LIFE CYCLE COST ANALYSIS OF A FLOATING PRODUCTION STORAGE OFFLOADING VESSEL

MOHD AKMAL BIN ABU HASSAN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical – Marine Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2013

To my beloved wife Intan Wirdati binti Suhaimi and my children on their sincere prayers, understanding and full support.

ACKNOWLEDGEMENT

بسم الله الرحمن الرحيم

My deepest gratitude to Allah SWT for giving me this blessed opportunity to undertake this journey of knowledge.

Special thanks to my supervisor, Dr. Muhammad Pauzi Abdul Ghani of Faculty of Mechanical Engineering, Universiti Teknologi Malaysia for his time and guidance given until the completion of this thesis.

I would also like to take this opportunity to express my gratitude to the management of SBM Offshore for the support given to me.

There are no words that could be expressed to represent my deepest appreciation to my beloved wife and family for their full support and encouragement.

Last but not least, my sincere gratitude to my fellow course mates, colleagues and friends who have given me great support to complete this undertaking.

ABSTRACT

The focus of this study is to understand the essential characteristics of various lifecycle cost methodologies and tools available. Life cycle cost (LCC) analysis is summarized as an economics model for evaluating the total cost of ownership of an asset. In combination with the technical aspects of a Floating, Production, Storage and Offloading (FPSO) vessel, the aim of this study is to develop a lifecycle cost estimation framework for an FPSO as per the problem statement discussed in Section 1.2. Various conceptual lifecycle cost models were reviewed with emphasis on the lifecycle stages and the correlation to the specific lifecycle activities assessed. Consequently, a standard conceptual life cycle costing model and its cost breakdown structure were developed and integrated into a proposed LCC framework for an FPSO. The main elements of the lifecycle cost model are the capital, operating and salvage expenditure. The breakdown of the capital expenditure into several key areas made this LCC model distinctive. Following the development of a lifecycle cost model is the application of the framework to a high level cost estimation case study. Following that is the identification of the critical factors that influence the FPSO economic evaluation criteria through a sensitivity analysis of the LCC model followed by the discussion of results and the findings presented. The results of the LCCA identified that the main cost drivers of the FPSO are the topsides capital expenditure and the operating cost. The discount rate used in the LCCA has also significant impacts on the net present value (NPV) of the LCCA. Key areas for future work were identified based on the consequent research findings. The deployment of the findings of this research within the industry could offer various strategic benefits that come with the formalization of the life cycle cost framework.

ABSTRAK

Tumpuan kajian ini bertujuan untuk memahami ciri-ciri penting dalam pelbagai metodologi kos kitaran hayat dan kaedah yang sedia ada. Life cycle cost (LCC) analisis dirumuskan sebagai model ekonomi untuk menilai jumlah kos pemilikan aset. Digabungkan dengan aspek-aspek teknikal sebuah kapal *Floating*, Production, Storage and Offloading (FPSO), tujuan kajian ini adalah untuk membangunkan satu rangka kerja anggaran kos kitaran hayat bagi FPSO seperti yang dibincangkan dalam permasalahan kajian Seksyen 1.2. Pelbagai model kos kitaran konsep telah dikaji semula dengan penekanan kepada peringkat kitaran hayat dan juga pertalian dengan aktiviti kitaran yang spesifik. Seterusnya, satu konsep kos kitaran hidup model yang standard bersama struktur pecahan kos telah dibangunkan dan disepadukan ke dalam cadangan rangka kerja LCC FPSO. Unsur-unsur utama model kos kitaran hayat adalah perbelanjaan modal, kos operasi dan salvage. Pecahan perbelanjaan modal ke beberapa bidang utama menjadikan model LCC ini tersendiri dari kajian-kajian yang terdahulu. Berikutan pembangunan model kos kitaran hayat, langkah seterusnya adalah penggunaan rangka kerja tersebut ke atas suatu kajian kes peringkat tinggi. Berikutan itu adalah langkah mengenal pasti faktor kritikal yang mempengaruhi kriteria penilaian ekonomi FPSO melalui kajian sensitiviti model LCC diikuti dengan perbincangan mengenai keputusan dan pembentangan penemuan. Keputusan analisis kos kitaran hayat telah mengenal pasti bahawa pemacu kos utama FPSO adalah perbelanjaan modal topsides dan kos operasi. Kadar diskaun yang digunakan dalam analisis kos kitaran hayat juga mempunyai impak yang besar ke atas net present value (NPV) analisis LCC. Bidang utama untuk kajian masa depan telah dikenal pasti berdasarkan penemuan penyelidikan. Pelaksanaan hasil kajian ini di dalam industri boleh menawarkan pelbagai manfaat strategik yang timbul selaras dengan formalisasi rangka kerja LCC tersebut.

