FORECASTING MUAR RIVER WATER QUALITY USING RADIAL BASIS FUNCTION NEURAL NETWORK

MOHD RAZI BIN ABD JALAL

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2013

To my beloved mother, Fauziah Abdullah

My late father, Abd Jalal Abd Hamid

To my beloved grandmother, Sapiah Lisah

> To my supportive wife, Nor Azlin Halib

and my lovely daughters, Ummi Aqilah and Ummi Ajwa Safiyyah

For their Sacrifice, Encouragements and Blessing....

ACKNOWLEDGEMENT

The authors would like to express their gratitude to Universiti Teknologi Malaysia and the Ministry of Education (formerly known as Ministry of Higher Education) for providing the facilities and financial assistance to conduct this research. The authors also would like to thank to my supervisors, Dr.Shahrum Shah Bin Abdullah for his support and patience and to Syarikat Air Johor Holdings (SAJH) especially to Mr. Nur Firdaus Mohd Daud for providing raw water quality data. The authors would also like to thank reviewers for their valuable comments.

ABSTRACT

Monitoring and analysis of river water quality is an important element in the environmental monitoring policy and management. Fishing, tourism, drinking and most importantly domestic usage require an acceptable level of river water quality. The modeling of complex and nonlinear systems like river is difficult due to the presence of many variables and disturbance. Usually, the dynamic of the problem is modeled using mathematical relationship. However, most of the time a model requires a lot of information and running its simulation needs a significant amount of time. This project attempts to avoid this process by approximating the problem using a type of Artificial Neural Networks (ANN), which is the Radial Basis Function Neural Networks (RBFNN) instead of commonly used ANN: the Multilayer Perceptron (MLP). RBFNN was assessed to forecast water quality in Muar River, Malaysia where historical and lagged data of water quality were used as input for the networks, and forecasting accuracy was evaluated by using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (CC). It was found that the RBFNN could be used effectively to predict one-day ahead of turbidity and aluminium value of Muar River. The RBF network produced slightly better results in forecasting with lower value of RMSE; 0.0394 and MAE; 0.0208 but higher value of CC; 0.5385 compared to MLP network for value of RMSE; 0.0435, MAE; 0.0230 and CC; 0.5213 in aluminium forecasting. The same observations were also found in turbidity forecasting where RBF network for value of RMSE; 40.3812, MAE; 25.8489 and CC; 0.6821 slightly better than MLP network for value of RMSE; 40.5804, MAE; 26.9558 and CC; 0.6453. RBF network processing time proved to be 77.9% to 80.9% faster than MLP network in forecasting aluminium and turbidity.

ABSTRAK

Pemantauan dan analisis kualiti air sungai adalah satu elemen penting dalam polisi pemantauan dan pengurusan alam sekitar. Memancing, rekreasi dan yang paling penting sebagai air minuman dan kegunaan domestik memerlukan tahap kualiti air tertentu. Permodelan dan kawalan sistem kompleks dan tidak linear seperti sungai adalah sukar disebabkan kehadiran banyak pembolehubah dan gangguan. Kebiasaannya, masalah ini dimodelkan menggunakan kaitan matematik. Tetapi kebanyakan model memerlukan maklumat yang banyak dari pelbagai bidang ilmu dan simulasinya memerlukan masa yang lama. Projek ini cuba mengelak kesukaran dan proses yang panjang ini dengan menganggar masalah ini menggunakan satu dari kaedah Rangkaian Neural Buatan iaitu Rangkaian Neural Fungsi Asas Jejarian (RBFNN) berbanding kaedah Perceptron Pelbagai Lapisan (MLP). Keupayaan RBFNN dinilai melalui ramalan kualiti air di Sungai Muar, Malaysia di mana datadata kualiti air sebelum dan yang telah lepas, digunakan sebagai input untuk rangkaian-rangkaian ini dan ketepatan ramalan pula dinilai menggunakan Ralat Purata Punca Kuasa Dua (RMSE), Ralat Purata Mutlak (MAE) dan Pekali Kolerasi (CC). RBFNN didapati dapat digunakan untuk meramal dengan berkesan sehari ke depan nilai aluminium dan kekeruhan di Sungai Muar. Keputusan ramalan aluminium menggunakan rangkaian RBF menghasilkan ramalan yang agak baik dengan nilai RMSE; 0.0394, MAE; 0.0208 dan CC; 0.5213 yang lebih tinggi berbanding rangkaian MLP dengan nilai RMSE; 0.0435, MAE; 0.0230 dan lebih rendah nilai CC; 0.5213. Pemerhatian yang sama juga didapati bagi ramalan kekeruhan dimana rangkaian RBF menghasilkan nilai RMSE; 40.3812, MAE; 25.8489 dan CC 0.6281 manakala rangkaian MLP menghasilkan RMSE; 40.5804, MAE; 26.9558 dan CC; 0.6453. Masa pemprosesan yang diambil untuk meramal nilai aluminium dan kekeruhan oleh rangkaian RBF terbukti lebih cepat 77.9% hingga 80.9% berbanding masa yang diambil oleh MLP.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDICES	xvii
INTRODUCTION	
1.1 Project Background	1
1.2 Problem Statement	2
1.3 Project Objective	2
1.4 Scope of the Project	3
1.5 Academic Contributions	3
1.6 Organization of Thesis	4
LITERATURE REVIEW	
2.1 ANN in Water Resource Applications	5
2.2 River Water Quality	7
2.2.1 River Water Quality Parameter	7
2.3 Radial Basis Function Neural Networks	11

