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ABSTRACT 

Laser produced from active medium is normally in continuous mode.  The beam 

can be modulated by inserting switching mechanism.  An electro-optic mechanism is one 

of the techniques used to alter the operation of laser beam from continuous into pulse 

mode.  Hence, the objective of this project is to develop an optical switch system by 

using Pockels effect.  Helium-Neon (He-Ne) laser was used as continuous light source in 

the project.  Calcite and quartz crystals were employed as natural birefringent materials.  

While a synthetic birefringent material, lithium niobate was used as a Pockels cell.  The 

lithium niobate crystal can become birefringent only through the application of electric 

field.  Therefore, several pulse generators were developed and used to trigger an electro-

optic driver to electrify the lithium niobate crystal.  A Pockels cell house was designed 

and fabricated by using perspex.  The Pockels cell house was completed with electrodes.  

The performance of the fabricated Pockels cell was compared to the commercial Pockels 

cell.  Both of the Pockels cells exhibited similar characteristic, whereby the linear 

polarization state of laser light was turned into circular state when it entered the 

electrified Pockels cells with a : b ratio of 1.0 : 1.0 (2 kV and 3 kV voltage applied) and 

1.1 : 1.0 (4 kV voltage applied). This converts the continuous He-Ne beam into pulse 

mode.  The generation of the laser pulse can be operated either in a single or repetitive 

mode.  It depends on the frequency of the pulse generator.  The amplitude of the 

produced laser pulse was increased by increasing the voltage supplied to electrify the 

lithium niobate crystal.  The  amplitude of the produced laser pulse by using transverse 

Pockels cell was 500 mV, 700 mV and 1000 mV at 2 kV, 3 kV and 4 kV applied voltage.  

While the result obtained by using commercial Pockels cell was 700 mV, 900mV and 

1200 mV. 
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ABSTRAK 

 Laser yang dihasilkan daripada medium aktif biasanya diperoleh dalam bentuk 

selanjar.  Alur ini boleh dimodulasi dengan memasukkan mekanisma pensuisan. 

Mekanisma elektro-optik adalah salah satu teknik yang digunakan dalam pensuisan laser 

selanjar kepada denyut.  Tujuan projek ini adalah untuk menghasilkan satu sistem 

pensuisan cahaya dengan menggunakan kesan Pockels.  Laser Helium-Neon (He-Ne) 

digunakan sebagai sumber cahaya selanjar dalam projek ini.  Hablur kalsit dan kuartz 

digunakan sebagai bahan dwibiasan semulajadi.  Manakala lithium niobate (bahan 

dwibiasan buatan) digunakan sebagai sel Pockels. Lithium niobate hanya akan menjadi 

bahan dwibiasan apabila dikenakan medan elektrik.  Beberapa penjana denyut dibina dan 

digunakan untuk membekalkan medan elektrik kepada lithium niobate.  Rumah sel 

Pockels direka dan dibina dengan menggunakan perspek.  Rumah ini dilengkapkan 

dengan elektrod.  Prestasi sel Pockels yang dibina dibandingkan dengan sel Pockels 

komersial.  Kedua-dua sel Pockels menunjukkan sifat sama dengan menukarkan 

pengutuban linear cahaya laser kepada bulat dengan a : b 1.0 : 1.0 (bekalan elektrik 2 kV 

dan 3 kV) dan 1.1 : 1.0 (bekalan elektrik 4 kV) apabila laser dilintaskan melalui sel 

Pockels yang dikenakan elektrik.  Keadaan ini menyebabkan operasi He-Ne laser selanjar 

bertukar kepada denyut.  Laser denyut yang dijanakan boleh dalam bentuk tunggal atau 

berulang-ulang.  Penjanaan laser denyut bergantung kepada frekuensi penjana denyut.  

Amplitud laser denyut yang dihasilkan bertambah dengan penambahan bekalan elektrik 

pada lithium niobate.  Amplitud laser denyut yang dihasilkan (sel Pockels yang dibina) 

adalah 500 mV, 700 mV dan 1000 mV pada bekalan elektrik 2 kV, 3 kV dan 4 kV.  

Manakala untuk sel Pockels kommersial adalah 700 mV, 900 mV dan 1200 mV.   
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CHAPTER 1 

INTRODUCTION

1.1 Light Modulation 

Applications of laser light always require the modulation of some properties 

of the laser light wave.  The modulation of light wave is to control variation of some 

detectable properties of the light wave, such as its intensity (amplitude), phase, 

wavelength (frequency) or polarization (direction of the beam propagation) 

(Schawlow, 1969; Hammer, 1975).  A modulator is a device that alters a detectable 

property of a light wave corresponding to an applied electric signal (Hammer, 1975).  

