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ABSTRACT 

 

 

 

 

Dynamic nature of influencing parameters on market variations prevents 

decision makers to have a broad vision about possible future changes as an important 

factor in an organization survival. A precise forecast of both price and demand is a 

vital issue to illustrate market changes, and prosperity of plans and investments. The 

main purpose of this study is to develop a quantitative method, which encompasses 

human user cognition in order to modify timeseries, before being used as an input for 

forecast models. Some studies conclude ARIMA-ANN hybrid model as the best 

forecasting model in comparison with its individual models. However, this claim is 

rejected in some cases. It is a reason to check the performance of individual models 

in addition to hybrid model in new cases. Historical data are collected from two case 

studies in manufacturing and service industries. These data are modified by the 

developed method. Both original and modified data are implemented as inputs for 

ARIMA, artificial neural network (ANN), and ARIMA-ANN forecast models. The 

square errors (MSE) and mean absolute percentage error (MAPE). In both case 

erformance. In 

predictions. 
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ABSTRAK 

 

 

 

 

Faktor-faktor pasaran yang dinamik mampu menghalang organasi daripada 

meramal masa hadapan dengan tepat agar ia mampu kekal di dalam pasaran. 

Ramalan yang tepat untuk harga dan permintaan adalah penting untuk melakar 

perubahan pasaran dan untuk menghasilkan pelan dan pelaburan organisasi yang 

berjaya. Tujuan utama kajian ini adalah untuk menghasilkan satu kaedah kuantitatif 

yang turut mengambil kira kemampuan pemikiran manusaia untuk mengubah suai 

data masa-bersiri sebelum digunakan sebagai input untuk model ramalan. Sesetengah 

kajian merumuskan bahawa model gabungan ARIMA dan rangkain neural (ARIMA-

ANN) merupakan model yang lebih tepat berbanding model ARIMA dan model 

rangkaian neural (ANN). Kenyataan ini tidak dipersetujui oleh sesetengah kajian dan 

ini merupakan salah satu sebab untuk menganalisa kebolehan model gabungan dan 

model individu dalam situasi baru. Data diambil dari dua situasi iaitu industri 

pembuatan dan industri perkhidmatan dan data ini diubahsuai menggunakan kaedah 

yang dikaji. Data asal dan data yang diubahsuai digunakan sebagai input untuk 

ketiga-tiga model ramalan di atas: ARIMA-ANN, ANN dan ARIMA. Prestasi 

kaedah yang dikaji ditentukan dengan membandingkan purata ralat persegi (MSE) 

dan purata ralat peratusan mutlak (MAPE). Berdasarkan kepada kedua-dua ukuran 

prestasi ini, kajian menunjukkan bahawa data yang telah diubahsuai mampu 

meningkatkan prestasi ketiga-tiga model ramalan. Di samping itu, terdapat 

perubahan yay ketara didalam prestasi model-model ini. Kajian ini juga 

menunjukkan bahawa ramalan yang dihasilkan oleh model ARIMA-ANN tidak 

setepat model ANN. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Artificial Neural Network (ANN) and Autoregressive Integrated Moving 

Average (ARIMA) forecasting models are in the spotlight in these days, because of 

their accuracy and ease of use. In addition to the large number of studies, more 

investigations are required in increasing models  accuracy as well as prediction 

performance. This chapter explains the objectives, scopes, methodology and 

literature review of this project. 

1.2 Background of the Study 

In this business dynamic environment and complicated economic situation, 

the role of an accurate planning to remain in the market and increase market share is 

critical. A specific planning for a certain period can reduce ambiguity and illustrates 

the way organization ought to pass to achieve  In push processes, 

managers need to plan for their production, transportation and other planned. In a 

pull processes, the approximate level of available capacities and inventories are 

planned by managers. 
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Forecast utilization is a method to improve planning. A high performance, 

high accuracy forecast method can leads to providing direction, uncertainty 

reduction, waste and redundancies minimization, controlling standards, and goals 

establishment. This kind of forecast will alert managers if there is a change in 

business environment and there would be more time to evaluate and ameliorate 

directions and plans. 

