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ABSTRACT 

 

 

 

 

Perfumery chemicals and intermediates are produced on a large scale by 
Friedel Crafts alkylation or acylation of aromatic compounds in the presence of 
Lewis acid catalyst. However, problem in the industrial process of perfumery 
chemical and intermediate manufacture like toxity, corrosivity and production of 
pollutants, make convenient to change the conventional Lewis acid AlCl3 or FeCl3 
catalysts by acid solid catalyst. Thus, Al-MCM-41 catalysts were prepared with 
various SiO2:Al2O3 ratios via direct and secondary syntheses using sodium aluminate 
as the aluminium source. Al-MCM-41 was characterized by X-ray Diffraction 
(XRD), Surface Area Analyzer Instrument and Fourier Transform Infrared 
Spectroscopy (FTIR). The results indicate that Al-MCM-41 sample with a uniform 
hexagonal pore structure and high surface area was synthesized. Structural studies by 
27Al and 29Si MAS NMR spectroscopy indicated that Al are in the tetrahedral form 
and located in the framework. The presence of distorted framework aluminium was 
also observed, more significantly in the secondary aluminated samples. Maximum 
amount of Al was incorporated by direct synthesis with SiO2:Al2O3 ratio of 10 and a 
calculated Si/Al ratio of 15.2. Acidity studies using Pyridine Desorption 
Measurement and Temperature Programmed Desorption of Ammonia (TPD-NH3) 
show that the acidity of Al-MCM-41 increases with increase in Al incorporation into 
the MCM-41 framework. The potential of H-Al-MCM-41; as a heterogeneous 
catalyst was studied in the hydroxyalkylation of benzene with propylene oxide as a 
model reaction. Favourable reaction conditions such as SiO2:Al2O3 ratios, 
temperature, time on stream, the reactant mole ratio and solvent have significant 
influence on the distribution of products. Gas chromatography analysis indicates that 
H-Al-MCM-41 with SiO2:Al2O3 ratio of 10 demonstrates the highest catalytic 
activity with a conversion of benzene and selectivity of 92.3% and 87.5% 
respectively. The formation of 2-phenyl-1-propanol was favourable occurred at a 
temperature of 393 K after 24 hours with propylene oxide to benzene mole ratio of 
0.5 using nitrobenzene as the solvent. The activity enhancement for catalyst is 
associated with the presence of distorted tricoordinated aluminium as Lewis acid 
sites. The strength of Lewis acid sites was correlated to appropriate aluminium 
content, temperature, B/L ratio, crystallinity and surface area of sample which played 
a role in order to improve catalytic activity of Al-MCM-41. Aprotic dipolar solvent 
such as nitrobenzene stabilized the unstable intermediate of propoxy cations to 
prevent propylene oxides oligomerisation. The results indicate that instead of 
aluminium content, solvent and reactant mole ratio also play a role to give high 
conversion and selectivity of 2-phenyl-1-propanol.  
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ABSTRAK 
 

 

 

 

