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ABSTRACT 

 

 

 

 

  Monitoring and analysis of river water quality is an important element in the 

environmental monitoring policy and management. Fishing, tourism, drinking and 

most importantly domestic usage require an acceptable level of river water quality. 

The modeling of complex and nonlinear systems like river is difficult due to the 

presence of many variables and disturbance.  Usually, the dynamic of the problem is 

modeled using mathematical relationship. However, most of the time a model 

requires a lot of information and running its simulation needs a significant amount of 

time. This project attempts to avoid this process by approximating the problem using 

a type of Artificial Neural Networks (ANN), which is the Radial Basis Function 

Neural Networks (RBFNN) instead of commonly used ANN: the Multilayer 

Perceptron (MLP). RBFNN was assessed to forecast water quality in Muar River, 

Malaysia where historical and lagged data of water quality were used as input for the 

networks, and forecasting accuracy was evaluated by using Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (CC).  It was 

found that the RBFNN could be used effectively to predict one-day ahead of 

turbidity and aluminium value of Muar River. The RBF network produced slightly 

better results in forecasting with lower value of RMSE; 0.0394 and MAE; 0.0208 but 

higher value of CC; 0.5385 compared to MLP network for value of RMSE; 0.0435, 

MAE; 0.0230 and CC; 0.5213 in aluminium forecasting. The same observations were 

also found in turbidity forecasting where RBF network for value of RMSE; 40.3812, 

MAE; 25.8489 and CC; 0.6821 slightly better than MLP network for value of 

RMSE; 40.5804, MAE; 26.9558 and CC; 0.6453. RBF network processing time 

proved to be 77.9% to 80.9% faster than MLP network in forecasting aluminium and 

turbidity. 
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ABSTRAK 

 

 

 

 

 Pemantauan dan analisis kualiti air sungai adalah satu elemen penting dalam 

polisi pemantauan dan pengurusan alam sekitar. Memancing, rekreasi dan yang 

paling penting sebagai air minuman dan kegunaan domestik memerlukan tahap 

kualiti air tertentu. Permodelan dan kawalan sistem kompleks dan tidak linear seperti 

sungai adalah sukar disebabkan kehadiran banyak pembolehubah dan gangguan. 

Kebiasaannya, masalah ini dimodelkan menggunakan kaitan matematik. Tetapi 

kebanyakan model memerlukan maklumat yang banyak dari pelbagai bidang ilmu 

dan simulasinya memerlukan masa yang lama. Projek ini cuba mengelak kesukaran 

dan proses yang panjang ini dengan menganggar masalah ini menggunakan satu dari 

kaedah Rangkaian Neural Buatan iaitu Rangkaian Neural Fungsi Asas Jejarian 

(RBFNN) berbanding kaedah Perceptron Pelbagai Lapisan (MLP). Keupayaan 

RBFNN dinilai melalui ramalan kualiti air di Sungai Muar, Malaysia di mana data-

data kualiti air sebelum dan yang telah lepas, digunakan sebagai input untuk 

rangkaian-rangkaian ini dan ketepatan ramalan pula dinilai menggunakan Ralat 

Purata Punca Kuasa Dua (RMSE), Ralat Purata Mutlak (MAE) dan Pekali Kolerasi 

(CC). RBFNN didapati dapat digunakan untuk meramal dengan berkesan sehari ke 

depan nilai aluminium dan kekeruhan di Sungai Muar. Keputusan ramalan 

aluminium menggunakan rangkaian RBF menghasilkan ramalan yang agak baik 

dengan nilai RMSE; 0.0394, MAE; 0.0208 dan CC; 0.5213 yang lebih tinggi 

berbanding rangkaian MLP dengan nilai RMSE; 0.0435, MAE; 0.0230 dan lebih 

rendah nilai CC; 0.5213. Pemerhatian yang sama juga didapati bagi ramalan 

kekeruhan dimana rangkaian RBF menghasilkan nilai RMSE; 40.3812, MAE; 

25.8489 dan CC 0.6281 manakala rangkaian MLP menghasilkan RMSE; 40.5804, 

MAE; 26.9558 dan CC; 0.6453. Masa pemprosesan yang diambil untuk meramal 

nilai aluminium dan kekeruhan oleh rangkaian RBF terbukti lebih cepat 77.9% 

hingga 80.9% berbanding masa yang diambil oleh MLP. 
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CHAPTER 1 

 

 

 

 
INTRODUCTION 

 

 

 

 

1.1 Project Background 

 

 

Monitoring  and  analysis  of  river  water  quality  is  an  important  element  

in  the  global  environmental monitoring policy and management. The deterioration 

of river water quality has triggered the initiative of serious management efforts.  

