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ABSTRACT 

In recent decades depletion of energy resources along with global warming 

concern has made a need to study green renewable energy resources, one of which is 

to reuse waste energy in industrial applications, exhaust wind from cooling towers of 

large scale air-conditioner is addressed in this study to be harnessed by a small 

Darrieus vertical axis wind turbine (VAWT). This study in particular is analyzing the 

performance of the turbine under the influence of some design parameters including 

tip speed ratio (TSR), rotor diameter, solidity that includes number of blades and 

effect of laminar boundary layer separation. ANSYS FLUENT 14 has been used to 

simulate a 2-D VAWT with NACA0018 airfoils along with ICEM as pre-processor 

software to create mesh, Shear Stress Transport (SST) k-ω model has been used to 

model the turbulent flow around the airfoils. Grid independency has been studied for 

cell size of 65,000 and 140,000 by the comparison of graphs for horizontal force 

components as a function of angle of rotation. This simulation has been validated by 

comparing the result with experimental work of Claessens (Claessens, 2006). 

Maximum power coefficient of 0.34 was obtained for 3 bladed VAWT at TSR=4 

while for 6 bladed VAWT maximum amount was achieved 0.32 at lower TSR of 

λ=3. Power coefficient remains constant for different rotor diameter when chord 

length and rotor diameter ratio is constant. Performance has been observed low for 

laminar flow. In order to boost the efficiency in this type of flow different airfoil 

geometries can be investigated in further studies. Bigger number of blades causes 

larger effect of blockage and consequently larger torque but maximum 𝐶𝑝  is achieved 

at comparatively lower value of λ as compared to 3 bladed VAWT and a great deal 

of torque is needed to generate the same power coefficient. 
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ABSTRAK 

Sejak kebelakangan ini, isu pengurangan sumber tenaga dan pemanasan 

global memberi kebimbangan yang memerlukan kajian dalam sumber-sumber tenaga 

hijau yang boleh diperbaharui , antaranya adalah untuk menggunakan semula sisa 

tenaga ekzos angin dari penyejukan menara berskala besar penghawa dingin di mana 

tumpuan dalam kajian ini untuk memanfaatkan turbin angin paksi mengak kecil 

Darrieus ( VAWT ).Kajian khususnya adalah untuk menganalisa prestasi turbin di 

bawah pengaruh beberapa parameter reka bentuk termasuk nisbah kelajuan tip ( 

TSR), garis pusat pemutar , kekukuhan yang melibatkan bilangan bilah dan kesan 

lamina lapisan sempadan pemisahan. ANSYS FLUENT 14 telah digunakan untuk 

simulasi 2-D VAWT dengan NACA0018 kerajang udara bersama-sama dengan 

ICEM sebagai perisian pra- pemprosesan untuk mewujudkan jaringan.Model 

Pengangkutan Tekanan Ricih k- ω ( SST ) telah digunakan untuk memodelkan aliran 

bergelorasekitar aerofoil .Pengaruh grid telah dikaji untuk saiz sel dari 65,000 dan 

140,000 berdasarkan graf perbandingan untuk komponen daya mendatar sebagai 

fungsi sudut putaran .Simulasi ini telah disahkan dengan membandingkan hasil 

dengan kerja eksperimen Claessens ( Claessens , 2006). Pekali kuasa maksimum 

0.34 telah diperolehi bagi 3 bilah VAWT di TSR = 4 manakala bagi 6 berbilah 

Jumlah maksimum VAWT dicapai 0.32 di TSR lebih rendah λ = 3.Pekali kuasa 

kekal malar untuk garis pusat pemutaradalah berbeza apabila panjang kord dan 

pemutar nisbah diameter adalah ditetapkan. Prestasi yang rendah untuk aliran lamina 

telah diperhatikan . Dalam usaha untuk meningkatkan kecekapan dalam aliran jenis 

ini geometri aerofoil yang berbeza juga disiasat dalam kajian ini. Tambahan bilangan 

bilah menberi kesan yang lebih besar pada sumbat dan mengakibatakan tork yang 

lebih besar tetapi 𝐶𝑝 maksimum dicapai pada nilai yang lebih rendah daripada λ 

berbanding dengan 3 bilah VAWT dan tork tinggi diperlukan untuk menjana pekali 

kuasa yang sama. 
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INTRODUCTION 

1.1 Introduction 

A sustainable future with limited atmospheric 𝐶𝑂2emissions and growing 

energy needs forces us to consider alternative energy sources to oil, gas and coal. 