Actually there are a number of methods which can be used to modulate laser 

light such as mechanical, electro-optic, magneto-optic and acousto-optic.  Most 

mechanical methods such as rotating mirror and mechanical shutter or chopper used 

for laser-beam modulation are slow, unreliable and have much inertia to allow the 

faster light modulation (Kaminow and Turner, 1966; Schawlow, 1969).  Thus, the 

mechanical methods are seldom used in modern modulation equipment.  Hence, the 

interaction between laser wave and electric, magnetic or acoustic fields acting 

through the electro-optic, magneto-optic and acousto-optic effect are used to 

modulate laser-beam (Kaminow and Turner, 1966; Chen, 1970).  Modulation of 
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laser-beam by using these effects is faster and more reliable than the mechanical 

methods.  Among these three interactions, electro-optic effect has received most 

attention and is widely used for light modulation as it provides the fastest modulation 

(Schawlow, 1969; Booth and Hill, 1998).  For electro-optic effect, the application of 

an electric field across certain crystal is used to result in change of refraction index of 

the crystal.  The crystal becomes birefringent under the influence of the applied 

electric field (O’Konski, 1978; Noriah Bidin, 2003). These crystals include, 

potassium dihydrogen phosphate (KDP), potassium dideuterium phosphate (KD*P), 

lithium niobate (LiNbO3), lithium tantalite (LiTaO3) and cesium dihydrogen arsenate 

(CDA) (Kuhn, 1998). 

The electro-optic effect can be used to control the intensity or phase of the 

propagating light (Yariv, 1997).  The modulation by using electro-optic effect is the 

basic operation concept for the optical modulator, optical switch, Q-switch, and 

deflector (Zajac, 1982; Laud, 1985; Chuang, 1996). 

1.2 The History Of Electro-optic

In 1875, Kerr observed that certain dielectric medium become doubly 

refractive when placed in a strong electric field (Schawlow, 1969; Kaminow, 1974). 

This effect was consequently named as Kerr effect, or quadratic electro-optic effect.

He also discovered this effect in liquids such as carbon disulphide (Kaminow and 

Turner, 1966; Camatini, 1973; Kaminow, 1974).  The Kerr effect can be observed in 

any crystal (Schawlow, 1969). 

The linear electro-optic effect was introduced by Pockels in 1893 (Jenkins, 

and White, 1976).  The linear electro-optic effect is always called as Pockels effect to 

distinguish it from Kerr effect.  This effect can occur only in crystals that lack of a 
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center of symmetry (Schawlow, 1969).  During the nineteenth century, Pockels 

examined the Pockels effect in quartz, tourmaline, sodium chlorate and K-Na tartrate 

salt (Rochelle salt) (Kaminow and Turner, 1966). 

1.3 Research Background 

The first useful Pockels cell was made of potassium dihydrogen phosphate 

(KDP) by Billings in 1949.  However, this device was not capable to be used for 

high-frequency operation.  In 1961, Schawlow, developed a high frequency laser 

modulator made of KDP crystal based on the Pockels effect.  But, the power required 

was too high for practical use.  This stimulated interest of many researchers in 

searching other feasible crystals (Kaminow, 1974). 

Since then, lithium niobate (LiNbO3), lithium tantalite (LiTaO3) and 

ammonium dihydrogen phosphate (ADP) are a few more capable materials used for 

light modulation (Schawlow, 1969).  In 1967, Kaminow and his group constructed 

light intensity modulators by using LiTaO3 and LiNbO3.  The performance of the 

LiNbO3 intensity modulator has of slight advantage compared to the LiTaO3 due to 

the larger electro-optic coefficient of LiNbO3.  Light modulation by using Pockels 

effect on LiNbO3, KDP and ADP was well established (White and Chin, 1972;  

Salvestrini et al., 2004). 

A few forms of modulator have been developed by using Pockels effect.

They are lumped, traveling wave, zigzag, and optical waveguide modulator.  The 

configuration of each type of modulator has been described by Chen (1970).  The 

physical construction of each modulator is illustrated in Figure 1.1, 1.2, 1.3 and 1.4 

(Chen, 1970).  Among them, lumped modulator is most suitable to be used for 
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modulation of frequency < 1 GHz and with the crystal length about 1 cm.  Traveling-

wave and zigzag modulator are used for modulation of frequencies greater than

1 GHz (Denton et al, 1967).  The type of modulator chosen depends on the required 

driving power and crystal length (Chen, 1970).

Figure 1.1:  Lumped modulator and its electric circuit (Chen, 1970) 

Figure 1.2:  Traveling-wave modulator using two-plate structure (Chen, 1970) 
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Figure 1.3:  Zigzag modulator (Chen, 1970) 

Figure 1.4: Optical waveguide modulator (Hammer, 1975) 

A lumped electro-optic optical modulator has been developed by using single 

crystal LiTaO3 which is in a cylinder form.  A transistor driver-amplifier with a 0.2 

W output power is used to drive the LiTaO3 at a light wavelength of 632.8 nm   In 

order to reduce the voltage for modulation, the modulator is configured in the 

transverse mode.  The modulator provides 40% intensity of modulation (Kaminow

and Sharpless, 1967). 
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 The accurate and direct determination of the phase retardation due to the 

birefringence of certain materials can be done by using a technique based on the 

linear variation of the transmitted intensity with the applied electric field to an 

amplitude modulator (O’Shea, 1985). 