Bahan kimia dan perantaraan pewangi biasanya dihasilkan pada skala yang 
besar melalui tindak balas pengalkilan dan pengasilan sebatian aromatik dengan 
mangkin asid Lewis. Masalah yang timbul dalam proses industri pengeluaran bahan 
kimia dan perantaraan pewangi seperti ketoksikan, kakisan dan penghasilan sisa 
adalah bertepatan dengan menggantikan mangkin asid Lewis konvensional AlCl3 
atau FeCl3 kepada mangkin pepejal berasid. Maka, mangkin Al-MCM-41 disediakan 
dengan pelbagai nisbah SiO2:Al2O3 melalui sintesis terus dan sekunder menggunakan 
natrium aluminat sebagai sumber aluminium. Al-MCM-41 telah dicirikan 
menggunakan teknik Pembelauan Sinar-X (XRD), Analisis Luas Permukaan dan  
Spektroskopi Inframerah. Keputusan menunjukkan Al-MCM-41 mempamerkan 
struktur liang heksagon yang seragam dengan luas permukaan yang tinggi. Kajian 
struktur oleh Spektroskopi 27Al dan 29Si Putaran Sudut Ajaib-Resonans Magnet 
Nukleus (PSI-RMN) menunjukkan aluminium hadir dalam bentuk tetrahedral dan 
terletak dalam rangka struktur. Kehadiran rangka struktur aluminium terherot juga 
dapat diperhatikan lebih signifikan dalam sampel sintesis secara sekunder. 
Kandungan maksimum aluminium memasuki bingkaian dipamerkan oleh sampel 
dengan nisbah SiO2:Al2O3 bersamaan 10 dan Si/Al dihitung bersamaan 15.2. Kajian 
keasidan dijalankan menggunakan Penjerapan Piridina dan Penyahjerapan Ammonia 
Suhu Teraturcara (TPD-NH3) menunjukkan keasidan Al-MCM-41 meningkat dengan 
penambahan aluminium ke dalam bingkaian MCM-41. Maka, potensi mangkin       
H-Al-MCM-41 dalam tindak balas Friedel-Crafts diuji ke atas tindak balas 
penghidroksialkilan benzena dengan propilena oksida sebagai tindak balas model. 
Taburan hasil tindak balas didapati bergantung kepada keadaan terbaik tindak balas 
seperti nisbah SiO2:Al2O3, suhu tindak balas, masa tindak balas, nisbah mol reaktan 
dan pelarut. Analisis kromatografi gas menunjukkan   H-Al-MCM-41 dengan nisbah 
SiO2:Al2O3 bersamaan 10 mempamerkan aktiviti permangkinan yang tinggi dengan 
darjah penukaran benzena dan kepilihan masing-masing 92.3% dan 87.5%. 2-fenil-1-
propanol terhasil pada kadar terbaik pada suhu 393 K selepas 24 jam dengan nisbah 
mol propilena oksida kepada benzena bersamaan 0.5 dengan nitrobenzena sebagai 
pelarut. Peningkatan aktiviti permangkinan sampel ini dikaitkan dengan kehadiran 
aluminium trikoordinatan terherot sebagai tapak asid Lewis. Kekuatan tapak asid 
Lewis dikaitkan dengan kandungan aluminium, suhu, nisbah B/L, kehabluran dan 
luas permukaan sampel yang berperanan meningkatkan aktiviti permangkinan Al-
MCM-41. Pelarut dwipolar aprotik seperti nitrobenzena dapat menstabilkan bahan 
perantaraan ion propoksi bagi mengelakkan pengoligomeran propilena oksida. 
Keputusan menunjukan selain daripada kandungan aluminium dalam sampel, pelarut 
dan nisbah reaktan juga memainkan peranan dalam meningkatkan darjah penukaran 
dan kepilihan 2-fenil-1-propanol. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 General Introduction 

 

 

The concept of catalysis was first discovered by Berzelius in 1836. The word 

catalysis came from combination of two Greek words, κατα (kata) and  λυδειν 

(lysein) which was defined as  ‘loosening down’ [1]. The phenomenon of catalysts 

has been extensively studied since the early decades of the 19th century, and used 

unconsciously for a much larger period. Nowadays, the catalyst market is seeing 

moderate growth  especially in fine chemicals and environmental markets sectors 

which posesses higher perfoming. Meanwhile polymerization catalysts are growing 

at more moderate rate, whereas refining and petrochemical catalysts are experiencing 

low to flat growth. According to Comyns [2], the global catalyst market had a 

volume of $10.5 billion in 2001 and is expected to grow to almost $13.5 billion or 

4.6% per year by 2007. Environmental catalysts are the biggest segment in the 

merchant, accounting for 27% of 2001 market. Polymerization catalysts are second 

with nearly 22%, followed by refining (21%), petrochemical (20%) and fine 

chemical and intermediates (10%). However, fine chemical and environmental 

sectors are expected to grow at near or above 8% per year for the next 6 years. The 

use of combinatorial catalyst for discovery and optimisation of catalytic performance 

is expected to have a significant effect on the rate at which new catalysts are  



 

 