TABLE OF CONTENTS

CHAPTER TITLE

1

PAGE

9

10

DECLARATION	ii	
DEDICATION	iii	
ACKNOWLEDGEMENTS	iv	
ABSTRACT	v	
ABSTRAK	vi	
TABLE OF CONTENTS	vii	
LIST OF TABLES	xii	
LIST OF FIGURES		
LIST OF ABBREVIATIONS		
LIST OF SYMBOLS		
ΙΝΤΡΟΟΓΙΟΤΙΟΝ	1	
INTRODUCTION	1	
1.1 Background	1 2	
 1.1 Background 1.1.1 Floating, Production, Storage and Offloading 	1 2 2	
 1.1 Background 1.1.1 Floating, Production, Storage and Offloading 1.1.2 Life Cycle Cost Analysis 	1 2 2 7	
 1.1 Background 1.1.1 Floating, Production, Storage and Offloading 1.1.2 Life Cycle Cost Analysis 1.2 Problem Statement 	1 2 2 7 8	
 1.1 Background 1.1.1 Floating, Production, Storage and Offloading 1.1.2 Life Cycle Cost Analysis 1.2 Problem Statement 1.3 Research Objectives 	1 2 2 7 8 8	

1.6 Significance of Findings

1.5 Research Scope

2	LITERATURE REVIEW	11

2.1 Introduction 11

2.2	Floating Production Storage Offloading 11					
2.3	FPSO Cost Elements					
2.4	Life Cycle Cost Analysis					
2.5	Lifecyc	le Cost Analysis Models	20			
2.6	Core St	ages of Lifecycle Cost Analysis	27			
2.7	Definiti	ons	29			
2.8	Main P	urpose of Lifecycle Cost Analysis	31			
2.9	Scope of	of Lifecycle Cost Analysis	32			
2.10	Period	of Analysis	35			
2.11	Metho	ds of Economic Evaluation	37			
	2.11.1	Net Present Value (NPV)	41			
	2.11.2	Net Present Cost (NPC)	42			
	2.11.3	Payback Period (PB)	42			
	2.11.4	Net Savings (NS) or Net Benefit (NB)	42			
	2.11.5	Savings on Investment Ratio (SIR)	43			
	2.11.6	Internal Rate of Return (IRR)	43			
	2.11.7	Adjusted Internal Rate of Return (AIRR)	43			
	2.11.8	Annual Equivalent Value (AEV)	43			
	2.11.9	Cost per Standard Barrel of Oil	44			
	2.11.10	Taxation Issues	45			
2.12	Asset	Requirements	45			
	2.12.1	Purpose	45			
	2.12.2	Functionality	45			
	2.12.3	Key Physical Characteristics	46			
	2.12.4	Project Scope	47			
	2.12.5	Project Constraints	48			
	2.12.6	Project Budget	49			
	2.12.7	Project Schedule and Execution	49			
	2.12.8	Intangible Considerations	50			
2.13	Cost a	nd Time Data Assembly	50			
	2.13.1	Purpose	50			
	2.13.2	Relevant Cost	51			
	2.13.3	Cost Classification	53			

	2.13.4	Time I	Profile	54
	2.13.5	Data S	Source	54
2.14	Econor	mic Eval	uation	55
	2.14.1	Purpos	se	55
	2.14.2	Softwa	are Tool	55
	2.14.3	Lifecy	cle Cost Modeling Process	56
2.15	Sensiti	vity Ana	lysis	57
	2.15.1	Purpos	se	57
	2.15.2	Sensiti	ivity Analysis Framework	57
2.16	Result	s Interpre	etation and Analysis	58
	2.16.1	Purpos	se	58
	2.16.2	Forma	t and Extent of Analysis	58
	2.16.3	Analys	sis and Interpretation of Results	60
	2.16.4	Judgm	ent	60
ME	THODO	LOGY		62
3.1	Introduc	ction		62
3.2	Data Co	ollection		64
	3.2.1	Literatu	ire Sources	64
	3.2.2	Expert 1	Interviews	65
3.3	Concept	tual Lifed	cycle Costing Model	66
	3.3.1 (Capital E	xpenditure Cost	66
	3	.3.1.1	Vessel Acquisition	67
	3	3.3.1.2	Existing Vessel versus Newbuild	67
	3	.3.1.3	Steel Renewal	67
	3	3.3.1.4 V	Vessel Refurbishment and Conversion	70
	3	3.3.1.5	Mooring Equipment	79
	3	3.3.1.6	Topsides Equipment	81
	3	3.3.1.7	Project Execution	83
	3	.3.1.8	Insurance	84
	3	.3.1.9	Classification	84
	3	3.1.10	Finance and Legal	85
	3	.3.1.11	Installation	85

3

3.3.2	Operating Expenditure	86
3.3.3	Salvage	89
3.3.4	Discount Rate	91
3.3.5	Sensitivity Analysis	91

4 RESULTS

4.1	Introdu	uction		92
4.2	Methodology			
4.3	Main I	Main Purpose		
4.4	Scope			93
4.5	Period	of Analys	sis	93
4.6	Metho	d of Econ	omic Evaluation	94
4.7	Project	t Requirer	nents	94
	4.7.1	Field Pa	rameters	94
	4.7.2	FPSO Pa	arameters	95
	4.7.3	LCCA P	arameters	95
4.8	Cost E	stimation		95
	4.8.1	Capital I	Expenditure	95
		4.8.1.1	Vessel Acquisition	96
		4.8.1.2	Steel Renewal	96
		4.8.1.3	Vessel Refurbishment and	97
			Conversion	
		4.8.1.4	Topsides	98
		4.8.1.5	Mooring System	98
		4.8.1.6	Total Asset Cost	99
		4.8.1.7	Project Execution	99
		4.8.1.8	Insurance	99
		4.8.1.9	Classification	100
		4.8.1.10	Finance and Legal	100
		4.8.1.11	Installation	100
		4.8.1.12	Total Capital Expenditure	101
	4.8.2	Operatin	g Expenditure	101
	4.8.3	Salvage	Cost	104

