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ABSTRACT  

 

 

 

 

Fabrication of an 11-mercaptoundecanoic acid (MUA) self-assembled 

monolayer (SAM) modified gold electrode in-situ functionalized with  

poly L-Arginine (pArg) and poly L-Lysine (pLys) is presented and described. The 

fabricated electrode was used for highly selective and sensitive accumulation and the 

determination of hapten molecules (Glycerol, Isoeugenol and Maleic anhydride) in a 

nanomolar concentration. Techniques like cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS) with an external redox probe  

(FeCN6 
(3-/4-)) were used to investigate the layer-by-layer self assembly modification 

on a gold electrode, monolayer structure and the ion permeation through it. For CV, 

Results indicated considerable decrease in current due to immobilizations of amino 

acid monolayers. In addition, increase in Charge Transfer Resistance (Rct) as main 

EIS output and Constant Phase Element (CPE) illustrated the quality and the 

accuracy of Layer-by-Layer (LBL) assembly of SAM monolayers on the surface of 

gold. EIS study showed the stable readings of Rct relating to pArg and pLys 

attachment, which was obtained after at least 20 min of immobilization indicating the 

minimum stability time for amino acid monolayer formation on the gold. In terms of 

haptenation, increase in Rct showed the direct relation of surface resistance and the 

degree of hapten sensitization (from weak to strong sensitizers). Eventually, 

increases in Rct values after attachment of poly l-Arginine SAM monolayer (three vs. 

two monolayers) illustrated more resistance on the surface of the electrode and more 

haptenation between probes and haptens. This study can be further used on the 

development of impedance-based biosensor especially for skin sensitization studies 

in cosmetic products. 
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ABSTRAK 

 

 

 

 

Rekaan sebuah 11-mercaptoundecanoic acid (MUA) self-assembled 

monolayer (SAM) modified gold in-situ elektrod yang berfungsi bersama poly L-

Arginine (pArg) dan poly L-Lysine (pLys) telah dibentang dan dihuraikan. Rekaan 

elekrod ini digunakan untuk pemilihan yang tinggi dan pengumpulan secara sensitif 

dan penentuan molekul hapten (Glycerol, Isoeugenol dan Maleic anhydride) didalam 

sebuah kepekatan nanomolar. Kaedah seperti cyclic voltammetry (CV) dan 

electrochemical impedance spectroscopy (EIS) dengan external redox probe  

(FeCN6

(3-/4-)

) telah digunakan bagi menyelidik setiap lapisan modifikasi self-

assembly pada elektrod emas, struktur monolayer dan penelapan ion menerusinya. 

Bagi CV, hasil menunjukkan penurunan arus disebabkan oleh penetapan monolayer 

asid amino. Disamping itu, peningkatan Charge Transfer Resistance (Rct) sebagai 

output utama EIS dan Constant Phase Element (CPE) menggambarkan kualiti dan 

ketepatan penyusunan monolayer SAM secara Layer-by-Layer (LBL) di atas 

permukaan emas. Kajian EIS menunjukkan bacaan Rct yang stabil, berkait dengan 

penambahan pArg dan pLys, yang mana diperoleh selepas sekurang-kurangnya 20 

minit penetapan menunjukkan masa kestabilan minimum bagi pembentukan 

monolayer asid amino pada emas. Dalam terma haptenation, peningkatan Rct 

menunjukkan hubungan terus rintangan permukaan dan darjah pemekaan hapten 

(dari pemekaan lemah hingga kuat). Seterusnya, peningkatan pada nilai Rct  selepas 

penambahan poly l-Arginine SAM monolayer (tiga vs. dua monolayer) 

menggambarkan lebih rintangan pada permukaan elekrod dan lebih haptenation di 

antara prob dan haptens. Hasil kajian ini boleh diteruskan dalam pembangunan 

impedance-based biosensor terutamanya bagi kajian pemekaan kulit pada produk 

kosmetik. 
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INTRODUCTION 

1.1       Background of Study 

Cosmetic product is one of the most demandable products among people 

around the world. Products such as moisturizers, shampoos, deodorants, make-up, 

colognes, and other cosmetics have become part of daily grooming habits. The 

American Academy of Dermatology reports the average adult uses at least seven 

different cosmetic products each day. Although cosmetics can help us feel more 

beautiful, they can cause skin irritation or allergic reactions. Allergic Contact 

Dermatitis (ACD) is the clinical result of skin contact with chemicals to which an 

individual is sensitized (e.g. Eczema, burning, stinging or itching without visible skin 

lesions). This occurs in people who are allergic to a specific ingredient or ingredients 

in a product. In some cases, the skin becomes red and raw. The face, lips, eyes, ears, 

and neck are the most common sites for cosmetic allergies, although reactions may 

appear anywhere on the body. Allergic contact dermatitis occurs because the body's 

immune system is reacting against a specific substance (haptens) that it considers 

foreign and harmful. ACD is an important occupational and consumer health 

problem. 