1.4 Comparison Between Different Techniques Of Beam Modulation 

 Besides the Pockels (linear electro-optic) effect, other techniques like 

magneto-optic, acousto-optic and Kerr effects can also be used to change the 

refraction index of an optical medium through the application of an external field.

However the Pockels (linear electro-optic) effect is chosen because of some 

advantages.  The comparison between different techniques of laser beam modulation 

is listed in Table 1.1.  
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Table 1.1:  Comparison between different modulation techniques 

Techniques Advantages Disadvantages

1.  Pockels (linear electro-

optic) effect 

-  Fastest modulation 

speed (Schawlow, 1969; 

Booth and Hill, 1998; 

O’Shea, 1985). 

-  Easy electric field 

generation (Booth and 

Hill, 1998). 

-  Precise timing. 

-  Expensive. 

-  Only occur in the 21 

types of crystal classes 

(Bessley, 1976; Noriah 

Bidin, 2003).

-  Required large voltage. 

-  To get good result need 

high quality polarizer 

(Booth and Hill, 1998). 

2.  Kerr effect -  Occur in all the 32 types 

of crystal classes (Bessley, 

1976).

-  Kerr coefficient of most 

crystals is small. 

-  Nitrobenzene with high 

Kerr coefficient is toxic 

and unstable (Bessley, 

1976).

-  Required higher voltage 

than Pockels effect 

(Lothian, 1975). 

3.  Acoustic effect -  Simple radio frequency 

circuit. 

-  Slow opening times 

(Booth and Hill, 1998) 

4.  Magneto effect -  Applied to gases, liquids 

and solids (Bessley, 

1976).

-  Slow opening times. 

-  Hard to generate require 

magnetic strength 

(Bessley, 1976). 

 There are many techniques that can be used to modulate the laser beam by 

changing the refraction index of an optical medium.  But electro-optic promises a 

better offer than the rest.  It can be used either as an internal or external modulator 

(Bessley, 1976).
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In this project, Pockels effect has been applied to produce an optical switch.

It is an important element in the construction of a Q-switched Nd:YAG laser for 

medical purpose. 

1.5 Research Objectives 

The objectives of this research are listed as followed: 

1. To diagnose birefringence characteristic, 

2. To design a trigger system, 

3. To develop a Pockels cell and 

4.  To characterize the output of an optical switch. 

1.6 Scopes of Research 

In this research, the polarization of He-Ne light was analyzed by using 

Malus’ Law.  Natural birefringent materials, like quartz and calcite crystal were used 

as specimen. 

A transverse Pockels cell was developed by applying electric field across the 

lithium niobate crystal.  High voltage was supplied to Pockels cell.  A pulse 

generator was designed to trigger the switch in single mode and repetitive mode. 
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1.7 Organization of Thesis 

This thesis consists of seven chapters.  The introduction, research 

background, objectives and scopes of research are briefly mentioned in Chapter 1.  

Chapter 2 describes some important theories that are related to optical switch.

Chapter 3 discusses about the optical and electrical equipments used to accomplish 

the project.  The development of the pulse generator used to trigger the electro-optic 

driver is discussed in Chapter 4.  Chapter 5 describes about the preliminary works on 

natural birefringent materials.  The development of a transverse Pockels cell and it 

diagnostic will be discussed in Chapter 6.  The application of Pockels cell as an 

optical switch is elaborated in Chapter 7.  Finally, the conclusions of this research, 

research problems and suggestions are in Chapter 8. 



117

dimension and the material of the electrodes in the transverse Pockels cell were not 

suitable to produce a strong electric field to the crystal. 

 The CD4528BCN dual monostable multivibrator used was very sensitive.  The 

operation of single and repetitive mode pulse generator could not be combined.  

Therefore, two types of pulse generator were developed. 

8.3 Suggestions 

The project should be continued for further studies by packaging or combining all 

the separate components like pulse generator, power supply, electro-optic driver and 

Pockels cell to become a complete optical switch system. 

 In order to use this system as a Q-switch system for high power laser, the Pockels 

cell should be provided with a temperature controller to avoid overheating, which will 

damage the crystal during switching. 

 It is also suggested that an interlocking system should be installed in this system 

to avoid any accident, by switching off the system immediately whenever overheating 

occurs.

 Further studies can also be carried out to determine the most suitable material, 

dimension and method to produce a better electrode. 
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