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ABSTRACT 

 This thesis presents the implementation of a high performance Direct Torque 

Control (DTC) of induction machine (IM) drives. A summary of the theoretical 

aspects and principles of DTC are given with emphasis on two major problems, i.e. 

high torque ripple and variable switching frequency. In order to solve these 

problems, this thesis proposed a pair of torque and flux controllers to replace the 

hysteresis-based controllers. The proposed torque controller consists of a PI 

controller, 2 triangular carrier generators and a pair of comparator. It produces three 

level output, namely –1, 0, and 1, which is similar to the three level hysteresis 

comparator. The proposed flux controller works similar to the torque controller and 

consists of a proportional controller, a single triangular carrier generator and a 

comparator. The output is switched between 1 and 0 similar to the two-level 

hysteresis comparator. The design of these controllers is thoroughly discussed and is 

applied to a ¼ HP squirrel cage IM. The simulation of the proposed controllers 

applied to the DTC drive is presented. The simulation results are then verified by 

experimental results. The main components of the hardware are implemented using 

DSP TMS320C31 and Altera FPGA devices. The DSP is used to estimate the torque 

and flux while the FPGA is responsible in generating the triangular carriers, selecting 

the appropriate voltage vectors and generating the blanking time for the 3-phase VSI. 

The results prove that 80% of torque ripple reduction is obtained while the stator flux 

ripples also manage to achieve 57% of reduction. Furthermore, the switching 

frequency is fixed at 10.4 kHz and a smoother sinusoidal phase current is obtained. 
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ABSTRAK 

 Tesis ini membentangkan kaedah pelaksanaan pemacu Kawalan Daya Kilas 

Terus (DTC) untuk mesin aruhan. Ringkasan teori-teori dan prinsip DTC telah diberi 

dengan penumpuan diberi terhadap dua masalah utama iaitu riak daya kilas yang 

besar dan frekuensi pensuisan yang berubah. Untuk menyelesaikan masalah-masalah 

ini, tesis ini memperkenalkan pengawal-pengawal dayakilas dan fluks stator untuk 

menggantikan pengawal histeresis. Pengawal dayakilas mengandungi sebuah 

pengawal kamiran berkadaran, dua buah penjana pembawa segitiga dan sepasang 

pembanding. Pengawal dayakilas ini menghasilkan tiga tahap pengeluaran, iaitu –1, 

0 dan 1, sama seperti yang dihasilkan oleh pembanding histeresis tiga tahap. 

Pengawal fluks stator yang dicadangkan beroperasi sama dengan pengawal 

dayakilas, ia mengandungi sebuah pengawal berkadaran dan sebuah penjana 

pembawa segitiga dan sebuah pembanding. Keluaran pengawal ini hanya akan 

bertukar di antara 1 dan 0 seperti yang dihasilkan oleh pembanding histeresis dua 

tahap. Rekabentuk pengawal-pengawal tersebut dibincang dengan terperinci dan 

telah digunapakai ke atas sebuah motor aruhan sangkar tertupai yang berkadar ¼ 

kuasa kuda. Simulasi untuk pengawal dayakilas yang digunakan pada pemacu DTC 

telah dibentangkan. Keputusan-keputusan simulasi telah disahkan dengan keputusan-

keputusan ujikaji. Perlaksanaan peralatan dibina dengan menggunakan DSP 

TMS320C31 dan Altera FPGA. DSP digunakan untuk menganggar nilai-nilai 

dayakilas dan fluks sementara FPGA bertanggungjawab untuk menjana pembawa 

segitiga, memilih vektor voltan yang sesuai serta menjana masa mati bagi 

penyongsang 3 fasa. Keputusan-keputusan yang diperolehi telah mengesahkan 

bahawa pengurangan riak dayakilas sebanyak 80% telah dicapai dan  riak fluks stator 

juga dikurangkan sebanyak 57%. Di samping itu, frekuensi pensuisan telah 

ditetapkan pada 10.4 kHz dan arus fasa sinus yang lebih baik diperolehi. 
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CHAPTER 1

INTRODUCTION

1.1 A Look Back On Electrical Machine Drives

DC machines were used extensively in variable speed drive over the past

decades mainly because of the decoupled control of flux and torque that could be

achieved by the field and armature current control respectively. They are mostly used

in variable speed applications to give a fast and good dynamic torque response

because the commutator maintains a fixed (and nearly ideal) torque angle at all

times. However, DC machines have two major weaknesses, the mechanical

commutator and brush assembly. These make periodical maintenance a must and

limit the use of DC machines in explosive environment.

Induction machines have several advantages over DC machines. They are

robust, require less maintenance, cheaper, and operate at higher speed. Basically,

induction machines control methods can be classified into scalar and vector control.