I

forces organizations to improve continuously to fulfill their customers demand. A 

high accuracy forecast makes the supply chain more efficient and more responsive in 

serving customer needs. However, many factors such as political, economic and 

instability in market demand, so high level of flexibility are necessary for adapting 

organizations plans and strategies to new situations.  

Unfortunately, significant parameters, which influence the demand, vary from 

one circumstance to another, as a result there is no high accurate general forecasting 

method for all situations. Therefore, in spite of numerous research in this field, some 

gaps are not covered.  

In this situation, forecasting the demand as an industrial engineering tool can 

play a critical role in increasing organizations flexibility, productivity and 

performance when, it provides managers with a high accurate future prediction and 

illuminates the way for making decisions. 

Financial time-series prediction is encountered by financial investors and has 

gained researchers attractions as a major and significant task for financial decision-

making, where small error in predicting following market movement may result to 

huge financial lost. Political and economic conditions, or even 

some rumors in addition to significant number of technical and fundamental 

parameters are able to influence stock market. Therefore, there is a need to a capable 

forecasting model to handle nonlinearities, discontinuities and high frequency of 

stock price timeseries (Hadavandi, 2010). Traditional forecast models cannot handle 

these levels of noise and complexity, so some new methods based on artificial 

intelligence and autoregressive moving average can lead to better results (Hsu, 

2009).  In this study, a proposed method to improve forecasted results is developed. 
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1.3 Problem Statement 

Because of high concentration given on improving integrated quantitative 

forecasting methods, less attention is given to the role of visual and verbal data 

modification and forecasting methods in reducing forecast error. Most of the 

quantitative methods are too complicated or are developed for special circumstances; 

therefore, applying methods based on user knowledge and idea can results to easier 

and more common methods (Hong, 2011; Andrawis, 2011). Different groups of 

measurable, immeasurable, and unknown parameters influence historical data; so 

visual and verbal evaluation and modification of historical data before being used in 

forecasting could have a positive effect on forecasting. 

Although some unexpected measured data are known as noise and are 

removed, there is no specific way to rectify the effects of temporary influencing 

factors. As a result, improving a method to use human user knowledge and idea in 

adjusting historical data before implementing in forecasting, could rise up forecasting 

reliability and performance without increasing model complicacy.  

ARIMA, ANN and ARIMA-ANN hybrid model have been studied in 

different cases, while there are mismatched results based on diversity of influencing 

factors and studied circumstances. Consequently, the selection among these models 

could not be completely through literatures and it is needed to test them again for 

different cases. 

1.4 Objectives of the Study 

This study is based on the following objectives: 

i. To develop a method based on human cognition and quantitative 

approaches in modifying historical data before being used as an input for 

forecasting models. 
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ii. Implement ARIMA, ANN, and the hybrid of ARIMA-ANN on 

method will produce the best forecast. 

iii. To repeat the objective (ii) with the modified data as in objective (i) and 

to check the effect of data modification method on forecast improvement. 

1.5 Scope of the Study 

Three scopes of this study are as follow: 

i. BINA Paint Integration and Amazon.com are selected as two case studies, 

representing manufacturing and service industries. 

ii. MINITAB software is implemented for ARIMA model selection and 

forecasting. 

iii. MATLAB software is used for ANN model training and forecasting. 

1.6 Summary of Literature 

Some factors like missing values and unusual data, in addition to seasonality 

and trend existence cause variation and instability in a time series. Data pre-

processing is necessary to reduce this variation and instability, before using it in 

forecasting models, which leads to  results improvement (Zhang and Qi, 

2005;Wichard, 2011). 

ARIMA approach developed by Box and Jenkins (1970) has attracted a lot of 

attentions as a linear forecasting model. It contains three main steps, named: (i) 

checking stationary, (ii) parameter estimation and model identification, and (iii) 
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diagnosis checking. Shi et al. (2012) 

or Bayesian information criterion (BIC) methods instead of autocorrelation function 

(ACF) and partial autocorrelation function (PACF) in identifying appropriate model. 