2

developed [3, 4]. Basically catalyst can be classified into two types which are 

homogeneous and heterogeneous catalyst. Homogeneous catalyst particularly Lewis 

acid catalyst is well known and has been applied in Friedel-Crafts alkylation and 

acylation reactions. However, new policies were introduced involving the 

applications of homogeneous catalysts as a result of the problems caused by them; 

such as corrosion, loss of catalyst and disrupting the environment [5]. The policies 

focused on environment protection and avoidance of unfriendly reactants and 

catalysts with better selectivity in order to minimize product waste and expensive 

separations and recycling [6]. Meanwhile, heterogeneous catalysts such as molecular 

sieves, zeolites and porous materials for liquid phase organic synthesis reactions can 

give a lot of benefits such as clean reaction product solution after filtration, ease of 

recovery and avoidance of corrosion. Therefore, development of efficient 

heterogeneous catalysts is interesting and useful especially in the production of fine 

chemical and intermediates. 

 

 

 

 1.2 Research Background  

 

 

Recently, many perfume chemical and intermediates are produced on a large 

scale by Friedel Crafts reactions. The reaction usually involves the alkylation or 

acylation of an aromatic compound in the presence of Lewis acid catalyst. For 

example, the Friedel Crafts alkylation of benzene with ethylene oxide is a 

commercial route to produce β-phenethyl alcohol or 2-phenyl-ethanol. 2-phenyl-

ethanol is an important intermediate which is used because of its exquisite odour of 

natural rose petal [7]. On the other hand, the alkylation of 2-methoxynapthalene with 

propylene oxide is the preferred method to produce a precursor for non-steroidal, 

anti-inflammatory agent naproxen [8, 9]. Basically, aluminium chloride is the most 

common catalyst in the Friedel Crafts alkylation instead of sulphuric acid, 

phosphoric acid, ferric chloride and boron trifluoride. The common alkylation agents 

are olefin, alkyl halide, alcohol and epoxides [10]. 

 



 

 

3

The reaction of benzene or alkylbenzene with epoxides in the presence of 

some homogeneous Lewis acid was first reported by Hata et al. [11]. Next, Nakajima 

et al. [12] studied stereospecific Friedel-Crafts alkylation of benzene with propylene 

oxide by aluminium chloride as Lewis acid catalyst and stereochemistry of ring 

opening of epoxides. In 1970s, asymmetric induction in the Friedel-Crafts reaction of 

benzene with (+)-1, 2-epoxybutane was studied by Nakajima et al. [13]. Meanwhile, 

Inoue et al. [14] examined the reaction of toluene and anisole with 2-methoxyoxirane 

and 2, 3-dimethyloxirane in the presence of aluminum chloride as Lewis acid. Later, 

in the 80s, SnCl4 as catalyst on stereoselective Friedel-Crafts alkylation via epoxide 

transannular and cycloalkylation reactions were studied [15, 16].  

 

 

1.3 Problem Statement 

 

 

Basically, introduction of hydroxyl group into an aromatic compound using 

ethylene or propylene oxides are relatively well established in the presence of Lewis 

acid catalysts. However, the selectivity of hydroxyalkylated products were affected 

by side reactions such as epoxide oligomerisation or further reaction of the 

hydroxyalkylated intermediate with the starting reactant to yield bisarylalkane 

derivates.  

 

Hence, a cleaner alternative process which is truly catalytic is needed due to 

serious effluent problem associated with the use of a stoichiometric amount of AlCl3 

and the corrosive reaction conditions. A lot of current processes in the production of 

fine chemicals and intermediates are using homogeneous catalyst. The manufacture 

of fine chemicals and intermediates involving the batch processes, are associated 

with the production of large quantities of toxic waste [17]. Homogeneous catalysts 

such as mineral acid, strong base and toxic metal reagent impose many drawback 

including handling difficulties, inorganic contamination of organic products, the 

formation of large volume of toxic waste and poor reaction selectivity leading to 

unwanted isomers and side products [18].  
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In the hydroxyalkylation of aromatic with epoxides, the epoxides was added 

into a suspension of anhydrous AlCl3 in the aromatic subtracts [19]. The postulated 

