OPTIMISATION OF OPERATING PARAMETERS FOR THE REMOVAL OF ETHANOL FROM ZINGIBER OFFICINALE ROSCOE (GINGER) OLEORESIN USING SHORT-PATH DISTILLATION

SAZALINA BINTI MOHAMAD SAMURI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

AUGUST 2005

Dedicated to my beloved husband, Ahmad Ridzuan bin Mohamed Said, my darling daughter, Alya Syahmina, parents and family

ACKNOWLEDGEMENT

I would like to express my gratitude to Assoc. Prof. Dr. Noor Azian Morad and Assoc. Prof. Mustafa Kamal Abd.Aziz for their guidance, advice and support throughout this project.

To my loving husband, thank you for believing in me and giving me a shot at doing exactly what I've always wanted to do and love doing most. To all CLEAR staffs, Haira Rizan, Sabariah and Nurul Azlina, the best colleagues anyone could ever ask for.

And last but not least, thank you to all who had assisted and making this project a success.

ABSTRACT

Due to the importance of exploiting the natural sources to enhance healthier lifestyle, cultivated herbs such as Zingiber Officinale Roscoe or ginger has become our main interest in this research in order to accomplish all the objectives mentioned. Using a statistical software called MINITAB, optimisation on short-path distillation experiments was done and the results showed that feed temperature, along with evaporating temperature and distillate rate were the three operational parameters that influenced the purification process of ginger oleoresin. Feed temperature should be set at 65°C and the evaporating temperature also at the same temperature to maximise the oleoresin concentration. The result of the study also point to the advantages and efficiency of feed pre-heating to temperature close or equals to that of evaporating temperature under steady-state conditions for the given operating conditions, prior to its entering the evaporation surface. Although feed rate effect is not statistically significant, it does have linear effect on the oleoresin concentration. The vast difference between theoretical separation efficiency and calculated separation efficiency was probably due to the thickness of liquid film, initial concentration and viscosity of the liquid feed. The theoretical value of recovery yield at feed and evaporating temperature of 65°C is 0.99, and experimental value of recovery yield is 0.95. Based on this integrated knowledge on various type of ginger samples, pre-processing methods and more importantly the experience of applying technologies in optimising final purification of ginger oleoresin, would serve to enhance the transfer of advanced technology to local producers.

ABSTRAK

Kepentingan 'mengeksplotasikan' sumber semulajadi ke arah kehidupan yang lebih sihat, penanaman herba seperti Zingiber Officinale Roscoe atau halia telah menjadi fokus utama dalam penyelidikan ini. Dengan menggunakan perisian statistik MINITAB, pengoptimuman penyulingan laluan pendek telah dijalankan dan keputusan eksperimen telah menunujukkan bahawa suhu suapan, bersama dengan suhu penyejatan dan kadar pendistilan adalah tiga parameter yang penting dalam proses penulenan oleoresin halia. Suhu suapan harus ditetapkan pada 65°C dan begitu juga dengan suhu penyejatan untuk memaksimakan kepekatan oleoresin di akhir proses penulenan. Keputusan eksperimen juga menunjukkan kelebihan dan kepetingan pra-pemanasan terhadap suhu suiapan sama atau hampir sama dengan suhu penyejatan di bawah keadaan stabil, sebelum cecair masuk ke dalam permukaan penyejatan. Walaupun kadar suapan tidak signifikan secara statistik, ia sebenarnya mempunyai kesan secara linear terhadap kepekatan oleoresin. Perbezaan yang ketara antara kecekapan pemisahan secara teori dengan kecekapan pemisahan yang diperolehi dari eksperimen mungkin disebabkan oleh ketebalan cecair filem, kepekatan asal and kelikatan cecair suapan. Nilai teori hasilan pada suhu suapan 65°C adalah 0.99, dan nilai hasilan secara eksperimen ialah 0.95. Berdasarkan pelbagai pengetahuan yang dapat diteroka melalui penyelidikan berkenaan berjenis-jenis sampel halia, kaedah prapemprosesan dan yang pentingnya pengoptimuman penyulingan turus pendek ini, akan dapat meningkatkan pengetahuan serta pemindahan teknologi secara lebih efisien kepada penanam serta pengeluar halia tempatan.