1

2

86

3 DATA SET AND METHODOLOGY

3.1	Introdu	iction	15
3.2	2 Data Set and Location		15
3.3	Metho	dology	21
	3.3.1	Data Pre-Processing	21
	3.3.2	Data Partitioning	24
	3.3.3	Data Assembly	26
	3.3.4	RBF Neural Network Design	30
	3.3.5	Forecasting Performance Evaluation	32
	3.3.6	RBF Network Training, Testing and Validation	34
	3.3.7	RBF Network Settings Optimization	36
	3.3.8	Comparison with MLP	39

4 **RESULTS AND DISCUSSION**

4.1 Introduction	41
4.2 Aluminium Networks	42
4.2.1 Aluminium RBF Network Settings Optimization	42
4.2.2 Aluminium MLP Network	52
4.2.3 Summary and Discussion	53
4.3 Turbidity Networks	64
4.3.1 Turbidity RBF Network Settings Optimization	64
4.3.2 Turbidity MLP Network	73
4.3.3 Summary and Discussion	74
CONCLUSIONS AND RECOMMENDATION	
5.1 Conclusions	84
5.2 Recommendations	85

REFERENCES

5

Appendices A – B 91-117

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Summary of water quality data available	16
3.2	Summary of water quality data of Gombang WTP	19
3.3	Variable for water quality parameter	26
3.4	Description of input output vector matrices	30
3.5	Description of rbf neural network design	32
4.1	RMSE, MAE & CC results for data size tuning of	43
	aluminium network	
4.2	RMSE, MAE CC results for past day optimization of	45
	aluminium network	
4.3	RMSE, MAE & CC results for spread, β optimization of	47
	aluminium network	
4.4	RMSE, MAE and CC results of aluminium MLP networks	52
4.5	Summary result of aluminium network for Gombang	53
	WTP	
4.6	Overall RMSE, MAE and CC for aluminium network	54
4.7	Summary comparison between RBF and MLP for	61
	aluminium forecasting	
4.8	RMSE, MAE and CC results for data size optimization of	65
	turbidity network	
4.9	RMSE, MAE and CC results for past day optimization of	67
	turbidity network	
4.10	RMSE and CC results for spread, β optimization of	69
	turbidity network	

4.13	Overall RMSE, MAE and CC for turbidity network	75
4.14	Summary comparison between RBF and MLP for	81
	turbidity forecasting	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

2.1	Radial Basis Function Neural Network	12
2.2	Gaussian basis function	13
3.1	Location of Muar River in the state of Johor, Malaysia	18
3.2	Details location of WTP along the Muar River	18
3.3:	Aluminium data for Gombang WTP	20
3.4	pH data for Gombang WTP	20
3.5	Turbidity data for Gombang WTP	20
3.6	Scatter diagram of pH vs. aluminium for Gombang WTP	22
3.7	Scatter diagram of aluminium at Gombang WTP vs.	22
	aluminium at Bukit Serampang WTP	
3.8	Scatter diagram of turbidity at Gombang WTP vs. turbidity	23
	at Bukit Serampang WTP	
3.9	Aluminium, pH and turbidity data after normalization	24
3.10	Timeline for overall data partition	25
3.11	Data partition of aluminium of Gombang WTP	25
3.12	Timeline for training data	26
3.13	Input output matrices 1st row formation for training data	27
3.14	Input output matrices 2nd row formation for training data	27
3.15	Input output matrices last row formation for training data	27

