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ABSTRACT

The numerical analysis of lid driven in a square cavity flow is discussed.

The two dimensional, incompressible, time dependent Navier-Stokes equations are

investigated. The governing equations which contains continuity and momentum

equations are derived from conservation of mass and conservation of momentum.

The governing equations are first transformed into nondimensional equations.

These equations are solved numerically using Marker and Cell (MAC) method in

conjunction with fractional step method. Next, the results plotted using Matlab.

Numerical results presented include the velocity profiles, pressure and vorticity

contours. The velocity profiles is compared with [1]. The results showed that

MAC method is suitable for solving the problem since the error is not quite

difference. Different Reynolds number are used causing perturbation on vorticity

contours. Then, the problem is extended by adding a velocity at the bottom wall

of cavity. The pattern of the flow fluid is changed when different direction of

velocities is applied to the problem. Linear stability condition must be obeyed

in choosing Reynolds number. The smaller the Reynolds number gives more

stability to the problem. The very large Reynolds number make diffusive terms

becomes zeroes.
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ABSTRAK

Analisis secara berangka iaitu pergerakan penutup dalam satu ruang

berbentuk segi empat sama dibincangkan. Persamaan Navier-Stokes yang

bergantung pada masa, dua dimensi dan tak boleh dimampat dikaji. Persamaan

menakluk yang mengandungi persamaan kesinambungan dan momentum

diperoleh daripada keabadian jisim dan keabadian momentum. Pertama,

persamaan menakluk ditukarkan kepada persamaan tak berdimensi. Persamaan

ini diselesaikan secara berangka menggunakan kaedah Marker and Cell (MAC)

dan juga kaedah langkah pecahan. Kemudian, keputusan dilakarkan melalui

Matlab. Penyelesaian berangka diperoleh mengandungi profil halaju, tekanan dan

kontur pusaran. Profil halaju dibandingkan dengan [1]. Keputusan menunjukkan

kaedah MAC sesuai digunakan dalam penyelesaian masalah ini kerana ralat

adalah sedikit sahaja. Nombor Reynolds yang berlainan digunakan menyebabkan

gangguan pada kontur pusaran. Kemudian, masalah dikembangkan lagi dengan

menambah halaju pada bahagian bawah ruang. Pola aliran bendalir bertukar

apabila halaju yang berbeza arah digunakan dalam masalah tersebut. Syarat

kestabilan linear mestilah diikuti dalam pemilihan nombor Reynolds. Semakin

kecil nombor Reynolds, semakin stabil masalah tersebut. Nombor Reynolds yang

sangat besar menyebabkan sebutan pembauran menjadi sifar.
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Chapter 1

Introduction

1.1 Background of Study

The lid driven cavity flow is one of the most studied fluid problems in

computational fluid dynamics field. The lid driven cavity flow is the motion of a

fluid inside a cavity with a lid moving by a constant velocity. Moreover, extensive

computational and experimental of fluid flow behaviours inside lid driven cavities

have been studied. Numerous studies have been carried out on flow patterns

inside a cavity. The simplicity of the geometry of the cavity flow makes the

problem easy to code and apply boundary conditions. The lid driven flow in a

cavity has become a widely used for testing two and three-dimensional numerical

simulation schemes.

There are different methods of solution in solving lid driven cavity.

Numerical solution of the incompressible Navier-Stokes equations has been

investigated by researchers. Finite difference, finite element and finite volume

methods have been extensively developed. The majority of the early fundamental

research work in this field were based on finite difference formulations, whereas

the finite volume method dominates more recent activity and the commercial

codes used in industry. This problem is commonly encountered in a variety

of engineering applications such as cooling of electronic devices, lubrication

technologies, drying technologies and dynamics of lakes [3].



2

In addition, two dimensional viscous incompressible flow equations are

usually expressed in one of two different formulations based on the dependent

variables used. First, the primitive variable formulation which the equations

are expressed in terms of the pressure and velocity. This is the formulation

of choice for extension to three dimensional flows. Time splitting method also

known as fractional step method, SIMPLE, SIMPLER, SIMPLEC and PISO

algorithm will be adopted. The second form of the equations is the vorticity-

stream function equations which are derived from the Navier-Stokes equations

by eliminating pressure and incorporating the definitions for the vorticity-stream

function. The problems will be solved using staggered grid or collocated grid.

There are different types of software are used to compute the simulations of

the problem. For example, MATLAB, FLUENT and FOTRAN [4]. On the other

hand, Bruneau and Saad [5] studied the numerical simulation of driven cavity flow

at high range of Reynolds number using high grid numbers had been conducted.

They used the conventional Computational Fluid Dynamics (CFD) method which

is by solving the two dimensional Navier-Stokes equations.

In recent years, due to rapidly increasing computational power,

computational methods have become the essential tools to conduct research in

various engineering fields. In parallel to the development of ultra high speed

digital computers, CFD has become the new third approach apart from theory

and experiment in the philosophical study and development of fluid dynamics.

Fudhail [6] used Lattice Boltzmann method (LBM) as an alternative method

to conventional CFD. The main advantage of LBM is its flexibility in terms

of programming and better accuracy in dealing with complicated boundary of

geometries [6]. In addition, the LBM is also better than the classical CFD in the

range of small to moderate Reynolds numbers if dealing with flows in complex

geometries [7]. Fluid flow behaviours of steady incompressible flow inside lid

driven square cavity is studied. Numerical calculations are conducted for different

Reynolds numbers by using Lattice Boltzmann scheme.

In the present study, two dimensional unsteady Navier-Stokes equation

in primitive variables is considered. Here, Marker and Cell (MAC) method is
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applied to a well-established benchmark problem namely the flow in a lid driven

cavity. The purpose of this model is to investigate the pattern of flow included

the velocity profile, vorticity contours, pressure of the flow. The various number

of Reynolds number is applied lead to the perturbation on the vorticity contour.

1.2 Objectives of Study

The objectives of these studies are :

(i) to derive and solve the governing equations for the lid driven cavity by using

Marker and Cell (MAC) method.

(ii) to investigate the flow pattern in terms of vorticity contour of the lid driven

cavity under the influence of varying Reynolds number by using MATLAB

software.

1.3 Scope of Study

This research will focus on two dimensional, laminar and time dependent

of lid driven cavity. The nonlinear partial differential equations of the governing

equations is derive from conservation of momentum and conservation of mass.

We use MAC method in order to solve the equation. The disretisation is done

under consideration of MAC staggered grid. Here, we adopted fractional step

method. Then, we apply the solution into MATLAB software to investigate the

simulation of flow in terms of velocity, vorticity and pressure.
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1.4 Significance of Study

This research project will lead us to better understand about flow in a

lid driven cavity. An imposed of varying moderate Reynolds numbers can create

significant changes in the flow patterns in terms of vorticity. Based on this basic

understanding, a more challenging exploration can be made such as solving higher

Reynolds numbers with different approach formulation such as stream function

vorticity. Another algorithm such as SIMPLE, SIMPLER, SIMPLEC or PISO

will be applied into problem. Another types of mathematical computation such

as FORTRAN and FLUENT can be used into problem.
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