The situation is more than worrying as the impact on the earth climate will be 

incurable without a swift move to clean energy. In 2007, the electrical power 

generation accounted for 29% of the atmospheric 𝐶𝑂2 emissions. Reducing this 

source will not solve the problem but can significantly contribute to its solution. 

None of the 𝐶𝑂2 free technologies that are technically mature today, or in the near 

future can on its own, tackle the problem. A global solution must also provide 

capacity to match the fluctuating demand. Therefore storage and transmission 

networks are also key factors. Wind power is a strong candidate towards a 

sustainable future: wind power with hydro power, are among the most cost effective 

renewable energies. For many countries, with its relatively fast development 

potential, wind power represents a good starting point for developing renewable 

energy sources, although, due to its variability, it cannot aim to be the sole electricity 

source for a single country. 

Wind power has been commercially successful in Europe for more than a 

decade. European countries have more than 70 GW installed capacity with 5 top 

leading countries: Germany with 25,777 MW, Spain 18,320 MW, Italy 4,850 MW, 

France 4,492 MW and UK 4,070 MW (Deglaire, 2010). Although Europe has been 

the number one region when it comes to new yearly installed capacity 



2 

 

for more than a decade, US and China are now moving ahead. In Europe 

offshore wind power opens a new arena for wind developments, especially in the 

North Sea. The world‘s leading manufacturers were originally situated in countries 

where local incentives have accelerated the installation of turbines namely Germany, 

Denmark and Spain. Now fast emerging markets like US, China and India have 

pushed strong local suppliers. The market leaders are today Vestas (Denmark) 

12.5%, GE Energy (US) 12.4%, Sinovel (China) 9.2%; Enercon (Germany) 8.5%, 

Goldwind (China) 7.2% and Gamesa (Spain) 6.7% (Deglaire, 2010). The total 

market in 2009 represents around 30 GW for wind turbine manufacturers leading to a 

total turnover of 30 billions Euros. In terms of technology, the market is dominated 

by three bladed upwind horizontal axis wind turbines (HAWTs) with gearbox and 

asynchronous generators. 

The current thesis will concern a less well known but emerging technology, 

the vertical axis wind turbines (VAWTs). this type of turbine is close to the surface 

of the ground, hence it is easy to maintenance, on the other hand the rotor blades are 

designed in a robust form. furthermore the need of yaw mechanism that exists in 

HAWTs is obviated in VAWTs, VAWTs comprise of Darrieus type and Savonius 

type the former operated based on lift force while the latter operates based on drag 

force, it is proven that the power coefficient of Darrieus type is higher than Savonius 

type, Darrieus turbines were introduced in 1931 by G. J. M. Darrieus and it created 

an interesting field for other scholars. Depending on the tip speed ration, there are 

two options for turbine blades, at high TSR straight bladed VAWTs are deployed to 

handle the problem of self-starting while turbines with helical blades are appropriate 

to operate at relatively smaller amount of tip speed ratio. 

1.2 Background of The Problem 

Today the wind turbine industry is dominated by horizontal axis wind 

turbines (HAWTs). The vertical axis wind turbines (VAWTs) seem to be virtually 
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non-existent. In fact the only VAWT, which has ever been manufactured 

commercially at any volume, is the Darrieus machine but its manufacturer, Flo Wind, 

United States went bankrupt in 1997(D‘Ambrosio & Medaglia, 2010). There were 

other small manufacturers of cylcoturbine, another variant of VAWT but these too 

did not perform well in the commercial wind turbine market. A lot of research work 

had been carried out on VAWTs, mainly Darrieus types, in the late 1970s, 1980s and 

early 1990s in the U.K., United States, Canada and Australia. But in terms of 

efficiency, the results were not very promising and inferior to HAWTs. VAWTs 

were, therefore, abandoned. 

The last decade of the twentieth century witnessed a phenomenal growth of 

HAWTs both in terms of number and size throughout the world. The continuous 

research and design efforts led to the development of HAWTs in the MW range - 

1MW, 1.3 MW, 1.5 MW, 2 MW and now 3 MW machines are appearing. 

Undoubtedly the HAWTs have proved a big commercial success. Their future 

appears to be bright with increasing worldwide emphasis on development of 

renewable energies. 