			4.8.3.1	Residual Cost	1	04
			4.8.3.2	Decommissioning Cost	1	04
			4.8.3.3	Total Salvage Cost	1	05
	4.9	Econo	mic Evalı	ation	1	05
		4.9.1	Net Pres	sent Value	1	05
		4.9.2	Cost per	r Standard Barrel of Oil	1	06
	4.10	Reven	nue		1	09
	4.11	Sensit	ivity Ana	lysis	1	10
5	DISC	CUSSI	ON		1	.15
	5.1	Introdu	uction		1	15
	5.2	Discus	sion of R	esearch Findings	1	15
	5.3	Future	Work		1	19
6	CON	ICLUS	ION		1	.20

REFERENCES

124

LIST OF TABLES

TABLE NO.	TITLE			
2.1	VLCC Tanker Average Sale Price (source: Biasotto et al, 2005)			
2.2	LCCA Core Stages	28		
2.3	LCCA Definitions	29		
2.4	Definitions of Life Terminology			
2.5	Effect of Discount Rate			
2.6	Key Factors of Discount Rate Selection			
2.7	Generic Cost Classification	51		
3.1	Comparison of Topsides Equipment Weight and Characteristics (SBM)	82		
4.1	Operational Expenditure	103		
4.2	LCCA Economic Evaluation	108		

LIST OF FIGURES

FIGURE NO.	TITLE				
3.1	Flowchart of Research Methodology	63			
3.2	Decommissioning Cost Breakdown	90			
4.1	Typical Operating Expenditure Breakdown	102			
4.2	NPV vs. Discount Rate	110			
4.3	NPV vs. Analysis Period	111			
4.4	NPV vs. Conversion Cost	112			
4.5	NPV vs. Topsides Cost	112			
4.6	NPV vs. Operating Cost	113			
4.7	Spider Diagram - Comparison of NPV and Input Variables	114			

LIST OF ABBREVIATIONS

AC	-	Air Conditioning
AEV	-	Annual Equivalent Value
AHU	-	Air Handling Unit
AIRR	-	Adjusted Internal Rate of Return
BOA	-	Bill of Activities
BOM	-	Bill of Material
CALM	-	Catenary Anchor Leg Mooring
CAPEX	-	Capital Expenditure
CBS	-	Cost Breakdown System
CCR	-	Central Control Room
CCTV	-	Closed Circuit Television
CER	-	Cost Estimation Relationship
COPT	-	Cargo Oil Pump Turbine
COW	-	Crude Oil Washing
DOE	-	Department of Energy
DP	-	Dynamic Positioning
E&I	-	Electrical & Instrument
ECR	-	Engine Control Room
EU	-	European Union
FEMP	-	Federal Energy Management Program
FPSO	-	Floating Production Storage Offloading
FSO	-	Floating Storage Offloading
GMDSS	-	Global Maritime Distress and Safety System
HFO	-	Heavy Fuel Oil
HOSCO	-	Hebei Ocean Shipping Company
HSE	-	Health, Safety & Environment

HVAC	-	Heating, Ventilation & Air Conditioning
ICPP	-	Impressed Current Cathodic Protection
IG	-	Inert Gas
IMO	-	International Maritime Organization
INMARSAT	-	International Maritime Satellite Organization
IRR	-	Internal Rate of Return
ISO	-	International Standards Organization
ISPS	-	International Ship and Port Facility Security
LCCA	-	Life Cycle Cost Analysis
LAN	-	Local Area Network
MGO	-	Marine Gas Oil
NB	-	Net Benefit
NIST	-	National Institute of Standards and Technology
NPC	-	Net Present Cost
NS	-	Net Saving
OOL	-	Oil Offloading Line
OP	-	Operation Profile
OPEX	-	Operating Expenditure
P&I	-	Protection & Indemnity
P/V	-	Pressure / vacuum
PABX	-	Private Automatic Branch Exchange
PAGA	-	Public Address/General Alarm
PB	-	Payback
POB	-	Personnel on Board
PV	-	Present Value
ROI	-	Return on Investment
SBM	-	Single Buoy Mooring
SCCS	-	Standard Cost Coding System
SIR	-	Saving to Investment Ratio
SURF	-	Subsea, Umbilical Riser and Flowline
TEG	-	Triethylene Glycol
TLP	-	Tension Leg Platform
UPS	-	Uninterruptible Power Supply