mechanism of hydroxyalkylation proposed that aluminium chloride form an addition 

compound with the epoxide which preferably opens at the most substituted carbon 

atom [12]. As a result, a very reactive intermediate forms and reacts rapidly with the 

aromatic and another molecule of epoxide. In this reaction, the tendency of epoxide 

oligomerisation decreases due to dilution of epoxide [11]. The attack of the aromatic 

gives rise to the formation of an alcohol-AlCl3 complex [20]. The complex is 

generally soluble in the aromatic and is therefore more available than the unreacted 

suspended AlCl3. The alcohol-AlCl3 complex becomes an increasingly important 

negative factor since it is a polymerization catalyst for the epoxide [7]. Therefore, a 

stoichiometric amount or excess of aluminium chloride and large excess of the 

aromatic are needed to prevent oligomerisation of the epoxide. The complex has to 

be decomposed with water in order to obtain the desired product. The reaction and 

work-up also should occur below 25ºC; otherwise the alcohol-AlCl3 complex will 

react further with another aromatic molecule to afford 1, 2-diaryalkanes [21]. 

Furthermore, AlCl3 catalyzed hydroxyalkylation requires a hydrolysis step resulting 

in a hydrated AlCl3 waste stream. As a result, the catalyst is not reusable [14]. 

 

Extensive studies were conducted on alkylation and hydroxyalkylation of aromatic 

using heterogeneous catalyst as a model reaction [22-26]. However, zeolites such as 

H-ZSM-5, modernite, H-Beta and ZnNaY catalysed intermolecular 

hydroxyalkylation of epoxides are very difficult because of competing epoxide 

oligomerisation and rearrangement [21]. The main limitation of zeolites is the range 

of pore sizes available. The small pore size of zeolites prevent it from being useful in 

new applications with bulky and large molecule such as polymerization. Besides, the 

cations present inside the structure may in some cases obstruct the pore apertures and 

limit the rate of reactions [27]. In some cases for example, the formation of coke 

which is deposited inside the pore of zeolite can hinder the normal diffusion of 

reactants and products in and out of the catalyst [28, 29]. For this reason, in the past, 

efforts were directed towards the synthesis of similar structures which led to the 

discovery of MCM-41 [30]. Thus, the recent synthesis of mesoporous molecular 

sieves MCM-41 has expanded the capabilities of heterogeneous catalyst. Compared 

to zeolites, mesoporous MCM-41 materials is a useful candidate.   
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1.4 Research Objectives  

 

 

The objectives of this research are:  

1. To synthesize and characterize mesoporous Al-MCM-41 with different 

SiO2:Al2O3 ratios through direct and secondary synthesis. 

2. To study acidity properties of aluminium containing MCM-41. 

3. To investigate the catalytic activity of hydroxyalkylation of benzene with 

propylene oxide as a model reaction. 

 

 

 

1.5 Scope of Study   

 

 

In this research, Al-MCM-41 was synthesized by direct and secondary means 

using sodium aluminate as the source of aluminium. Through both methods of 

syntheses, aluminium was substituted for silicon in the framework and on the 

surface. The insertion of aluminium into the framework of MCM-41 creates acid 

sites. The structure and physical properties of catalyst were studied by X-ray 

Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), 27Al and 29Si 

Magic Angle Spinning Nuclear Magnetic Resonance, (27Al and 29Si MAS NMR), 

Nitrogen Adsorption and Surface Area Analyzer. The acid properties of catalyst were 

characterized using Temperature Programmed Desorption of Ammonia (TPD-NH3) 

and Pyridine Adsorption Measurement. Al-MCM-41 was tested to catalyse the 

hydroxyalkylation of benzene and propylene oxide; chosen as a model reaction, to 

produce 2-phenyl-1-propanol. The testing of desired catalyst on the 

hydroxyalkylation of ethylene oxide and benzene could not be carried out due to the 

current strict regulation on the import of ethylene oxide. The Friedel-Crafts reactions 

were carried out which include six main parameters, namely SiO2:Al2O3 ratios, 

temperature, time on stream, reactant mole ratio composition, solvent and autoclave 

reactor effect. The products will be characterized by Gas Chromatography and Mass 

Spectroscopy techniques. 
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