Despite their wide use, a major disadvantage associated with the HAWTs is 

that these must be shut down when the wind speed exceeds a particular value known 

as cut-off speed. The shutting down is required from the point of view of safety of 

the wind turbine structures, mainly blades. For most of the HAWTs currently 

available on the market, the cut-off speed ranges from 20 to 25 m/s. These machines 

are designed to survive in wind speeds up to 60 m/s but only under shut down 

conditions. This limitation of the HAWTs makes them unsuitable for cyclone and 

storm prone areas. One is amazed by the energy contained in wind gusts. The efforts 

required to push the doors or windows in home against the wind thrust under stormy 

conditions makes one speculate if a machine could be devised to convert the energy 

contained in these wind gusts into useful energy. Obviously the answer does not lie 

in HAWTs which look for shelter for themselves to escape the wrath of the wind 

gusts just like human beings. This has led to the renewal of interest of researchers in 

VAWTs, which may bridge the gap created by HAWTs.  
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Efforts to improve industrial energy efficiency focus on reducing the energy 

consumed by the equipment used in manufacturing (e.g., boilers, furnaces, dryers, 

reactors, separators, motors, and pumps) or changing the processes or techniques  to 

manufacture products. A valuable alternative approach to improving overall energy 

efficiency is to capture and reuse the lost or "waste wind energy" that is intrinsic to 

all industrial air conditioners, During these manufacturing processes, a lot of the 

energy consumed is ultimately lost via waste wind produced in cooling towers. 

Captured and reused waste wind energy is an emissionfree substitute for costly 

purchased fuels or electricity. This study investigates industrial waste wind energy 

recovery practices, opportunities needed to enable further recovery of industrial 

waste wind energy losses. Three essential components are required for waste wind 

energy recovery: 1) an accessible source of waste wind, 2) a recovery technology, 

and 3) a use for the recovered energy. This study specifically investigates a recovery 

technology. 

1.3 Objectives of Study 

After compiling the data from literature review five goal were chosen to 

achieve in this study: 

i) The analysis of aerodynamic performance of a Darrieus VAWT having 

airfoil NACA0018 by the use of 2D CFD simulation, at unsteady flow 

with Reynolds number of 106. 

ii) This study seeks the maximum power coefficient for blades with 

NACA0018 airfoil by investigating optimum tip speed ratio TSR in 

which this maximum power is achieved through simulating the case in 

different tip speed ratios. 

iii) To find out the effect of rotor diameter on the power coefficient of 

Darrieus VAWT. 
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iv) To investigate the influence of separation of laminar boundary layer on 

the aerodynamic performance of a VAWT by comparing the findings of 

turbulence model and laminar viscous model. 

v) To study the influence of solidity on the aerodynamic performance of 

Darrieus VAWT by comparing the results for turbine with three bladed 

VAWT and six bladed VAWT.  

1.4 Scope of the Study 

This work presents a numerical analysis with the idea of obtain the suitable 

design that permits to have the blades in their best performance in order to obtain the 

largest work done for the incoming wind. The principal idea is to have the blades in a 

perpendicular position with the incoming wind direction. The case of study is 

considered oncoming wind exhausted from a large scale industrial air conditioner 

cooling tower, Characteristics of the wind produced by these cooling towers are 

taken into account so as to design the suitable Darrieus VAWT Thus, the largest 

work obtained by the turbine was the result of integrating the Moment of the turbine 

for each tip speed ration (TSR). By using computational fluid dynamic tools, this 

numerical analysis was made for different TSR values, plotting the Moment that can 

be generated. 

As it has been said this study focus on the Darrieus type of VAWTs and this 

aim is achieved by the means of literature review and CFD study of aerodynamic 

performance and power coefficient. In literature review an investigation has been 

carried out to find out the different advantages and disadvantages of different types 

of Darrieus turbine such as Straight-bladed VAWT (SB-VAWT) and helix Darrieus 

VAWT to harness the wind energy, Figure 1.1 and Figure 1.2 show SB-VAWT and 

helix VAWT respectively. As it can be seen from the figures, straight bladed VAWT 

includes simple blades that are made without curvature. In this type of blades all 

extent of the leading edge of each blades experiences an identical angle of attack 
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while in helix configuration blades have an inclination angle and are not straight. The 

latter type of turbines requires more complex fabrication process due to helix blades. 

 

Figure 1.1 Straight-Bladed VAWT (Travis Justin Carrigan, 2010) 
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Figure 1.2 Helix VAWT (Rodriguez, 2010) 

The effect of utilization of different actuator systems on the improvement of 

performance of these turbines and possibility of removing the effects of dynamic 

stall have been studied, in the last parts of literature review general characteristics of 

wind resources, wind data analysis and resource estimation and wind measurement 

and instrumentation are respectively addressed. ICEM software is used for mesh 

generation and pre-processing and subsequently ANSYS FLUENT 14 has been used 

as solver software for post processing. 
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