UWILD	-	Underwater Inspection in Lieu of Dry-docking
VELPA	-	Vertically Loaded Plate Anchor
VLCC	-	Very Large Crude Carrier
VSAT	-	Very Small Aperture Terminal
WBS	-	Work Breakdown System

LIST OF SYMBOLS

C _{II-1}	-	Acquisition or procurement cost
C _{II-2}	-	Initial logistic cost
C _{II-3}	-	Recurring cost
C _{III-1}	-	Research and development cost
C _{III-2}	-	Cost of associated systems
C _{III-3}	-	Investment cost
C _{III-4}	-	Termination cost
C _{III-5}	-	Operating and support cost
C_{VI-1}	-	Research and development cost
C _{VI-2}	-	Investment cost
C _{VI-3}	-	Operating and support cost
C_{ADF}	-	Activity definition
C_{ADV}	-	Activity driver
Ccapex	-	Capital expenditure cost
C_{CDV}	-	Cost driver
C _{cls}	-	Classification cost
C_{comm}	-	Communication cost
C_{cons}	-	Consumables cost
C_{conv}	-	Conversion cost
C_{cp}	-	Conceptual phase cost
C _{ctrg}	-	Catering cost
C_{dcm}	-	Decommissioning cost
C_{demo}	-	Demolition cost
C_{dp}	-	Definition phase cost
C_{fc}	-	Fuel cost
C_{fl}	_	Finance & legal cost

xviii

CIA	-	Initial acquisition cost
Cins	-	Insurance cost
CIS	-	Initial spares cost
Cistl	-	Installation cost
$C_{l/o}$	-	Lube oil cost
Clbr	-	Labor cost
Clfext	-	Life extension cost
C_{log}	-	Logistic cost
C_M	-	Maintenance cost
C _{maint}	-	Maintenance and repair cost
C _{me}	-	Mooring equipment cost
C_{mh}	-	Maintenance healthcare cost
C_{mo}	-	Major overhaul cost
C _{mr}	-	Major repair cost
C_{nb}	-	Newbuild vessel cost
C_{nm}	-	Normal maintenance cost
C _{nr}	-	Normal repair cost
Copex	-	Operating expenditure cost
Cops	-	Operating cost
Cops	-	Operational phase cost
Cos	-	Operation and support cost
Cov	-	Overhaul cost
C _{pc}	-	Production and construction cost
C _{pe}	-	Project execution cost
C _{pp}	-	Procurement phase cost
C _{rc}	-	Vessel refurbishment & conversion cost
C _{RD}	-	Resource driver
C _{rd}	-	Research and development cost
Cre	-	Rental equipment cost
CriskEX_A	-	Accident risk expenditure
C _{riskEX_F}	-	Failure risk expenditure
C _{rpr}	-	Repair cost
Cr _{sdl}	_	Residual cost

C _{rt}	-	Retirement and disposal cost
C_{sb}	-	Shore base cost
Cscrp	-	Scrap cost
C_{slv}	-	Salvage cost
C_{spr}	-	Spares cost
C _{sr}	-	Vessel steel renewal cost
Cte	-	Topsides equipment cost
Ctl	-	Tool cost
C _{trn}	-	Transport cost
C _{trv}	-	Travel cost
C_{va}	-	Vessel acquisition cost
Е	-	Energy cost
Ι	-	Investment cost
LCC	-	Lifecycle cost
NRC	-	Operating expenditure cost
OM&R	-	Non-fuel operating, maintenance & repair cost
RC	-	Capital expenditure cost
R _{EPL}	-	Capital replacement cost
R _{ES}	-	Residual value less disposal cost
RI	-	Revenue impact
Wa	-	Water cost

CHAPTER 1

INTRODUCTION

Oil is one of the major if not the most important element of the global economy. Its uses are widespread throughout the economy primarily as a source of energy. The global consumption is estimated to be 30 billion of barrels annually and is booming each year. Oil is also used as raw material for various petrochemical industries, pharmaceuticals, solvents, fertilizers, pesticides, and plastics.

The earliest onshore oil industry was started around the 8th century. The oil was used for producing tar to pave the streets of Baghdad. Since then, man has expanded the search from oil from land to offshore. Offshore production first began in the late 1940s. In 1947, Kerr-McGee Corporation drilled the first well from a fixed platform offshore out-of-sight of land (Chakrabarti, 2005). The ever increasing growth rate in oil demand has led the industry towards offshore oilfields in deeper waters. However, there is a limit to the water depth where it is economically feasible to install a fixed oil platform. Depending on the field reserves, the water depth limit for fixed platform is in the region of 300 meters and in the range of 200 km offshore. The limits are mainly due to the structural and infrastructure constraints.

Fixed offshore platforms soon evolve to floating offshore platforms in the 1970s. The first FPSO was deployed on the Castellon field in the Spanish Mediterranean by Shell in 1977 (Paik et al, 2007). The FPSO was designed and built by Single Buoy Moorings (SBM). Consequently, FPSO is the preferred solution for deep water oilfields due to technological and economic reasons.

