Engineering, UTM, who provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members and my friends who encourage me all the time to complete this thesis.

ABSTRACT

The main objective of this research is to determine the optimum concentration of lime solution for soil stabilization. Dry lime, either quicklime or hydrated lime is being use currently as soil stabilization agent. Although it is very useful in soil stabilization, it always causes dusting problem and is corrosive to human skin. To avoid these problems, application of lime in solution form is suggested in this research. Several soil tests had been carried out on the untreated soil and lime before the lime added to soil for stabilization to ensure the soil is suitable to be stabilized by lime. After those soil properties determined, the lime solution with different concentration will be added to the soil samples for stabilization for 0, 7, 14 and 28 days. The unconfined strength test is carried out on cured soil to evaluate the effectiveness of lime stabilization with different concentration of the lime solution. The concentration of the lime solution that gives the highest soil strength is the optimum concentration of lime solution for soil stabilization. From the result in this research, the highest Unconfined Compressive Strength achieved is 730 kPa, by stabilized the kaolin with 1.35M lime solution and cured for 28 days. Consequently, this value is the optimum concentration of lime solution for soil stabilization.

.

ABSTRAK

Objektif utama kajian ini adalah untuk menentukan kepekatan optimum larutan kapur untuk penstabilan tanah. Kapur kering, sama ada dalam bentuk "quicklime" atau dalam bentuk kapur terhidrat biasa digunakan untuk penstabilan tanah pada masa kini. Walaupun kapur ini sangat berguna dalam penstabilan tanah, ia sentiasa menyebabkan masalah pencemaran dan bersifat mengakis terhadap kulit dan mata manusia semasa digunakan. Untuk mengelakkan masalah sedemikian, penggunaan larutan kapur telah dicadangkan dalam kajian ini. Beberapa ujian tanah telah dijalankan untuk menentukan kesesuaian tanah tersebut distabilkan dengan kapur. Setelah ciri-ciri tanah dikenalpastikan, larutan kapur yang mempunyai kepekatan yang berlainan disediakan untuk bercampur dengan tanah untuk tujuan penstabilan. Selepas tanah diawet dengan larutan kapur yang berkepekatan yang berlainan pada 0, 7, 14, dan 28 hari, Ujian Mampatan Tak Terkurung dijalankan ke atas sampel-sampel tanah. Didapati bahawa sampel tanah yang menunjukkan kekuatan mampatan yang tertinggi, 730 kPa, ialah tanah yang diawet dengan 1.35 M larutan kapur, dan diawet selama 28 hari. Maka, kepekatan optimum larutan kapur yang diperoleh dalam kajian ini ialah 1.35 M larutan kapur.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLE S	xi
	LIST OF FIGURES	xii
	LIST OF APPENDICES	xiii
	LIST OF SYMBOLS	xiv
I	INTRODUCTION	
	1.1 Background of research	1
	1.2 Objectives	2

II	LITERATURE REVIEW	
	2.1 Soil Improvement	3
	2.1.1 Soil Stabilization	4
	2.1.1.1 Mechanical Method	4
	2.1.1.2 Additive Method	5
	2.1.2 Compaction	6
	2.2 Lime Stabilization	7
	2.2.1 Types of lime	8
	2.2.1.1 Comparison of quicklime and	9
	hydrated lime	
	2.2.2 Chemical reaction in lime stabilization	10
	2.2.2.1 Long term reaction	10
	2.2.2.2 Short term reaction	12
	2.2.3 Benefits of lime stabilization	13
	2.3 Recommend construction procedures	14
	2.3.1 Procedure for lime treatment in soils	14
	2.3.1.1 Mix in-place	15
	2.3.1.2 Static plant mixed	15
	2.3.2 Construction recommendation for using	16
	hydrated lime for stabilization	
	2.3.2.1 Detailed elaboration of construction steps	19
	2.3.2.2 Pros and cons of dry versus slurry method	26
	2.3.3 Construction recommendation for using	27
	hydrated lime for stabilization	
	2.4 Solubility of hydrated lime	27

III	METHODOLOGY

	3.1 Laboratory Testing	29
	3.2 Soil classification tests	29
	3.2.1 Atterberg limits	32
	3.2.1.1 Liquid limit	33
	3.2.1.2 Plastic limit	34
	3.2.1.3 Plasticity Index (PI)	36
	3.2.2 Particle size distribution	37
	3.2.2.1 Sieving Analysis	37
	3.2.2.2 Sedimentation by hydrometer analysis	39
	3.2.3 Determination of specific gravity, G _s	40
	3.3 Standard Proctor Compaction Test	41
	3.4 Initial Consumption of lime test (ICL)	45
	3.5 Determination of available lime	45
	3.6 Unconfined Compression Test (UCT)	46
IV	RESULTS AND ANALYSIS	
	4.1 Soil classification tests	49
	4.1.1 Atterberg limits	49
	4.1.2 Particle size distribution	51
	4.1.3 Specific gravity	52

	4.2 Standard Proctor Compaction test	53
	4.3 Initial Consumption of lime test (ICL)	58
	4.4 Determination of available lime	59
	4.5 Unconfined Compression Test (UCT)	60
\mathbf{V}	CONCLUSION	
	5.1 Conclusion	69
REFERENCES		70
APPENDIX A		71
APPENDIX B		72
APPENDIX	C	76

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Solubility of lime at different temperature	28
4.1	Summary of data for specific gravity	52
4.2	Summary of the data of compaction test	53
4.3	Summary of data from ICL test	58
4.4	Summary of data of UCT	60
4.5	Comparison lime percentage use in the lime	61
	solution to dry lime for soil stabilization	