3.16	Timeline for testing data and validation data	28
3.17	Input output matrices 1st row formation for testing data	28
3.18	Input output matrices 2nd row formation for testing data	29
3.19	Input output matrices last row formation for testing data	29
3.20	Neural network design for water quality forecasting	31
3.21	Projection of sliding window for data size tuning	37
4.1	Summary result of data size optimization of aluminium	43
	RBF network	
4.2	Testing set RMSE, MAE and CC result for data size=500	44
4.3	Summary result of past day optimization of aluminium	45
	RBF network	
4.4	Testing set RMSE, MAE and CC result for past day=1	46
4.5	Summary of spread, β optimization result aluminium RBF	48
	network	
4.6	Testing set RMSE, MAE and CC result for spread, β =4.0	49
4.7	Testing set RMSE, MAE and CC result for additional	50
	input pH	
4.8	Testing set RMSE, MAE and CC result for additional	51
	input aluminium Bukit Serampang	
4.9	Testing set RMSE, MAE & CC result of MLP network for	52
	number of layer optimization	
4.10	Overall RBF network actual vs, forecast aluminium (1st	55
	500 data)	
4.11	RBF - actual vs. forecast aluminium in training set $(1^{st} 500)$	56
	data)	
4.12	RBF - actual vs. forecast aluminium in testing set (1st 500	56
	data)	
4.13	RBF - actual vs. forecast aluminium in validation set (1st	56
	500 data)	

4.14	RBF - continuous 10 days aluminium forecast result	57
	(sliding window projection)	
4.15	RBF - RMSE, MAE and CC result for aluminium in	58
	validation set	
4.16	Overall MLP network actual vs forecast aluminium (1st	59
	500 data)	
4.17	MLP - actual vs forecast aluminium in training set (1st	60
	500 data)	
4.18	MLP - actual vs forecast aluminium in testing set (1st 500	60
	data)	
4.19	MLP - actual vs forecast aluminium in validation set (1st	60
	500 data)	
4.20	MLP - continuous 10 days forecast of aluminium in	62
	Gombang	
4.21	Comparison of RBF and MLP in aluminium validation set	63
	(1st 500 data)	
4.22	Summary result of data size optimization of turbidity RBF	65
	network	
4.23	Testing RMSE, MAE and CC result for data size=450	66
4.24	Summary result of past day optimization of turbidity RBF	67
	network	
4.25	Testing RMSE, MAE and CC result for past day=1	68
4.26	Summary result of spread, β optimization of turbidity RBF	70
	network	
4.27	Testing RMSE, MAE and CC result for Spread, β =1.0	71
4.28	Testing RMSE, MAE and CC result for additional input	72
	turbidity Bukit Serampang	
4.29	RMSE, MAE and CC result for number of layer	73
	optimization for turbidity MLP network in testing set	
4.30	Overall RBF network actual vs. forecast turbidity (1st 500	75
	data)	

4.31 RBF - actual vs. forecast turbidity in training set (1st 50	00 76
data)	
4.32 RBF - actual vs. forecast turbidity in training set (1st 50	0 76
data)	
4.33 RBF - actual vs. forecast turbidity in validation set (1st 5	500 76
data)	
4.34 RBF - continuous 10 days turbidity forecast result (slidin	ng 77
window projection)	
4.35 RBF - RMSE, MAE and CC result for turbidity in	78
validation set	
4.36 Overall MLP network result actual vs. forecast for	79
turbidity (1st 500 data)	
4.37 MLP - actual vs. forecast for turbidity in training set (1s	t 80
500 data)	
4.38 MLP - actual vs. forecast for turbidity in testing set (1st	80
500 data)	
4.39 MLP - actual vs. forecast for turbidity in validation set (1st 80
500 data)	
4.40 MLP - continuous 10 days turbidity forecast result (slidi	ng 82
window projection)	
4.41 Comparison of RBF and MLP in turbidity validation set	83
(1st 500 data)	

LIST OF SYMBOLS

а	-	Constant
Â	-	Input space
ξ	-	Discrete design
o _i	-	Neural Network input signal
o j	-	Neural Network output signal
σ_{i}	-	Receptive field controller
$arphi_j$	-	Hidden unit
p_i	-	Measurement weight
W _i ,	-	Weight
x_i	-	Data sample
χ	-	Input set
β	-	Spread
${\Phi}$	-	Center value