1.1. Background

1.1.1. Floating, Production, Storage and Offloading

The acronym FPSO stands for Floating, Production, Storage and Offloading. Its acronym also defines its main functions. The functions of an FPSO (Neto et al, 2001) are:

- i. To process oil and gas through its onboard process facilities.
- ii. Import oil and gas through the subsea riser system.
- iii. Export oil, gas and water through its riser and offloading system.
- iv. Storage of oil on board via the cargo tanks.
- v. Floating and station keeping through its mooring system.

The FPSO is basically floating and moored offshore in water depths ranging from 200 meters to deep water of more than 1500 meters. The mooring system can either be spread moored or allowed to free weathervane through a turret system. The turret system can either be an internal or external system with the options of permanent or disconnection in case of iceberg or storm. The primary role of an FPSO is the production of oil from crude oil extracted from subsea wells. Crude oil is a mixture of hydrocarbons in various states from almost solid to a gaseous state. Initial crude oil is often mixed with gas, water and sand in an emulsified form. The oil will be separated from the gas and produced water (*produced water* is a term used in the oil industry to describe water that is produced along with the oil and gas) and it is usually routed to a coalescer before being metered and stored in the cargo hull.

The produced water is often routed to a hydrocyclone to remove entrained oil and solids and then either re-injected into the reservoir or dumped overboard depending on the circumstances and cleanliness of the water. The associated gas is initially dubbed "wet gas" as it is saturated with water and liquid alkanes. The gas is typically routed through scrubbers, compressors and coolers which will remove the bulk of the liquids. This "dry gas" may be exported, re-injected into the reservoir, used for gas lift, flared or used as fuel for the FPSO power generators.

Apart from FPSO, there are other floating solutions which have oil production facilities but not the storage capability. These are the Tension Leg Platform (TLP), Semi-submersible and Spar.

A Tension Leg Platform (TLP) is a buoyant platform held in place by a mooring system. The TLP concept is similar to conventional fixed platforms except that the platform is maintained on location through the use of moorings held in tension by the buoyancy of the hull. The mooring system is a set of tension legs or tendons attached to the platform and connected to a template or foundation on the seafloor. The template is held in place by piles driven into the seafloor. This method dampens the vertical motions of the platform, but allows for horizontal movements. The topside facilities (processing facilities, pipelines, and surface trees) of the TLP and most of the daily operations are the same as for a conventional fixed platform and FPSO.

A semi-submersible is a floating structure with good stability and sea keeping characteristics. The semi-submersible vessel design is commonly used in a number of specific offshore roles such as for offshore drilling rigs, safety vessels, oil production platforms and heavy lift cranes. A semi-submersible obtains its buoyancy from ballasted, watertight pontoons located below the ocean surface and wave action. The operating deck can be located high above the sea level due to the good stability of the semi-submersible, and therefore the operating deck is kept well away from the waves. Structural columns connect the pontoons and operating deck. With its hull structure submerged at a deep draft, the semi-submersible is less affected by wave loadings than a normal ship. With a small water-plane area, however, the semisubmersible is sensitive to load changes, and therefore must be carefully trimmed to maintain stability. The semi-submersible is moored by a conventional anchor spread mooring system.

A spar is a deep-draft floating caisson, which is a hollow cylindrical structure similar to a very large buoy. The spar relies on a conventional anchor spread mooring system for its station keeping. Most of the structure is submerged underwater. Historically, spars were used as marker buoys and for gathering oceanographic data. At present, the spar design is now being used for drilling, production or for both functions. The distinctive feature of a spar is its deep-draft hull, which produces very favorable motion characteristics compared to other floating concepts. Low motions and a protected center-well also provide an excellent configuration for deepwater operations up to 3000 meters of water depth.

FPSO has a typical ship-shaped hull configuration. This is inherent from the physical characteristics of its original donor tanker vessel. The current trend of FPSO is towards conversion of former trading oil tankers. Recent development in design has introduced cylindrical shape FPSO design which eliminates the requirement for a weathervaning system. Most FPSOs are converted from ocean going tankers but some are fit for purpose new build hull.

The storage capacity of the FPSO is dependent on the size of the vessel. A typical FPSO converted from a Very Large Crude Carrier (VLCC) is able to store more than 1 million barrels of oil. There is also particular demand for FSOs which is basically an FPSO without the production capacity.

The offloading operations to the shuttle tankers can be done through several means such as tandem offloading, side by side and via Oil offloading lines (OOL) to a Catenary Anchor Leg Mooring (CALM) buoy. The main advantage of this offloading method is that no pipeline infrastructure is required which can be very cost prohibitive especially in deep water.

The advantages of an FPSO are its simplicity, versatility, mobility and flexibility. The simplicity of the FPSO concept is that it converts the hull from an existing tanker vessel. This enables short construction time, fast deployment and lower costs suitable for marginal field developments or harsh environments which otherwise would be economically not feasible. The FPSO provides its own storage capacity thus eliminating the need of any pipeline infrastructure. It is able to be located further offshore and it has wide deck areas to allow for higher capacity process and utility facilities. It has high load capacity and able to withstand the mooring and riser loads in severe environments. It is designed for up to 100 years storm conditions including damage conditions. The FPSO are inherently tanker vessel based design. There is an active market for used tanker vessels. Tanker vessels have huge payload capacity. Another safety aspect of the FPSO is that it can be designed to be disconnected from its mooring systems. This is critical in the wake of the Katrina storm which wreaked havoc to the offshore industry in the Gulf of Mexico. The FPSO industry is focused on marginal, low cost and fast track fields as the giant oil field discoveries of previous years are becoming scarcer. FPSO are less sensitive to water depth which adds to its versatility.