Multilayer ANN is a nonlinear forecasting model. It contains one input layer, 

one or more hidden layer, and one output layer. The learning ability is a significant 

advantage of ANN; weights are changed to make input-output behaviour in line with 

parameter real changes (Negnevitsky, 2005). ANN outperforms classical statistical 

methods and box Jenkins approach (Werbos, 1988), even though it is time 

consuming and it may not reach to global optimum answer (Hong et al., 2011). 

Traditional models  limitations encourage researchers and decision makers to 

combine capable forecasting models (Andrawis et al., 2011). Zhang (2003) 

introduced a combination of ARIMA and ANN models as a general model for both 

linear and nonlinear cases. Improving forecast accuracy by applying ARIMA-ANN 

model is concluded by Gutierrez-Estrada et al. (2007). However, Shi (2012) and 

Taskaya-temizel (2005) report hybrid model inability in improving the result. 

1.7 Expected Outcomes 

Based on literatures, it is expected that the hybrid model results to a higher 

level of accuracy in comparison with individual models. Furthermore, adjusting data 

before implementing in models will have a positive effect on model  accuracy 

(Andrawis et al., 2011). 

1.8 Conceptual Framework 

Figure 1.1 represents the conceptual framework of this study. The steps are 

shown in input, process, and output levels. This study is based on two case studies 

from which timeseries are collected. These data will be modified; and both primary 
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and modified data are used as inputs for ARIMA, ANN and hybrid of ARIMA-ANN 

model. Finally, mod are compared through Mean Squared Error 

(MSE) and Mean Absolute Percentage Error (MAPE) to find answers for the 

objectives. 

1.9 Significance of the Study 

Having a broad view about the future changes makes planning much easier 

and reliable. To reach this level of reliability, forecast method accuracy has an 

important effect.  Different statistical methods have been developed to overcome 

variation and instability among timeseries which are important factors for prediction 

exactness reduction. Though, more concentration is needed to test and improve these 

methods in new circumstances. 

The role of pre-processing in improving a model prediction, in addition to 

models ability to recognize correct trend or seasonality among data have been 

studied. Though, number of these studies is insufficient and there is a need to add 

human cognition to quantitative methods. In this study a new method for pre-

processing data before being applied in forecast models is introduced. This method is 

based on shifting out bounded data point into most possible trend intervals which are 

selected by user. 

ARIMA and ANN can be combined as ARIMA-ANN model which is 

suitable for linear and nonlinear data. The hybrid model fails to outperform 

individual models in some cases, so its performance needs to be tested in more cases. 

1.10 Organization of the Study 

The rest of the project report is organized as follow. The literature review 

about time series, forecast and seasonality, ARIMA, ANN, and ARIMA-ANN hybrid 
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model is covered in Chapter 2; the methodology and necessary processes are 

represented in Chapter 3. Chapter 4 are about data collection and analysis, and the 

last chapter (Chapter 5) is about a summary of other chapters, results, further 

research works and conclusion of the study.  

Manufacturing Service

ARIMA

ANN

ARIMA-
ANN

Checking Stationary
Model identification
Parameter estimation
Diagnosis checking

Selecting the number
of delay and hidden
neurons

ARIMA 
Forecast

Selecting the number
of delay and hidden
neurons

ARIMA-
ANN forecast

Adding ANN 
forecast of residuals 
to ARIMA forecast

ANN Forecast

Comparing forecast results to
select a prediction method with

higher performance

Input

Process

Output

ARIMA Forecast residuals
ARIMA Forecast

Primary and modified Historical data

Data modification

 
Figure 1.1 Conceptual Frameworks 
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1.11 Conclusion 

Decision makers sometimes do not have the required broad vision regarding 

the way their market is going on; therefore, it is possible to loss their way to reach 

customers demand or loss in their financial investigations.  By increasing the number 

of influencing factors, the traditional forecasting methods are not able to present 

accurate forecasts. In addition, historical forecasting methods present low-

performance prediction for timeseries with fluctuated data and nonlinear trends. In 

these situations organizations have to implement new forecasting methods, which are 

important tools , to pave their ways to achieve their goals. 

Selecting the most appropriate model among ANN, ARIMA and ARIMA-ANN 

hybrid model for manufacturing and financial case studies, is aim of this study. 
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