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ABSTRACT 

 

 

 

 The use of inferentia l estimation model as a strategy to overcome the lack of 
efficient on- line measurement for product qualities is proposed.  This strategy makes 
use of easy to measure secondary variables, such as temperature and pressure to infer 
the value of non-measurable primary variables such as chemical composition.  As a 
case study, a fatty acid fractionation column from a local company was considered.  
The plant that was simulated using HYSYSTM simulator provided all the required 
process data throughout the study.  To provide the necessary process insights, 
analyses of dynamic behaviour were carried out.  Appropriate secondary 
measurements with significant relationships with the product composition were then 
identified for the construction of the inferential estimator within MATLAB® 
environment.  A number of models were considered but nested neural network partial 
least squares (NNPLS) model was found most proficient.  The model was tested on-
line and reasonable performances were obtained.  Further refinements were proposed 
to improve the accuracy and robustness of the estimator.  In particular, the issue of 
data scaling was elaborately addressed.  Following the success implementation of the 
estimator, inferential control of the product quality was examined.  In both regulatory 
and servo controls, better performances were obtained compared to the indirect 
strategy of controlling product composition using selected tray temperature.  This 
was further improved by employing cascade control.  The results obtained 
throughout this work have illustrated the potential of inferential control strategy and 
the capability of the hybrid neural network-PLS model as the process estimator.  This 
should therefore serve as an alternative solution to the lack of measurement in 
chemical process industry.  The model developed from the simulation stage is 
specified to a particular case and it should be verified against the actual process 
before practical implementation. 
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ABSTRAK 

 

 

 

 Penggunaan model anggaran taabir sebagai satu strategi untuk menyelesaikan 
masalah pengukuran kualiti produk secara dalam talian yang berkesan telah 
dikemukakan.  Strategi ini menggunakan pembolehubah sekunder yang mudah 
diukur, seperti suhu dan tekanan untuk meramal nilai pembolehubah utama yang 
tidak dapat diukur seperti komposisi produk.  Sebagai kajian kes, sebuah turus 
pemecahan asid lelemak dari industri tempatan telah digunakan.  Loji yang telah 
diselaku dengan menggunakan perisian HYSYSTM digunakan untuk membekal 
semua data proses yang diperlukan dalam kajian ini.  Untuk memahami proses 
tersebut dengan lebih mendalam, analisis sambutan dinamik telah dilaksanakan.  
Pembolehubah sekunder yang berhubung rapat dengan komposisi produk telah 
dikenalpasti bagi tujuan pembangunan model anggaran taabir yang dilakukan dengan 
perisian MATLAB®.  Penggunaan beberapa model telah dinilai tetapi model 
rangkaian saraf kuasa dua terkecil separa bergelung didapati paling berkesan.  Model 
tersebut diuji secara dalam talian dan prestasi yang munasabah telah diperolehi.  
Beberapa pembaikkan telah dikemukakan untuk meningkatkan kejituan dan 
ketangkasan model anggaran.  Secara khusus, isu penskalaan data telah dikaji dengan 
mendalam.  Ekoran dari kejayaan perlaksanan model anggaran itu, kawalan taabir 
kandungan produk telah diuji.  Dalam kedua-dua masalah gangguan dan servo, 
prestasi yang lebih memuaskan telah dicapai berbanding dengan strategi kawalan 
kandungan produk secara tidak langsung yang menggunakan suhu dulang.  Prestasi 
tersebut seterusnya dipertingkatkan dengan menggunakan kawalan lata.  Keputusan 
yang diperolehi dalam penyelidikan ini telah menunjukkan potensi strategi kawalan 
taabir dan keupayaan model hibrid rangkaian saraf kuasa dua terkecil separa sebagai 
penganggar proses.  Kaedah ini seharusnya mampu menjadi salah satu daripada 
penyelesaian kepada kekurangan alat pengukuran dalam industri proses kimia.  
Model yang dibina daripada tahap perselakuan adalah terhad kepada kes yang 
tertentu dan ia harus dinilai dengan process sebenar sebelum diamalkan secara 
praktikal. 
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E  - Residue matrix of X blocks in PLS    

F  -  Residue matrix of Y blocks in PLS    

f  - Residual matrix of inner PLS 

gak  - Loading scores of e-block in inner PLS 

hak  - Loading scores of Z-block in inner PLS 

k  - Last dimension in the inner PLS  

Kc   - Controller gain 

Kp  - Steady state gain 

N  - Non-linear function in NNPLS     

p  - Input loading factors matrix in PLS    

q  - Output loading factors matrix in PLS    

rak   - Latent scores of e-block in inner PLS 

s  - Column matrix in QPLS 

sak  - Latent scores of Z-block in inner PLS 

xs   - Standard deviation 

t  - Input latent scores matrix in PLS     



 xviii 

ts  - Settling time 

u  -  Output latent scores matrix in PLS  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Motivation of Study 

 

Stringent product specifications, stiff competition among manufacturers and 

increasingly strict regulation from local authority in the face of full capacity 

operation with zero accidents and emissions have forced many existing plants to 

revamp their existing control system.  More advanced control schemes have been 

introduced, and although small in numbers, real-time optimisations have also been 

implemented. 