CONTENT

CHA	PTER	TOPIC	PAGE
TITL	E PAGI	E	i
DECI	LARAT	TON	ii
DEDI	CATIO	DN	iii
ACK	NOWLI	DGEMENT	iv
ABST	RACT		V
ABST	RAK		vi
TABI	LE OF (CONTENT	vii
LIST	OF TA	BLES	xvi
LIST OF FIGURES			xviii
NOMENCLATURE			xxi
GLOS	SSARY		xxiii
LIST OF APPENDIXES			xxxi
1	INTR	RODUCTION	1
	1.1	Research background	1
	1.2	Objectives and scopes	5
	1.3	Statement of problem	5
	1.4	Research contribution	7

2	LITI	RATURE RE	EVIEW	8
	2.1	Ginger (Zing	giber officinale roscoe)	8
		2.1.1 The	Zingiberaceae family	8
		2.1.2 The	morphology of ginger	10
		2.1.3 The	importance of ginger in medicinal use	11
	2.2	Oleoresin ov	verview	12
		2.2.1 Defin	nition and background	12
		2.2.2 Ging	er oleoresin: Chemistry and	12
		chara	acteristics	
	2.3	Pre-processi	ng of ginger	20
	2.4	Review of c	urrent techniques in natural product	22
		extraction m	ethods	
		2.4.1 Steam	m distillation	23
		2.4.2 Hyd	ro-distillation	24
		2.4.3 Supe	er critical fluid extraction	24
		2.4.4 Lead	ching	25
		2.4.5 Sox	hlet extraction	27
	2.5	Ginger oleon	resin extraction	27
	2.6	Ethanol rem	oval of oleoresin	30
	2.7	Distillation a	and Evaporation	31
		2.7.1 Mole	cular Distillation	31
		2.7.2 Shor	t-path distillation	32
		2.7.3 Deve	elopment of short-path distillation	34
	2.8	Theory of sh	nort-path distillation	38
		2.8.1 Shor	t-path distillation: technique	38
		of se	paration under high vacuum	
		2.8.2 Mean	n free path of molecules	40
		2.8.3 Evap	poration rate	40
		2.8.4 Sepa	ration efficiency	47

3	MET	THODOLOGY	50
	3.1	Overall methodology	50
	3.2	Steps involved in obtaining the best	53
		operating condition	
		3.2.1 Sample preparation steps	53
	3.3	Ginger Oleoresin Extraction Using Solvent	55
		Ethanol as Solvent	
	3.4	Partial solvent removal	56
	3.5	Ethanol removal of oleoresin using	58
		short-path distillation	
		3.5.1 Short-path distillation model details	60
		3.5.2 Heating and temperature control	62
		3.5.3 Cooling and control	63
		3.5.4 Pressure and vacuum control	64
		3.5.5 Thickness of liquid film	66
		3.5.6 Feed tank	66
	3.6	Ethanol removal experiments by	67
		short-path distillation	
		3.6.1 Experiment A and B: Feed	67
		temperature effect on the final	
		oleoresin concentration	
		3.6.2 Experiment C: Feed rate effect on	69
		the final oleoresin concentration	
		3.6.3 Experiment D: Evaporating temperature	70
		effect on the final oleoresin concentration	
		3.6.4 Distillate rate	71
		3.6.5 Residual rate	71
		3.6.6 Residence time	72
		3.6.7 Data analysis : Separation efficiency	72
		and recovery yield	
	3.7	Optimisation: MINITAB in Software	72
		aided analysis	
		3.7.1 Response surface method	74

		3.7.2	Regressio	on table	78
		3.7.3	Response	optimization	80
4	RES	ULTS A	ND DISCU	USSION	81
	4.1	Result	ts overview	,	81
	4.2	Extrac	ction and pa	artial solvent removal findings	82
	4.3	Short-	-path distill	ation as final ethanol removal	83
		4.3.1	Effect of	feed temperature on final	83
			oleoresin	concentration using Excel	
		4.3.2	Feed rate	effect on final oleoresin	85
			percent us	sing Excel	
		4.3.3	Evaporati	ng temperature effect on final	87
			oleoresin	percent using Excel	
	4.4	Mater	ial balance		88
	4.5	Softw	are aided an	nalysis results	91
		4.5.1	Experime	ent A: Feed temperature influence	91
			on the fin	al % of oleoresin in flask	
		4.5.2	Response	optimisation of the identified	96
			significan	t factors	
			4.5.2.1	Overlaid contour plot of feed	96
				temperature and distillate rate vs	
				oleoresin concentration in flask	
			4.5.2.2	Surface wireframe plots of feed	98
				temperature and distillate rate vs	
				final % of oleoresin in flask	
			4.5.2.3	Modifying feed temperature and	99
				distillate rate according to the	
				optimised factors setting	
			4.5.2.4	Overlaid contour plot of feed	100
				temperature and residence time vs	