An allergic reaction (happens because of haptenation) is the body's way of 

responding to an "invader." When the body senses a foreign substance, called 
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an antigen, the immune system is triggered. The immune system normally protects 

the body from harmful agents such as bacteria and toxins. Its overreaction to a 

harmless substance (an allergen) is called a hypersensitivity reaction, or allergic 

reaction. Certain ingredients used in cosmetics, such as fragrances and preservatives, 

can act as allergens, substances that trigger an allergic reaction. Reactions may occur 

in one spot, such as a small-localized skin rash, itchy eyes, face bumps, or all over, as 

in a whole body rash or hives (urticaria). Allergic reactions are unique for each 

person. Reaction time to allergens can vary widely. Some people will have an 

allergic reaction immediately, for others it will take time to develop. Serious 

cosmetic allergies are rare. However, it is not uncommon for a person to have a mild 

reaction or irritation to an ingredient in a cosmetic product. Studies suggest that up to 

10% of the population will have some type of reaction to a cosmetic over the course 

of a lifetime. Reactions to cosmetics occur more often in women, most likely because 

women tend to use more cosmetic products than men do. Thus, checking the 

products’ sensitivity before distribution to the market is required. Some strategies are 

based on dendritic cells for detecting sensitizing potential of chemicals and some 

others are based on electrophilic assays. The reaction of nucleophiles with some 

chemicals inside the product can be useful for detection of the allergens (Xiaobo Yu 

2006). 

1.2      What is the haptenation? 

The term, “hapten,” is derived from the Greek “hapten”, meaning “to fasten.” 

Haptens are low molecular weight (LMW; <1000 daltons) chemicals that must bind 

to a carrier molecule to be antigenic. The carrier is usually an endogenous or 

exogenous protein to which the LMW chemical is covalently bound. The hapten 

hypothesis was originally proposed to explain both humoral and cellular immune 

responses to LMW chemicals observed by Landsteiner and Jacobs in their research 

(Landsteiner and Jacobs 1935). The absolute requirement for covalent binding of a 

hapten to a protein for immune recognition in the development of all drug/LMW 

(haptens) chemical allergies has been challenged in recent years, but substantial 
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evidence exists for this to be a prominent mechanism through which chemicals and 

drugs or their metabolites become antigenic. 

The role of chemical reactivity has been proposed to be one of the major 

determinants in allergic contact dermatitis (ACD). In the context of occupational 

health, predictive toxicology, and ensuring overall safety of manufactured products, 

it is important that skin sensitization potential of new and existing chemicals be 

assessed. The use of guinea pigs has been the experimental model of choice in 

evaluating the skin sensitization potential of chemicals until about a decade ago 

when the local lymph node assay (LLNA) was adopted after extensive 

interlaboratory validation. Selective protein targets or sites on a protein may be 

important and recent advances in protein mass spectrometric analysis now provide 

the capability to better explore how and where such chemicals bind. 

1.2.1    How does haptenation occur and change the impedance of the reaction? 

The hapten hypothesis was developed from the interaction of nucleophilic 

moieties on proteins with chemicals that are electrophilic. Approximately 40% of the 

skin sensitizers have at least an electrophilic center that is amenable to nucleophilic 

attack. From an organic chemistry perspective, formation of such adducts is via 

covalent bonds and to a certain extent coordination bonds. This is chiefly because 

covalent and coordination bonds have bond energies ranging from 200 to 420 kJ/mol 

compared to hydrophobic, dipolar, and ionic interactions with bond energies <50 

kJ/mol. The high bond energies enable covalent adducts to survive the intracellular 

antigen processing of the haptenated protein into short peptides for cell surface 

expression by major histocompatibility complexes (MHC). The hypothesis is the 

haptenation of poly l-Arginine and poly l-Lysine residues with selected haptens due 

to electrophile-nucleophile interactions. Based on the electrochemistry principles, 

any interaction between components within solution on electrochemical condition 

causes the change on the electrochemical equilibrium. Any modification on the 
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equilibrium changes the impedance property of the reaction and related parameters 

such as Charge Transfer Resistance (Rct). Thus, it can be one of the useful techniques 

to detect haptenation within electrochemical condition. In the following research, 

haptenation within the skin is discussed, as most of the research knowledge gained 

has been through examining the relationship between chemical reactivity and 

allergenicity in this organ system. 