In scalar control, only magnitude and frequency of voltage, current, and flux linkage

space vectors are controlled. Where as, in vector control, the instantaneous positions

as well as the magnitude and frequency of voltage, current, and flux linkage space

vectors are controlled. A chart showing the hierarchy of variable frequency control of

induction machine is given in Figure 1.1. Constant volt per hertz is a well-known

scalar control method while Field Oriented Control (FOC) and Direct Torque Control

(DTC) are the two most popular vector control methods.
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Figure 1.1 : Classification of induction machines control methods

The invention of Field-Oriented Control (FOC) in early 1970 by F.Blaschke

enables rugged induction machines to be controlled similar to that of DC machines

[1]. The advent of fast microprocessors and DSPs make the vector control popular in

the 1980’s. It is believed that the AC machines are supplanting the DC machines in

the near future [2].

FOC provides similar decoupled control of torque and flux, which is

inherently possible in the DC machines. The motor input currents are adjusted to set

a specific angle between fluxes produced in the rotor and stator windings. The rotor

flux position angle with respect to the stator must be known in this control method.

Once the flux angle is known, an algorithm performs the transformation by changing

three-phase stator currents into the orthogonal torque and flux producing components

[2]. These components are controlled in their d-q axis and an inverse transformation

is used to determine the necessary three-phase currents or voltages.

Although the FOC enables an induction machine to attain fast torque

response, some problems still exist. An accurate flux estimator had to be employed to

ensure the estimated value used in calculation does not deviate from the actual value.

Besides, the coordinate transformation had increased the complexity of this control

method. In [3], it is highlighted that the inverter switching frequency, torque ripple,
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and harmonic losses of the machine increase in the steady-state operation if the

hysteresis-based current-controlled inverter is used.

1.2 Direct Torque Control (DTC)

Direct Torque Control was first introduced by Takahashi in 1986. The

principle is based on limit cycle control and it enables both quick torque response

and efficiency operation [3]. DTC control the torque and speed of the motor, which

is directly based on the electromagnetic state of the motor [4]. It has many

advantages compare to FOC, such as less machine parameter dependence, simpler

implementation and quicker dynamic torque response [5]. It only needs to know the

stator resistance and terminal quantities (v and i) in order to perform the stator flux

and torque estimations. The configuration of DTC is simpler than the FOC system

due to the absence of frame transformer, current controlled inverter and position

encoder, which introduces delays and requires mechanical transducer [6]. In [3],

Takahashi had proved the feasibility of DTC compared to FOC.

In 1996, ABB has introduced the first industrial, speed-sensorless DTC

induction motor drive. This simple control scheme has gained popularity and it is

believed that they will soon replace the vector control drives commonly found in

industry applications [7].

1.2.1 The Conventional DTC

The basic configuration of the conventional DTC drive proposed by

Takahashi is as shown in Figure 1.2. It consists of a pair of hysteresis comparator,

torque and flux estimators, voltage vector selector and a Voltage Source Inverter

(VSI) [3].
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Figure 1.2 : Conventional DTC drive configuration

DTC performs separate control of the stator flux and torque, which is also

known as decouple control. The core of this control method is to minimize the torque

and flux errors to zero by using a pair of hysteresis comparators. The hysteresis

comparators lie at the heart of DTC scheme not only to determine the appropriate

voltage vector selection but also the period of the voltage vector selected. The

performance of the system is directly dependent on the estimation of stator flux and

torque. Inaccurate estimations will result in an incorrect voltage vector selection.

The basic method for estimating the stator flux is by using the stator voltage

model. This model does not require rotor speed and only need a single machine

parameter, i.e. the stator resistance. However, noise in voltage measurement and

integration drift can pose significant problems at low speed [8]. Another method for

estimating the stator flux is named current model. It solves the low speed problem

but it needs to monitor the rotor speed. In other words, it requires additional speed

sensor or observer. In [3], a combination of these 2 models had been proposed by

using a simple lag network.

1.2.2 The Evolution Of DTC

Although DTC is gaining its popularity, there are some drawbacks, which

need to be rectified. Variable switching frequency and high torque and flux ripples
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are the two major problems, which draw full attention of most researchers. To

overcome these problems, extensive research and development had been carried out.

In order to maintain the flux and torque error within the fixed hysteresis

bands, the switching frequency becomes unpredictable. It is highlighted in [9] and

[10] that the switching frequency varies with the operating speed, load condition and

parameters of the induction machine. Hence, in order to ensure that the switching

frequency does not exceed the limit, we have to calculate the extreme cases

corresponding to the maximum switching frequency. Nevertheless the drive does not

operate at these extreme cases in most of the time; therefore the maximum switching

frequency capability is not fully utilized.