LIST OF ABBREVIATIONS

AI	-	Artificial Neural Network
NN	-	Neural Networks
ANN	-	Artificial Neural Network
MLP	-	Multi-Layer Perceptrons
MLPNN	-	Multi-Layer Perceptrons Neural Network
RBF	-	Radial Basis Function
RBFNN	-	Radial Basis Function Neural Network
WQ	-	Water Quality
WQP	-	Water Quality Parameter
WTP	-	Water Treatment Plant
SAJH	-	Syarikat Air Johor Holdings
DOE	-	Department of Environment
DID	-	Department of Irrigation & Drainage
TSS	-	Total Suspended Solid
NTU	-	Nephelometric Turbidity Units
NFR	-	Non-Filterable Residue
E.coli	-	Escherichia coli
DO	-	Dissolved Oxygen
BOD	-	Biochemical Oxygen Demand
COD	-	Chemical Oxygen Demand

LIST OF APPENDICES

APPENDIXTITLEPAGEAMATLAB Source Code of River Water Quality
Forecasting using RBF Neural Network71BPaper Related to This Work That Has Been Submitted in
the Elsevier Marine Pollution Bulletin June 201378

CHAPTER 1

INTRODUCTION

1.1 Project Background

Monitoring and analysis of river water quality is an important element in the global environmental monitoring policy and management. The deterioration of river water quality has triggered the initiative of serious management efforts. Fishing, tourism and more importantly drinking and domestic usage require an acceptable level of river water quality.

The modeling and control of complex and nonlinear systems, like rivers, is difficult due to the presence of many variables and disturbances. Usually, the dynamics of the problem are modeled using mathematical relationships; however, most of the times these models require a lot of information from various fields of knowledge that formulating a realistic model is difficult and running its simulation requires a significant amount of time.

This project demonstrates the application of ANNs to model and predict the values of selected river water quality parameters that will be useful for early detection of pollution influx.

1.2 Problem Statement

This project attempts to avoid this difficult and lengthy process by approximating the problem using Artificial Intelligence (AI). A different type of AI which is the RBFNN was used instead of commonly used Multilayer Perceptron (MLP) which is the RBFNN for real-time prediction of river water quality. The RBF were first used to design ANN by Broomhead and Lowe (1988) which offered several advantages compared to MLP and it is expected that the RBFNN can perform better than the MLP in terms of reducing the prediction error, consistent prediction result and allowing a continuous update of network parameters to allow for on-line application.

1.3 Project Objectives

The objective of this project is to identify and collect data related to river quality from reliable source. The data need to be analyzed and preprocessed before using for Radial Basis Function Neural Network (RBFNN) training.

The second objective is to identify appropriate RBFNN structures and parameters to be used with the available data sets. These involve identifying the network's input, output, size, activation function and number of centers.

Next, the project objective is to develop appropriate training algorithm for RBFNN.

Finally, the ability and performance of the RBFNN training algorithm in predicting water quality will be assessed. This involves using some portion of the data to validate the RBFNN based on the appropriate performance criteria.

1.4 Scope of the Project

The scope of this project includes collecting river water quality parameter data from reliable source. The data was then being pre-processed and analyzed. Parameters and input of water quality prediction was identified. Basic understanding of water quality parameters is vital besides correlation analysis between parameter for determining the input and parameter relation.

The data was split into 3 partitions for training, testing and validation before it was used in the RBFNN. The RBFNN then was computed using MATLABTM RBFNN toolbox which is much easier but with limited settings of RBFNN compared to conventional source code writing. The RBFNN performance then was measured with two performance criterion: prediction error and processing time.

The performances of RBFNN; prediction error and processing time then were compared commonly used ANN type which was the MLP.

1.5 Academic Contributions

The advantage of using RBFNN instead of commonly used ANN which is the MLP was proven in this project. RBFNN application in forecasting of water quality was proven with slightly lower error and produced more consistent results compared to MLP. Processing time of RBFNN also proved to be more superior to the processing time of MLP where RBFNN was 77.9% to 80% faster than MLP.

1.6 Organization of Thesis

This thesis is divided into five chapters. The first chapter gives a general overview and introduction of the project. Chapter Two covers the literature review on water quality, ANN and its application in water resource as well as existing methods and techniques. Chapter Three presents the methodology of the project which consists of steps and process of project and description of each part of the process. Chapter Four discusses and analyses the results obtained. Chapter Five includes suggestion for further enhancement of this project and conclusions.

of the time it require a lot of information from various fields of knowledge and running its simulation requires a significant amount of time.

The Radial Basis Function Neural Network, RBFNN has proved that it is a potential technique than can be used to forecast complex and nonlinear system of river. The results indicated that the RBFNN was an attractive alternative to forecast the water quality parameter and potentially to predict other water quality parameters. It has also proved the ability to produce consistent and robust result which is significant for real-time water quality forecasting. However, there are many more things that can be done to improve the efficiency of RBFNN forecasting efficiency as suggested in the recommendations below.