On the other hand, the FPSO has its drawbacks. It requires steel renewal and modifications within enclosed space. During operations, hot swap and hot work activities are often difficult. It needs to meet the stipulated class requirements. It also requires additional marine equipment and specialized crew thus incurring additional operating expenditure. It requires frequent offloading operations involving shuttle tankers. There is a high risk of environmental disaster in case of collision or accident due to its large storage capacity. The industry is rather fragmented due to its relatively young age. No standardization of equipment leads to higher cost. It requires subsea tieback to subsea trees which translates to higher well maintenance cost. Most often there are project cost overruns due to inexperienced or newcomer players and contributes to creating perceptions that the industry is of lest trustworthy.

The major elements of the FPSO are the mooring, topsides and hull components. The mooring system can either be a combination of external, internal, permanent, disconnectable, spread moored or dynamic positioning (DP) system. The Topsides modules typically consist of the process, utilities and living quarter module. The hull is typically double hulled and converted from an existing tanker vessel. The FPSO contract is divided into the bare boat and operations charter. The FPSO needs to be operated safely and efficiently. It requires a proper repair and maintenance regime. From time to time, it will undergo a series of class survey and inspection routines. At the end of its intended life it will be decommissioned and possibly relocated to another field.

1.1.2. Life Cycle Cost Analysis

The practice of lifecycle cost analysis has been introduced in the 1960s in the United States initially for the procurement of defense related assets (Emblemsvag, 2003). Consequently, the practice has been expanded to cover aspects of public expenditure such as buildings and highways in the late seventies (Dhillon, 2010). In the oil and gas industry, an international standard under the number of EN ISO 15663 (2006) was introduced to provide guidance on the application of a life cycle costing methodology.

Lifecycle is defined as the total cost of ownership from its acquisition and construction, through its operation and up to its end of its useful life. A more popular term for the period of lifecycle is from "cradle to grave".

The main objectives of LCCA are (Woodward, 1997):

- i. Effective assessment of all options for decision making.
- ii. Overall consideration of the significant impacts of all costs rather than only initial investment cost.
- iii. Assistance in the effective management of the asset throughout the lifecycle.
- iv. Making selection easier between different solutions.

One of the critical elements of an LCCA is cost. Cost is generally divided into several categories such as initial, operating, maintenance and decommissioning cost profiles. The established method for an economic evaluation of a given asset is the discounted cash flow approach. This takes into account the values of money either future or present which is determined by the discount rate.

1.2. Problem Statement

The typical approach of the FPSO industry is to assess the financial viability of any project on the basis of the lowest capital expenditure. Progress has been made in the oil and gas industry by the introduction of EN ISO 15663 (2006). This standard is aimed mainly on providing a general guideline for a lifecycle cost analysis for the whole industry. The issue at hand is the wide spectrum of the oil and gas industry ranging from upstream activities such as offshore drilling right down to the downstream activities such as oil refinery. Further work needs to be performed to detail out the specific cost elements for the various stages of the oil and gas industry specifically the FPSO industry. The key factor of performing a sound lifecycle cost analysis of an FPSO is mainly driven by the specific cost elements and the methodology of cost estimation. Consequently, this research is being proposed to address the development of a specific lifecycle cost estimating framework for an FPSO, identification of the critical factors that influence the FPSO economic evaluation criteria and further study of the identified critical factors.

1.3. Research Objectives

The main aim of this research is to present a comprehensive framework for the cost elements and cost estimation methodology for the lifecycle cost analysis of an FPSO.

To achieve the aim above, several objectives were defined below:

- i. Identify FPSO cost parameters and characteristics.
- ii. Identify various lifecycle cost methodologies and approaches.

- iii. Formation of conceptual lifecycle cost methodology and cost breakdown structure for an FPSO.
- iv. Identify high level cost drivers for an FPSO.
- v. Development of a lifecycle cost estimation framework for an FPSO.
- vi. Assessment of the framework with a case study.

1.4. Research Questions

The critical questions posed for this particular research:

- i. What is the specific breakdown of cost profiles of an FPSO LCCA?
- ii. What is the general context for the cost estimation approach of an FPSO LCCA?
- iii. What are the critical cost drivers?

1.5. Research Scope

The study will examine the specific cost profiles of an FPSO life cycle cost analysis derived from the general approaches presented in the existing available literature review. The derivation of the cost estimation approach will be discussed and analyzed. This study will also gather pertinent data related to the cost elements. Specific FPSO cost elements and estimation methodology will be the focus of this research. The study will be limited to the capital expenditure, operating, maintenance and salvage cost profiles of the FPSO.