Fishing, tourism and more importantly drinking and domestic usage require an 

acceptable level of river water quality.  

 

The modeling and control of complex and nonlinear systems, like rivers, is 

difficult due to the presence of many variables and disturbances.  Usually, the 

dynamics of the problem are modeled  using  mathematical  relationships;  however,  

most  of  the  times  these  models  require  a  lot  of information  from  various  

fields  of knowledge  that  formulating  a  realistic model is  difficult  and  running  

its simulation requires a significant amount of time. 

 

This project demonstrates the application of ANNs to model and predict the 

values of selected river water quality parameters that will be useful for early 

detection of pollution influx. 
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1.2 Problem Statement 

 

 

This project attempts to avoid this difficult and lengthy process by 

approximating the problem using Artificial Intelligence (AI). A different type of AI 

which is the RBFNN was used instead of commonly used Multilayer Perceptron 

(MLP) which is the RBFNN for real-time prediction of river water quality. The RBF 

were first used to design ANN by Broomhead and Lowe (1988) which offered 

several advantages compared to MLP and it is expected that the RBFNN can perform 

better than the MLP in terms of reducing the prediction error, consistent prediction 

result and allowing a continuous update of network parameters to allow for on-line 

application.   

 

 

 

 

1.3 Project Objectives 

 

 

The objective of this project is to identify and collect data related to river 

quality from reliable source. The data need to be analyzed and preprocessed before 

using for Radial Basis Function Neural Network (RBFNN) training. 

 

The second objective is to identify appropriate RBFNN structures and 

parameters to be used with the available data sets. These involve identifying the 

network’s input, output, size, activation function and number of centers. 

 

Next, the project objective is to develop appropriate training algorithm for 

RBFNN.  

 

Finally, the ability and performance of the RBFNN training algorithm in 

predicting water quality will be assessed. This involves using some portion of the 

data to validate the RBFNN based on the appropriate performance criteria. 
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 1.4 Scope of the Project 

 

 

The scope of this project includes collecting river water quality parameter 

data from reliable source. The data was then being pre-processed and analyzed. 

Parameters and input of water quality prediction was identified. Basic understanding 

of water quality parameters is vital besides correlation analysis between parameter 

for determining the input and parameter relation. 

 

The data was split into 3 partitions for training, testing and validation before 

it was used in the RBFNN. The RBFNN then was computed using MATLABTM 

RBFNN toolbox which is much easier but with limited settings of RBFNN compared 

to conventional source code writing. The RBFNN performance then was measured 

with two performance criterion: prediction error and processing time. 

 

The performances of RBFNN; prediction error and processing time then were 

compared commonly used ANN type which was the MLP.  

 

 

 

 
1.5 Academic Contributions 

 

 

The advantage of using RBFNN instead of commonly used ANN which is the 

MLP was proven in this project. RBFNN application in forecasting of water quality 

was proven with slightly lower error and produced more consistent results compared 

to MLP. Processing time of RBFNN also proved to be more superior to the 

processing time of MLP where RBFNN was 77.9% to 80% faster than MLP. 
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1.6 Organization of Thesis 

 

 

This thesis is divided into five chapters. The first chapter gives a general 

overview and introduction of the project.  Chapter Two covers the literature review 

on water quality, ANN and its application in water resource as well as existing 

methods and techniques.  Chapter Three presents the methodology of the project 

which consists of steps and process of project and description of each part of the 

process.  Chapter Four discusses and analyses the results obtained. Chapter Five 

includes suggestion for further enhancement of this project and conclusions. 
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of the time it require a lot of information from various fields of knowledge and 
running its simulation requires a significant amount of time. 
 The Radial Basis Function Neural Network, RBFNN has proved that it is a 
potential technique than can be used to forecast complex and nonlinear system of 
river. The results indicated that the RBFNN was an attractive alternative to forecast 
the water quality parameter and potentially to predict other water quality parameters. 
It has also proved the ability to produce consistent and robust result which is 
significant for real-time water quality forecasting. However, there are many more 
things that can be done to improve the efficiency of RBFNN forecasting efficiency as 
suggested in the recommendations below. 
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