References

- [1] S. S. Abdullah, M. M. Idris. 2008. Short Course in Artificial Neural Networks. Control and Instrumentation Engineering Department, Universiti Teknologi Malaysia.
- [2] D. S. Broomhead and D. Lowe. 2008. Multivariable Functional Interpolation and Adaptive Networks, Complex Systems. Vol. 2, pp 321-355.
- [3] Iebeling Kaastra and Milton Boyd. Designing a Neural Network for Forecasting Financial and Economic Time Series. 1996. Neurocomputing, (Elsevier) 10. pp 215-236.
- [4] Muttil, N. and Chau, K.W. 2006. Neural network and Genetic Programming for Modeling Coastal Algal Blooms. International Journal of Environment and Pollution 28 (3/4). 223–238.
- [5] R. J. Schalkoff, Artificial Neural Networks. 1997. MIT Press and McGraw-Hill Companies, Inc.
- [6] Hussein, S.F.M, Shah, M.B.N, Jalal, M.R.A, Abdullah, S.S. 2011. Gold Price Prediction Using Radial Basis Function Neural Network. 4th International Conference Modeling on Simulation and Applied Optimization (ICMSAO). (April) 19-21. Kuala Lumpur: IEEE. pp 1-11.
- [7] A. G. Bors. Introduction of the Radial Basis Function (RBF) Networks. Online Symposium for Electronics Engineers, Issue 1, vol. 1, DSP Algorithms: Multimedia, Feb. 13 2001, pp. 1-7.
- [8] Girosi, F. and Poggio, T. 1990. Networks and the Best Approximation Property. Biological Cybernetics. 63, pp 169-176.
- [9] Najah, A., Elshafie, A., A. Karim, O. and Jaffar, O. Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks, European Journal of Scientific Research. Vol.28 (No.3). 2009. pp.422-435.
- [10] A. Najah, A. El-Shafie, O. A. Karim, O. Jaafar and Amr H. El-Shafie. 2011. An Application of Different Artificial Intelligences Techniques for Water Quality Prediction, International Journal of the Physical Sciences. Vol. 6(22). pp 5298-5308.
- [11] Sundarambal Palani, Shie-Yui Liong, Pavel Tkalich. 2008. An ANN Application for Water Quality Forecasting, Marine Pollution Bulletin. 56. pp 1586–1597.
- [12] Howard Demuth, Mark Beale and Martin Hagan. 2009. Neural Network Toolbox[™] 6 User's Guide. Version 6.0.3 (Release 2009b). Natick: The MathWorks, Inc.
- [13] Talib, A.1, Y. Abu Hasan and N.N. Abdul Rahman. 2009. Predicting Biochemical Oxygen Demand as Indicator of River Pollution Using Artificial

Neural Networks. 18th World IMACS / MODSIM Congress. Cairns, Australia. (July) 13-17. pp 13-17. 824.

- [14] Holger R. Maier, Graeme C. Dandy. 2000. Neural Networks for the Prediction and Forecasting of Water Resources Variables: A Review of Modeling Issues and Applications, Environmental Modelling & Software. 15. pp 101–124.
- [15] Holger R. Maier, Graeme C. Dandy, Michael D. Burch. 1998. Use of Artificial Neural Networks for Modeling Cyanobacteria Anabaena spp. in the River Murray, South Australia, Ecological Modeling. 105. pp 257–272.
- [16] H.K. Cigizoglu. 2008. Artificial Neural Networks In Water Resources, Integration of Information for Environmental Security NATO Science for Peace and Security Series C: Environmental Security. pp 115-148.
- [17] M. R. Mustafa, M. H. Isa, R. B. Rezaur. 2012. Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications. World Academy of Science, Engineering and Technology. 62. 6. pp 341-349.
- [18] El-Shafie, A.E.; Noureldin, M.R.; Taha; Basri, H. 2008. Neural network model for Nile River inflow forecasting analysis of historical inflow data. Journal of Applied Sciences 8 (24), 4487-4499.
- [19] A.W. Jayawardena, D.A.K Fernando and M. C. Zhou. 1997. Comparison of Multilayer Perceptron and Radial Basis Function Networks as Tools for Flood Forecasting. Destructive Water: Water-Caused Natural Disasters, their Abatement and Control (Proceedings of the Conference held at Anaheim, California, June 1996). IAHS. Publ. No. 239.
- [20] Mark J. L. Orr. Introduction to Radial Basis Function Networks. Technical Report, Institute for Adaptive Neural Computation, Division of Informatics, University of Edinburgh, 199