1.3      Electrochemical Impedance Spectroscopy (EIS) method using Self-

assembled monolayers (SAMs) 

What is the impedance? “Electrical impedance is defined as the ratio of an 

incremental change in voltage to the resulting change in current.” (Jonathan S. 

Daniels 2007). Electrochemical devices can be modified based on usage and 

accuracy for the assessments. The main idea is to detect some changes based on 

electrochemical properties inside the solution (Barreira and Silva 2003, Barreira et al. 

2004). Electrochemical based impedance sensing coupled with self-assembled 

monolayers (SAM) is quite advantageous due to possibility of label free and simple 

operations. In this research work, poly l-arginine and poly l-lysine self-assembled 

monolayer (SAM) modified gold electrode was used to detect binding between  

haptens and  poly l-arginine and poly l-lysine through impedance analysis (Barreira 

et al. 2004). Haptenation of the haptens with poly l-Arginine or poly l-Lysine alters 

the impedance property and electrochemical equilibrium and leads to create 

complexes. 

Self-assembled monolayers or SAMs is the promising term has been 

introduced as unstructured way and chemical reaction-based links of integrated 

molecular building blocks to produce a thickly packed monolayer, stable and highly 

ordered of molecules from different environments such as gas phase or liquid phase 

(solution) onto a metal structure (substrate) (Ulman 1996), (Love et al. 2005) and 

(Denayer et al. 2009). High stability, multi usage (potential to use in various fields) 
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and simple process of formation on the substrates are the advantages of SAMs 

method specially used in biosensors construction (Shervedani and Mozaffari 2006), 

(Mozaffari et al. 2010) and (Chow and Gooding 2006), trace ion determination 

(Yang et al. 2001), (Berchmans et al. 2000), (Shervedani and Mozaffari 2006), 

(Shervedani et al. 2009) and (Liu et al. 1999), attachment of biocatalyst (Forzani et 

al. 2000) and (Shervedani et al. 2006), charge transfer kinetics studies (Protsailo and 

Fawcett 2000), drug delivery (Crisponi et al. 2010), biomolecules electronic devices 

(Arya et al. 2009), resistance to corrosion (Laibinis and Whitesides 1992) and also 

molecular electronics (Kitagawa et al. 2005) and (Chen et al. 1999). 

Rapid response, antifouling effects, high sensitivity and even the in-situ 

attachment of biological recognition elements such as enzymes are major profits of 

the electrode modification using self-assembled monolayers (SAMs) technique 

(Mandler and Turyan 1996), (Wink et al. 1997), (Mirsky 2002), (Postlethwaite et al. 

1995), (Rahman et al. 2003), (Mohadesi and Taher 2007) and (Wang et al. 2009). 

Another form of modification was introduced as mixed SAMs on the metal surface. 

Surface modification by thiols, adsorption of single component and filling the holes 

(defects) using shorter monolayers was used to overcome the limitations of synthesis 

and testing of macrocyclic ligands with properties for selectivity of target metal ions 

(Park et al. 2008). 

1.4      Problem Statements    

Lysine and Arginine can bind onto the surface of the alkanthiol modified gold 

electrode because of the strong bonds between the gold and lysine or arginine. 

However, the binding is just a physical reaction and the instability of the bindings 

can be assumed. In addition, the revealing of haptens reactivity (haptenation) with 

the skin proteins such as poly l-Arginine and poly l-Lysine and the possibility of 

selective detection of the specific type of haptens in terms of sensitivity (weak, 
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moderate or strong) are the other concerns in this field. This study can lead to the 

development of a skin sensitizer biosensor. 

1.5      Objective 

To assess the haptenation between poly l-Arginine and poly l-Lysine Self 

Assembled Monolayers (SAMs) modified MUA-gold electrode with Glycerol 

(weak), Isoeugenol (moderate) and Maleic anhydride (strong) skin sensitizers 

(haptens). 

1.6      Scopes of Research 

1. Immobilization of 11-mercaptoundecanoic acid (MUA), poly l-Arginine 

and poly l-Lysine onto gold disk electrode using self-assembled 

monolayer (SAM) attachment technique. 

2. Characterization of poly l-Arginine and poly l-Lysine SAMs modified 

impedance biosensor using cyclic voltammetry (CV) and electrochemical 

impedance spectroscopy method. 

3. Haptenation analysis of binding interactions between poly l-Arginine and 

poly l-Lysine and Glycerol (weak), Isoeugenol (moderate) and Maleic 

anhydride (strong) skin sensitizers using Electrochemical Impedance 

Spectroscopy (EIS). 
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