	final % of oleoresin in flask	
4.5.2.5	Surface wireframe plot of feed	101
	temperature and residence time vs	
	final % of oleoresin in flask	
4.5.2.6	Modifying feed temperature and	102
	residence time rate according to the	
	optimised factors setting	
4.5.2.7	Overlaid contour plot of	103
	evaporating temperature and distillate	
	rate vs final % of oleoresin in flask	
4.5.2.8	Overlaid contour plot of	104
	evaporating temperature and distillate	
	rate vs final % of oleoresin in flask	
4.5.2.9	Overlaid contour plot of	106
	vaporating temperature and	
	distillate rate vs final % of oleoresin	
	in flask	
4.5.3.0	Overlaid contour plot of feed	107
	temperature, evaporating temperature	
	and distillate rate vs final % of	
	oleoresin in flask	
4.5.3.1	Surface plot of feed temperature,	108
	evaporating temperature and	
	distillate rate	
4.5.3.2	Modifying feed temperature,	109
	evaporating temperature and distillate	
	rate according to the optimised factors	
	setting	
4.5.3.3	Experiment B: Feed temperature	110
	influence on the final oleoresin	
	concentration in flask $(Tf \neq T_{evp})$	
4.5.3.4	Experiment C: Feed rate, F influence	113
	on the final oleoresin concentration	

		in flask	
	4.5.3.5	Experiment D: Evaporating	115
		temperature influence on the final	
		oleoresin concentration in flask	
	4.5.3.6	Overlaid contour plot of evaporating	117
		temperature and distillate rate vs	
		final oleoresin concentration in flask	
	4.5.3.6	Surface plot of evaporating	118
		temperature and distillate rate vs final	
		oleoresin concentration in flask	
	4.5.3.7	Modifying evaporating temperature	119
		and distillate rate according to the	
		optimised factors setting	
	4.5.3.8	Overlaid contour plot of distillate	120
		rate, residence time and residual rate vs	
		final oleoresin concentration in flask	
	4.5.4.0	Surface plot of distillate rate,	121
		residence time and residual rate vs	
		final % of oleoresin concentration	
		in flask	
	4.5.4.1	Modifying distillate rate, residence	122
		time and residual rate vs final oleoresin	
		concentration in flask	
Separa	ation efficiency	and recovery yield from the	123
identif	fied optimum c	onditions	
4.6.1	Separation eff	ficiency: the relation between	126
	the optimum t	feed temperature, evaporating temperature	
	and film thick	ness	
4.6.2	Recovery yiel	d	129

4.6

5	CON	CONCLUSION AND RECOMMENDATION		
	5.1	Overall conclusions of the ethanol removal	131	
		from ginger oleoresin using short-path distillation		
	5.2	Recommendations	133	
RE	FEREN	CES	134	
AP	PENDIX	KES	141	

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Properties Data From Literature For The Prominent	
	Constituents In Ginger Oil And Oleoresin	17
3.1	The set of feed temperature examined in the experiment	68
3.2	Preliminary run on feed rates	69
3.3	The set of feed rates examined in the experiments	70
3.4	The evaporating temperature involved in the experiments	71
3.5	Characteristics in short path distillation response surface design	75
3.6	Response Surface Regression for feed temperature, distillate	
	rate vs Oleoresin concentration	79
4.1	Extraction and partial solvent removal findings	82
4.2	Material balance data for short-path distillation	89
4.3	Summarised Minitab results for the combined factors in	
	experiment A	93
4.4	Summarised Minitab results for the combined factors in	
	experiment B	111
4.5	Summarised Minitab results for the combined factors in	
	experiment C	114
4.6	Summarised Minitab results for the combined factors in	
	experiment D	116
4.7	Experiment A: feed temperature influence on oleoresin	
	concentration in flask	124
4.8	Experiment D: Evaporating temperature influence on the	
	oleoresin concentration in flask	125

