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ABSTRACT

Repetitive cyclic loading of bone during daily course activities is one of the 

primary causes of bone fracture in humans. Stress fractures and fragility fractures in 

elderly generation due to osteoporosis have been associated with the reduction of 

bone strength of the cancellous bone. The aim of this study is to predict the failure of 

cancellous bone as a function of density and porosity. In this present study, two of 

cancellous specimens were extracted from bovine medial-condyle bone and were 

loaded in cyclic compression. Monotonic compressions were first tested to determine 

the boundary conditions prior to the fatigue testing. The loading transferred to the 

cancellous bone are chosen between 16%-55% of the ultimate stress. The result 

showed different hysteresis loop with large variation in strain between both medial-

condyle of cancellous bone. They both adapt different physiological apparent load 

until failure. From the obtained result, we can conclude that the same anatomic site 

with different value of bone density and porosity imply a large effect of the fatigue 

behavior in related to modulus degradation and strain changes. 
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ABSTRAK

Tahap  aplikasi kitaran beban yang berulang-ulang pada tulang ketika aktiviti 

harian adalah salah satu penyebab utama keretakan atau fraktur tulang manusia. 

Tekanan retakan dan kerapuhan tulang terhadap golongan warga emas di sebabkan 

oleh penyakit osteoporosis sering dikaitkan dengan pengurangan daya kekuatan pada 

tulang kanselus. Tujuan utama pengajian ini adalah untuk menjangka tahap 

kegagalan tulang kanselus sebagai fungsi kepada ketumpatan dan poros. Dalam 

ujikaji ini, dua sampel dari tulang tengah dari bovin telah diekstrak dan diuji pada 

tahap kitaran beban yang berulang-ulang. Bebanan termampat secara monotonic 

telah diuji terlebih dahulu untuk menentukan garisan panduan untuk uji kaji 

seterusnya, iaitu bebanan termampat yang terjurus kepada kegagalan terhadap 

sampel tulang kanselus. Aplikasi galas beban terhadap tulang kanselus telah 

ditentukan daripada 16% sehingga 55% daripada maksimum stres daripada bebanan 

termampat secara monotonic . Keputusan menunjukkan ketidaksamaan pada 

hysteresis loop dengan perubahan besar pada ketegangan di antara dua tulang tengah 

kanselus. Daya ketahanan pada kedua-dua tulang ini adalah  berbeza sebelum fraktur. 

Daripada keputusan ini juga, kami mendapati walaupun lokasi anatomik yang sama 

tetapi berbeza dari segi ketumpatan dan poros, mempengaruhi besar terhadap tingkah 

laku daya ketahanan tulang kanselus tersebut. Ini adalah berkaitan dengan modulus 

dan ketengangan daripada ujikaji yang telah dijalankan.
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CHAPTER 1

INTRODUCTION

More than 250,000 hip fractures were reported in 1996; approximately 10% 

are thought to be spontaneous fractures associated with cyclic loading during the 

daily activities. Military recruits, athletes and ballet dancers are among those affected 

[1]. Under physiologic conditions, micro-damage events created from both static and 

cyclic load are subsequently repaired through the coordinated process of bone 

remodeling [2]. Micro-damage accumulation leads to diminished bone quality and 

together with loss of bone quantity, results in weakened bones which may break 

following minor falls [3]. 

There are two types of bone tissue in the skeletal system; cortical (or 

compact) and cancellous (or trabecular) bone. Adult human skeletal mass consists of 

80% cortical bone (porosity 5-30%) and 20% (porosity 20-90%) cancellous bone [4]. 

The micro-damage accumulation incidence is greatest at sites where cancellous bone 

is the dominant form and has increased over the past 30 years [3]. Thus, changes in 

cancellous bone stiffness in even a small region can cause large differences in whole 

bone strength [5]. Repetitive cyclic loading of bone during the daily course of 

activities is one of the primary causes of bone fractures in humans [6]. A typical 

loading for bone is cyclic loading that is variable in time; behaviors under such 

loading can termed ‘fatigue behaviors’ [7]. Excessive fatigue loading of bones in 
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vivo can lead to micro crack accumulation and coalescence, reducing stiffness and 

strength and increasing the risk of fracture [8]. 

The fatigue behavior of cancellous bone has been characterized in a number 

of studies [1,6,8,13,39,40,42]. In these experiments, the fatigue life of these 

cancellous bones was observed and characterized by the number of cycles to failure, 

௙ܰ , increases as the cyclic decreases. The mechanical response of the cancellous 

bone under fatigue was characterized by a decrease in the elastic modulus throughout 

the test, with rapid modulus loss near failure, and increasing plastic, or permanent 

strain [8, 9]. They also found increasing residual strain and modulus reduction with 

increasing strain amplitude [2]. 

A study showed that bone fatigue can occur at strain magnitudes comparable 

to those measured on living bones in the physiological loading environment during 

vigorous activity in animals and humans. From this study, the fatigue life to failure is 

predicted in the order of 107 load cycles, which is approximately 5-10 years of use in 

life [9]. Significance amounts of fatigue damage occur throughout the loading 

history; damage which must be repaired in order not to lead to fatigue failure of 

skeletal elements [9]. 