LIST OF FIGURES

FIGURE

NO.	TITLE	PAGE
2.1	Mechanical method (a) vibroflotation, (b) vertical drain	5
2.2	Geotextile fabric	6
2.3	Dynamic compaction at site for soil stabilization	7
2.4	Procedures of subgrade stabilization	16
2.5	Procedures of base stabilization (in-place mixing)	17
2.6	Procedures of base stabilization (central mix)	18
2.7	Pulverization with sheepsfoot roller	20
2.8	Bagged lime application on a expressway construction	21
2.9	Portable jet slurry plant for producing slurry	22
2.10	Central mixing plant for base stabilization	24
2.11	Dusting problem when use dry lime for stabilization	26
3.1	Classification of laboratory tests	30
3.2	Categories of soil classification tests	31
3.3	Consistency Limits	33
3.4	Cone penetrometer for determination of liquid limit	34
3.5	The soil rolled into thread of diameter 3mm	35
3.6	Plasticity chart	36
3.7	Mixture of kaolin and dispersion solution is shake in a	39
	mechanical shaker	

3.8	Hydrometer reading are taken	40
3.9	Determination of specific gravity	41
3.10	The principle of compaction	42
3.11	Mould for the compaction test	43
3.12	Typical compaction curves	44
3.13	Sample is extruded from the mould by extruder	46
3.14	The samples is cured in the PVC tube covers and plastic	47
3.15	UCT samples is failed by the axial load	48
4.1	Chart of Penetration of cone versus moisture content	50
4.2	Soil particle distribution chart	51
4.3	Dry density versus moisture content (distilled water)	54
4.4	Dry density versus moisture content (0.41 M lime solution)	55
4.5	Dry density versus moisture content (0.68 M lime solution)	56
4.6	Dry density versus moisture content (1.35 M lime solution)	57
4.7	Axial stress versus strain (0 M lime solution)	62
4.8	Axial stress versus strain (0.41 M lime solution)	63
4.9	Axial stress versus strain (0.68M lime solution)	64
4.10	Axial stress versus strain (1.35 M lime solution)	65
4.11	Unconfined compressive strength versus curing period	68

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	DATA OF ATTERBERG LIMITS	71
В	DATA OF STANDARD PROCTOR COMPACTION TEST	72
C	DATA OF UNCONFINED COMPRESSION TEST	76

LIST OF SYMBOLS

SYMBOLS

 c_u undrained shear strength

 G_s specific gravity

m massV volume

CHAPTER I

INTRODUCTION

1.1 Background of Research

In geotechnical engineering, we always face the problem of soil where the soil cannot reach the required specification for some constructions. As an example, the bearing capacity of soft soils is always too weak to support the superstructure above it before any soil treatment done. Consequently, soil stabilization is a very important part to be done before the construction carried out.

Lime stabilization is one of the methods of soil stabilization. It was used in many fields in the world, especially in geotechnical and agriculture field since many years ago for changing the soil characteristics so that the soil become more suitable for certain purposes.

In this research, which titled "Determination of optimum concentration of lime solution for lime stabilization", we will look into the problems facing by using the solid

limes as soil stabilizer and how the liquefied limes can help us in solving these problems. Meanwhile, the optimum concentration of the lime solution need to be determined so that the effect of the soil stabilization is same or even better than what we have by using solid limes.

1.2 Objective

The research objectives are as below: -

- □ To understand the problems facing as dealing with the solid limes for soil stabilization
- □ To improve the workability and effectiveness of lime by using lime solution
- □ To determine the optimum concentration of lime solution for soil stabilization

1.3 Scope of study

Lime stabilization is more suitable and effective to be used in fine-grained soil, such as clay. The present study is focused on the study of the optimum lime solution to be used in soil stabilization in clay. The clay will be used is kaolin from Tapah, Perak. The lime to be used in this research is hydrated lime, since it is not too exothermic and harmful to our skin compared to quicklime. The resource of hydrated lime is Limetreat Private Limited, Pasir Gudang Johor.

REFERENCES

American Road Builders Association subcommittee (1991), "Lime Stabilization Construction", 10th Edition, National Lime Association, US

British Standard Institution (1990), "BS 1924, Methods of tests for Stabilized Soils", British Standard Institution, London, UK.

British Standard Institution (1990), "BS 1377, Methods of tests for Soils", British Standard Institution, London, UK.

British Standard Institution (1990), "BS 6463, Methods of tests for chemical stabilizers", British Standard Institution, London, UK.

Broms, B.B.(1984) Stabilization of soft clay with lime columns. Proceeding Seminar on Soil Improvement and Construction Techniques in Soft Ground, Nanyang Technological Institute, Singapore.

Graham Barnes (2000), "Soil Mechanic: Principles and Practice", 2nd Edition, Macmillan Press Ltd., London, UK. 416-439

Lawrence J. Sikora and Harry Francis, (2004) "Making Lime-stabilized Soil for use as a Compost pad", Arlington, VA.

M. Celal Tonoz et. al,(2003)"Effects of lime stabilization on engineering properties of expansive Ankara Clay", Hacettepe Iniversity, Department of Geological Engineering, Ankara, Turkey.

Ozler, J., M., and Jones, R., l. (1977). Factors affecting unconfined compressive strength of lime treated clay." Transp. Res.Rec. 641, Transp. Res.Board, Washington D.C., 17-23.

Rollings, M. P., and Rollings, R.s., (1996). "Geotechnical materials in construction", McGraw-Hill, New York.