 

Despite these successful implementations, many issues remained as 

hindrances to efficient process control.  For example, the success in the 

implementation of any optimisation scheme requires adequate performance of all 

control loops.  This is however, sometimes hampered by two issues.  The first is 

related to inadequacy of conventional controllers used since chemical process 

dynamics are typically non-linear whilst the controllers are based on linear theory.  

The second issue is associated with process measurements, the accuracy of which is 

a prerequisite to successful process control. 

 

Since measurement devices are one of the main factors in achieving effective 

process control, selection of appropriate sensors and their location should be properly 

considered.  However, not all variables in a process plant are readily to be measured 

on- line.  Product quality variables such as chemical composition and molecular 



 2 

weight distribution of polymer are rarely available on-line, and are usually obtained 

by laboratory sample analyses.  This is usually performed at long intervals and is 

therefore not practical to be used for process control. 

 

Over the years, various on- line measurement devices have been developed.  

However, many of these on- line devices are still suffering from problems due to the 

availability, reliability, complexity and large delays.  For example, on- line gas 

chromatograph is a common instrumentation for the on- line measurements of 

product compositions.  However, in many applications this measurement device is 

not reliable enough to be used for on-line control due to low sampling rate and 

sometimes inconsistency of results.  High operating and maintenance costs add to the 

disadvantages of such implementations.  For some quality variables, existing 

analytical tools used are simply unavailable for on-line applications.  Hence, the 

development of inferential estimation and control has been advocated as one of the 

alternative solution to deal with measurement difficulties. 

 

 

 

1.2 Problem Statement 

 

A fatty acids fractionation column from a local industry is faced with the 

product compositions control problems.  Currently, indirect control of product 

compositions is achieved by controlling temperature at selected location in the 

column.  At times, this control scheme cannot cope with disturbances and process 

uncertainties in the plant.  This scenario has created some difficulties in the 

composition control and occasionally, off-specification products have been produced.  

 

This work is proposed to untangle some of these difficulties.  An inferential 

model, which is built based on partial least squares (PLS) regression is employed for 

estimating the product composition in the light-cut column to facilitate process 

control. 

 

 

 



 3 

1.3 Objective and Scope of Work 

 

The aim of this work is to develop an inferential model using PLS modelling 

approach and to investigate its application in composition control.  The scopes of the 

study are as follows. 

 

i. Dynamic simulation and analysis of a fatty acid fractionation column 

using HYSYS™ process simulator. 

ii. Development of a base-case inferential model using PLS modelling 

approach in MATLAB® environment. 

iii. Improving the inferential model using a modified PLS model, namely 

nested PLS model. 

iv. Development of inferential control strategy to regulate the product 

composition using the established estimation model by linking both 

software packages using DDE interface. 

 

 

 

1.4 Contribution of the Work 

 

Successful development of the inferential estimator using PLS modelling 

approach is the main contribution of this work.  Dealing with the issue of on- line 

implementation of the inferential model, on- line post-processing or rescaling of the 

predicted values was solved using polynomial regression method.  After several 

refinements, the inferential estimator was therefore able to produce predictions with 

reasonable accuracy under various operating conditions.  The work has also 

demonstrated the use of neural networks in a hybrid PLS modelling structure as a 

means of extending the PLS model capability to nonlinear process estimation. 

 

Another contribution of this work is on- line monitoring and controlling of the 

product composition of a fatty acid fractionation in the simulation platform using the 

inferential model.  Two inferential configurations were investigated in this work and 

the inferential cascade control showed better performance in both regulator and servo 

control.    
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1.5 Organisation of the Thesis 

 

The thesis is organised as follows.  Chapter 2 includes literature review and 

some theoretical background about inferential estimation and control.  Previous 

development and application of PLS-based models are reviewed.  The theory and 

implementation requirements for the proposed method are also discussed.  Chapter 3 

commences with the description of the selected case study.  This is followed by 

relevant analysis for inferential model development.  Chapter 4 then elaborates the 

development of process estimation model and some proposed improvements to the 

model.  Chapter 5 demonstrates the application of inferential model in process 

control.  The thesis is then concluded with the overall findings and some 

recommendations for future work. 
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