1.6. Significance of Findings

This research will be a significant effort in the development of specific framework for lifecycle cost estimation for an FPSO and its relevant cost profiles. This study will also be beneficial to the decision makers when they employ the optimum approach particularly in different concepts related to the use of cost effective solutions. By understanding the needs of the industry and benefits of comprehensive lifecycle cost analysis, the interested parties can be assured of a competitive advantage. Moreover, this research will provide recommendations based on the identification of the FPSO critical cost drivers.

Furthermore, this research will be helpful to the FPSO industry and decision makers in informed decision making. It will also serve as a future reference for researchers on the subject of FPSO life cycle cost analysis. Importantly, this research will support the various stakeholders on concept selection, investment choice and operating strategy.

REFERENCES

- Alford G. Classification of FPSO. *Journal of Offshore Technology*. Vol. 4 No. 2. May 1996. pp. 17-20.
- 2. Australia Asset Management Collaborative Group (AAMCOG). *Life Cycle Cost Analysis (LCCA)*. Brisbane. 2008.
- Batavia R. Front-End Loading for Life Cycle Success. *Proceedings of the 2001* Offshore Technology Conference. 30 April – 3 May, 2001. Houston, Texas.
- Biasotto P., Bonniol V. and Cambos P. Selection of Trading Tankers for FPSO Conversion Projects. *Proceedings of the 2005 Offshore Technology Conference*. 2 – 5 May, 2005. Houston, Texas.
- Botelho D., Petrauskas C., Vannan M. and Mackey V. Life Cycle Cost Based Design Criteria for Gulf of Mexico Minimum Structures. *Proceedings of the 2000 Offshore Technology Conference*. 1 – 4 May, 2000. Houston, Texas.
- Boussabaine H. A. and Kirkham R. J. Whole Life Cycle Costing Risk and Risk Responses. Blackwell Publishing. 2004.
- Burman M., Lingg B., Villiger S., Enlund H. Hedlund-Astrom A. and Hellbratt S. E. Cost and Energy Assessment of a High Speed Ship. *Proceedings of the Second Conference on High Performance Yacht Design*. 14-16 February 2006. Auckland, New Zealand.
- Caprace J. D. and Rigo P. Multi-Criteria Decision Support for Cost Assessment Techniques in Shipbuilding Industry. *Proceedings of the 8th International Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT)*. 10 – 12 May, 2009. Budapest, Hungary.
- 9. Chakrabarti S. K. Handbook of Offshore Engineering. Elsevier. 2005.

- Christensen, P. N., Sparks, G. A. and Kostuk, K. J. A Method-Based Survey of Life Cycle Costing Pertinent to Infrastructure Design and Renewal. *Canadian Journal of Civil Engineering*. 2005. 32: 250-259.
- Cocodia E. Risk Based Fuzzy Modeling of Cost Estimating Relationships for Floating Structures. *Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering*. 15-20 June 2008. Estoril, Portugal.
- Cotty A. L. and Selhorst M. New Build Generic Large FPSO. *Proceedings of the* 2003 Offshore Technology Conference. 5 – 8 May, 2003. Houston, Texas.
- Datta P. P. and Roy R. Cost Modeling Techniques for Availability Type Service Support Contracts: a Literature Review and Empirical Study. *Proceedings of the 1st CIRP Industrial Product Service Systems (IPS2) Conference*.1-2 April 2009. Cranfield University, UK. pp. 216-223.
- 14. Dhillon B.S. Life Cycle Costing for Engineers. CRC Press. 2010.
- 15. Emblemsvag J. Life-Cycle Costing: Using Activity-Based Costing and Monte Carlo Methods to Manage Future Costs and Risks. John Wiley and Sons. 2003.
- Foster L.D., Hebert P.B., Nisbet W.J.R., Sabatini D.E., Bellegem B. V. and Faucheux D.P. Life Cycle Management for Gulf of Mexico Subsea Portfolio. *Proceedings of the 2001 Offshore Technology Conference*. 30 April–3 May 2001. Houston, Texas.
- Fuller, S. K. and Petersen S. R. Life Cycle Costing Manual for the Federal Energy Management Program. NIST Handbook 135. 1995 Edition. *National Institute of Standards and Technology*. US.
- Gluch P. and Baumann H. The Life Cycle Costing (LCC) Approach: A Conceptual Discussion of Its Usefulness for Environmental Decision Making. *Building and Environment 39*. Elsevier. 2004. pp. 571-580.
- Goldsmith R., Eriksen R., Childs M., Saucier B. and Deegan F. J. Lifecycle Cost of Deepwater Production Systems. *Proceedings of the 2001 Offshore Technology Conference*. 30 April–3 May 2001. Houston, Texas.
- Gratsos G. A. and Zachariadis P. Life Cycle Cost of Maintaining the Effectiveness of a Ship's Structure and Environmental Impact of Ship Design Parameters. Transaction Papers. Royal Institution of Naval Architects. 2005.