Fatigue fractures are usually sustained during continuous strenuous physical 

activity which causes the muscles to become fatigued and reduces their ability to 

contract. Fatigue fractures on the compressive side appear to be produced more 

slowly because the remodeling is less easily outpaced by the fatigue process, thus the 

bone may not proceed to complete fracture [10]. The ability of the skeleton to resist 

fracture under applied loading varies primarily through changes in these constituents 

of bone failure load and bone strength [11]. Most the site that is prone to fractures 

due to this disease is at the hip, vertebrae and the distal radius [12]. This is because 

of their high prevalence and their frequent asymptomatic characteristics which are 

associated with low bone mass and micro architectural deterioration [13]. 

If the applied load exceeds the failure load of the bone of interest, then the 

factor of risk is greater than one and fracture will occur. Thus, to predict fracture 
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accurately, characteristics of the applied load such as the manner and location of its 

applications must be considered [11]. Fatigue behaviors on cancellous bone induced 

by many case of physiological human activities which can contribute to stress 

fracture from various activity such for athletes and fragility fracture in aging. Studies 

have shown that the volume fraction of cancellous bone strongly influences the 

mechanical properties specifically the compressive strength, stiffness and elastic 

modulus [14]. Hence, understanding the damage properties of cancellous bone is 

important to understand bone fractures [15]. Past study by Bowman et al. (1994) 

showed that modulus of the cancellous bone can decrease with fatigue as the strain 

accumulation increases due to creep [16]. 

In the course of everyday activities human bone is submitted to a great 

variety of loading patterns. The loading varies in direction, magnitude, frequency and 

mode (tension, compression and shear) and also in combinations of the previous 

factors [17]. This repetitive physiological loading pattern is referring to human gait 

cycle. This fundamental task has been the subject of study by scientists for several 

centuries, both with respect to description of typical body movements and of 

pathological conditions and therapeutic interventions [10]. 

1.1 Objective

The objectives of the research project are to:

1. To predict of fatigue life of cancellous bone structure.

2. To analyze the fatigue behavior of cancellous bone respect to physiological 

axis
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3. To study relationship of morphological indies with fatigue life of 

cancellous bone structures. 

1.2 Scope

The scope of this proposal will cover as below:

1. Cancellous bone sample preparation.

2. Morphological data of cancellous bone structure.

3. Experimental set up

4. Fatigue behavior analysis

1.3 Problem Statement

The rising incidence of osteoporosis within the aging society is becoming a 

major health problem. Aged-related osteoporosis is a systemic disease characterized 

by reduced bone mass and deteriorated bone micro-architecture which associated in 

decrease in strength and in Young’s modulus as a result of significant disturbance in 

bone structure that includes a decrease in the number of cancellous and their 

thickness [7]. Elderly patients with osteoporosis are particularly prone to fragility 

fractures of the vertebrae, where load is carried primarily by cancellous bone [8]. As 

the aging and elderly population grows, so will the prevalence of osteoporosis and 

the cost of treatment.

Damage accumulation under compressive fatigue loading is believed to 

contribute significantly to non-traumatic, age-related fractures in femur bone. The 
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advantage of using the compressive fatigue tests is the ability to conduct variable test 

with the use of small numbers of samples [7]. Even if these failure types are of 

known, data for cancellous bone exposed to cyclic loading are still insufficient [18]. 

Studies of the fatigue of bone have dealt most extensively with cortical bone since it 

is consequently plays a dominant role in determining the overall strength of a given 

bone of the skeleton [10].

A great number of investigations have probed the mechanical properties of 

both cortical and cancellous bone. Studies have investigated the Young’s modulus, 

yield strain, creep behavior and fatigue behavior of both cancellous and cortical bone 

[19]. The proximal femoral head exhibited of hip contact forces [20] has been 

studied for average patient. This has been developed the maximum peak forces 

during human activities and it has contributed such a loading method to be apply on 

fatigue analysis in cancellous bone. In revision of total knee arthoplasty, the 

epicondyles often provide the only available clues for rotational and proximal/distal 

positioning of the femoral component. Thus, a relevant study of the anatomic 

relationship based on the epicondyles of the distal femur will somehow help 

orthopedists position the femoral components appropriately in primary and revision 

total knee arthoplasty [21].  It is also significance for this study in order to obtain the 

main physiological axis for the load to transmit to the epicondyle femur. 

From previous study, it is suggested that more than 75% of the load adjacent 

to endplates is carried by cancellous bone [22]. The relationship between 

morphology of cancellous bone to the mechanical properties and failure mechanism 

can be accessed through experimental and computational means [23]. Computer

simulation (microCT) has become more accessible in the past years [13], but these 

data are still connected to many problems such as the high costs of the microCT 

scans and the rare availability of the high end scanning facilities. 

The underlying deformation and damage mechanism within cancellous bone 

with respect to physiological activities are not yet sufficiently investigated. Thus, it is 

necessary to evaluate bone quality parameters such as the morphological index of the 
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cancellous bone structure. In order to obtain the loading conditions, the monotonic 

test were first tested and performed into the fatigue testing. This paper will determine 

the prediction of the compressive fatigue behavior on several sample of cancellous 

bone as a function of density and porosity.
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