In order to overcome this problem, a number of methods had been proposed

in the literature. Basically these can be divided into hysteresis based and non-

hysteresis based solutions. In [11] variable hysteresis band comparators had been

designed where the band can be adjusted to maintain constant switching frequency.

For non-hysteresis based solutions, a few techniques have been proposed, including

the use of space vector modulation, predictive control schemes and intelligent control

techniques, which had been published in [12-17].

Another problem normally associated with DTC drive is the high torque

ripple. Ideally, small torque hysteresis band will produce small torque ripple.

However, for microprocessor-based implementation, if the hysteresis band is too

small, the possibility for the torque to touch the upper band is increased. As a result,

the possibility of selecting a reversed voltage vector instead of zero voltage vector

will also increase. Incorrect voltage vector selection will result in high torque ripple.

In [19], it is proved that by reducing the sampling time, the torque ripple can be

reduced significantly. In addition, there are numerous techniques proposed to reduce

the torque ripple such as dithering technique [20], fuzzy logic control [15], [16] and

SVM [12]. A more details discussion is given in Chapter 2 on fixed switching

frequency and torque ripple reduction.
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1.3 Thesis Objective and Contributions

The objective of this thesis is to study, implement and improve the

performance of the DTC of induction machines. The thesis proposes a simple method

for torque and stator flux ripple reduction. Meanwhile, the constant switching

frequency is increased to 10kHz. The simple control structure of the DTC drive is

preserved. The contributions of this thesis are as follow:

• It proposes a torque controller, which had further minimized the

torque ripple (80% of ripple reduction had been achieved compare to

the hysteresis-based torque controller) and maintained a constant

switching frequency at around 10 kHz.

• It introduces a simple flux controller to replace the two-level

hysteresis comparator, which results in an almost circular stator flux

locus with small ripple (achieve 57% of ripple reduction compare to

the hysteresis-based flux controller).

• It reduces the Total Harmonic Distortion (THD) of the phase current

since a more sinusoidal current wave is achieved by implementing the

proposed flux controller.

• It performs simulations to verify and analyze the performance of the

proposed torque and flux controllers using MATLAB/SIMULINK

simulation package.

• It develops an experimental set-up to verify the proposed DTC drive.

A combination of TMS320C31 DSP and FPGA device reduces the

execution time.

However there are some constraints in this research:
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• The feasibility of the proposed controllers is evaluated only in low

speed region and low voltage due to laboratory equipment limitations.

• Equipment in laboratory is limited. The power supply can only

support up to 120 V.

• The speed of the TMS320C31 DSP is limited to 60MHz.

• The duration and funding of this research are limited.

1.4 Methodology of Research

A simulation on the conventional DTC drive is performed for better

understanding by using MATLAB/SIMULINK. With the understanding and

knowledge of the conventional DTC, a new torque and flux controllers are proposed.

The proposed controllers are then simulated to study on their effectiveness. Based on

the simulation results, proper planning and prototype design are made.

Once the satisfactory simulation results are obtained, the hardware prototype

are built and implemented. Hardware implementation is used to verify the feasibility

of the proposed drive. It consists of three main components, a digital signal processor

board DS1102 from dSPACE (TM320C31 at 60MHz), an Altera University Program

(UP) Educational Board and the power circuit. The DSP is responsible for estimating

the torque and stator flux. The proposed controllers are implemented using FPGA

with Very high-speed integrated circuits, Hardware Description Language (VHDL).

The power circuit consists of a 3-phase Voltage Source Inverter (VSI) connected to a

¼ HP induction machine. A friction load is coupled to the induction machine as a

mechanical load.

Several tests are performed on the prototype of the DTC drive. Trouble-shoot,

modifications, debug and improvements are carried out on the prototype until

satisfactory tests results are obtained.
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1.5 Thesis Organizations

A brief review of the contents of this thesis is given as follows:

Chapter 2 presents the principle of DTC and modeling of induction

machines in space vector form. Problems associated with DTC such as stator flux

estimation, fixed switching frequency techniques and torque ripple reduction are also

discussed.

Chapter 3 proposes new flux and torque controllers, which reduce torque

and flux ripples and produce constant switching frequency at around 10 kHz. The

principles and design of the new controllers are discussed and implemented to a

small induction machine.

Chapter 4 evaluates the performance of the proposed controllers via

simulation using MATLAB/SIMULINK simulation package. The descriptions on

modeling of the proposed DTC drive using SIMULINK block are given.

Chapter 5 describes the experiment set-up in this research. Detailed

information of each hardware components is given.

Chapter 6 gives all the simulation results, experimental results and

discussions.

Lastly, Chapter 7 gives the conclusions of the thesis and possible directions

of further research.
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