- 21. Hussein W. M. W. Status Development MY-LCID Malaysian Life Cycle Inventory Database. Proceedings of International Open Workshop - Worldwide efforts on LCA Databases. Ministry of Economy, Trade and Industry Japan. 8 February 2010.
- 22. International Organization for Standardization (2006). BS EN ISO 15663-1:2006 Petroleum and Natural Gas Industries — Life Cycle Costing Part 1-3. London: British Standards Institution.
- 23. Khaw T., Rawstron P. and Lagstrom K. A New Approach to the Design of Monohull FPSOs. *Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2005).* 12-17 June 2005. Halkidiki, Greece.
- 24. Langdon Davis Consulting. Life Cycle Costing (LCC) as a Contribution to Sustainable Construction: a Common Methodology. *Task Group 4: Life Cycle Costs in Construction*. Enterprise Publications. European Commission. 2007.
- 25. Langston, C.A. *Life-cost Approach to Building Evaluation*. University of New South Wales Press Ltd. Sydney, Australia. 2005.
- Lindholm A. and Suomala P. Present and Future of Life Cycle Costing: Reflections from Finnish Companies. *The Finnish Journal of Business Economics*. 2005. pp.282-292.
- 27. Nam K., Chang D., Chang K., Rhee T. and Lee IB. Methodology of Life Cycle Cost with Risk Expenditure for Offshore Process at Conceptual Design Stage. Energy 36. Elsevier. 2011. pp. 1554-1563.
- Neto T. G. and de Souza H. A. Conversion of Tankers into FPSOs and FSOs: Practical Design Experiences. *Proceedings of the 2001 Offshore Technology Conference*. 30 April–3 May 2001. Houston, Texas.
- 29. NORSOK. Standard Cost Coding System (SCCS). NORSOK Standard Z-014. 2002.
- 30. O'Neill L., Cole G. and Ronalds B. Development of a Decommissioning Cost Model for Australian Offshore Platforms. *Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2005).* 12-17 June 2005. Halkidiki, Greece.
- Beaubouef, B. (2010). Vessel, Rigs & Surface Systems. *Offshore Magazine*, December 2010, 24.

- OGP. *Floating Production Systems*. Briefing Paper. International Association of Oil & Gas Producers. 2002.
- 33. OLF. A Summary Report on FPSO Lessons Learned Gathered from 5 Norwegian FPSOs. Norwegian Oil Industry Association. 2002
- 34. Otegui J. E. and Orsini M. F. Converted FPSO's. Making a Worthwhile Conversion. Proceedings of the 2004 Deep Offshore Technology Conference. 30 November – 2 December 2004. New Orleans, Louisiana.
- 35. Ozbay K., Jawad D., Parker N. A. and Hussain S. Life Cycle Cost Analysis: State of the Practice vs State of the Art. *Proceedings of the 83rd Annual Meeting of the Transportation Research Board*. January 11-15, 2004. National Academy of Science, Washington D.C.
- Paik J. K. and Thayamballi A. K. Ship-Shaped Offshore Installations: Design, Building, and Operation, Cambridge University Press, 2007
- 37. Paszkiewicz T. and Langston C. A. Life Cycle Costing: Practice v Theory. Proceedings of AUBEA 2008 Conference. United New Zealand, Auckland. New Zealand. pp. 77-82.
- 38. Reyes M. C. T., Kaleff P., Fernandes A. C. and Ferreira D. A. S. Conversions vs. Newbuildings: General Arrangement and Strength Issues in FPSO Design. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2005). 12-17 June 2005. Halkidiki, Greece.
- 39. Rush C. and Roy R. Analysis of Cost Estimating Processes used within a Concurrent Engineering Environment throughout a Product Life Cycle. *Proceedings of 7th ISPE International Conference on Concurrent Engineering: Research and Applications*. 17 – 20 July 2000. Lyon, France. pp. 58-67
- 40. Terpstra T., d'Hautefeuille B. B. and MacMillan A. A. FPSO Design and Conversion: A Designer's Approach. *Proceedings of the 2001 Offshore Technology Conference*. 30 April–3 May 2001. Houston, Texas.
- Turan, O., Olcer A. I., Lazakis I., Rigo P. and Caprace J.D. Maintenance/Repair and Production Oriented Life Cycle Cost/Earning Model for Ship Structural Optimisation during Conceptual Design Stage. *Ships and Offshore Structures*. 2009. Vol. 4, No. 2. pp. 107–125.

- Tysseland B. E. Life Cycle Cost Based Procurement Decisions. *International Journal of Project Management*. Elsevier. May 2008. Volume 26, Issue 4, pp. 366–375.
- 43. UKOOA. FPSO Design Guidance Notes for UKCS Service. United Kingdom Offshore Operators Association. 2002.
- 44. Woodward D. G. Life Cycle Costing Theory, Information Acquisition and Application. *International Journal of Project Management*. Elsevier. 1997. Volume 15 Issue 6. pp. 335-344.
- 45. Wylie M. and Joynson J. Recent Trends in FPSO Design and Project Execution Applied to Leased Vessels. *Proceedings of the 2006 Offshore Technology Conference*. 1–4 May 2006. Houston, Texas.