4.9 Optimal conditions identified

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	The percentage of constituents in ginger oleoresin	13
2.2	Structures of the Oleoresin Constituents	16
2.3	Steam distillation	23
2.4	Hydro-distillation	24
2.5	Countercurrent leaching	26
2.6	Soxhlet extraction	27
2.7	Boiling curve, showing the region of thermal and non-thermal	
	decomposition	34
2.8	Short-path distillation plant with the main components	36
2.8.1	Feeder tank	37
2.8.2	Evaporator	37
2.8.3	Cold trap	38
2.8.4	Short-path evaporator column showing the flow cooling	
	and heating fluid	41
2.8.5	Schematic of Short-path evaporator	42
2.9	Vapour-liquid equilibria	49
3.1	The overall methodology	52
3.2	Steps of pre-treatment involved in sample preparation	54
3.3	The 50 litres plant vessel used in extraction	56
3.4	Calibration curve of refractive index used in the experiment	57
3.5	The short path distillation system in CLEAR, UTM	59
3.6	Parts in short-path evaporator	61
3.7	The evaporation column	63

3.8	The cooling bath circulator	64
3.9	The vacuum system of short path distillation	
	attached to the glass	65
3.10	Cold trap	65
3.11	Feed tank	66
4.1	Effect of feed temperature on oleoresin percent	84
4.2	Effect of feed rate on oleoresin percent	86
4.3	Effect of feed and evaporating temperatures on	
	oleoresin percent	87
4.4	Mass and energy balance for short-path distillation column	88
4.5	Ethanol loss (%) vs feed rate (ml/s)	90
4.6a	Feasible region to obtain the highest % of oleoresin	
	concentration in flask	97
4.6b	Surface wireframe plot of feed temperature and	
	distillate rate	98
4.6c	Feed temperature and distillate rate optimisation	100
4.6d	Feasible region to obtain the highest % of oleoresin	
	concentration in flask	101
4.6e	Surface wireframe plot of feed temperature and	
	residence time	102
4.6f	Feed temperature and residence time optimisation	103
4.6g	Feasible region to obtain the highest % of oleoresin	
	concentration in flask	104
4.6h	Surface plot of evaporating temperature and distillate rate	105
4.6i	Evaporating temperature and distillate rate optimisation	106
4.6j	Feasible region to obtain the highest % of oleoresin in flask	107
4.6k	Surface plot of evaporating temperature, distillate rate	
	and feed temperature	108
4.61	Feed temperature, evaporating temperature and distillate	
	rate optimisation	109
4.6m	Feasible region to obtain the highest % of oleoresin	
	concentration in flask	117
4.6n	Surface plot of evaporating temperature and distillate rate	118

Evaporating temperature and distillate rate optimisation	119
Feasible region to obtain the highest concentration of	
oleoresin in flask	120
Surface plot of residence time, residual rate and	
distillate rate	121
Evaporating temperature and distillate rate optimization	122
Film shape on the evaporator of short-path distillation	127
	Feasible region to obtain the highest concentration of oleoresin in flask Surface plot of residence time, residual rate and distillate rate Evaporating temperature and distillate rate optimization

NOMENCLATURE

α	separation efficiency
[A]	reactant concentration
C, C_w, C_{d1}, C_{d2}	concentration of species in liquid
C_{∞}	equilibrium concentration
D	Diffusion coefficient
K, K_{d1}, k_{d2}	rate constant
M, M_A, M_B	Molecular weight
η	mass transfer efficiency
$p^{o}, p^{o}{}_{A}, p^{o}{}_{B}$	saturation vapour pressure, component
R	Universal gas constant
r'	rate of reaction
r	radius of gland/oil globule
Т	Temperature
t	time
W_o , W_{oA} , W_{oB}	rate of molecular evaporation
x_A , x_B	mole fraction of component A at evaporating surface
\mathcal{Y}_A , \mathcal{Y}_B	mole fraction of component A at condensing surface
ρ	density
σ	cross-section
λ	mean-free path
Ω	volume interaction
Ν	number of target particles in Ω
А	Atomic weight
N _A	Avogadro number

E_i	Evaporation rate
C_{is}	Mole fraction of the liquid in the film surface
F	surface ratio
n	number of components in the mixture
k	anisotropy of vapour
G	residual output
X	molar fraction in the residual flow
Xo	molar fraction in the feed
и	separation ratio
S	film thickness
η	viscosity
m_o	mass flow rate

GLOSSARY

alcohol	any of a class of organic compounds with the general	
	formula ROH, where R represents an alkyl group made	
	up of carbon and hydrogen in various proportions and	
	OH represents one or more <u>hydroxyl groups</u> .	
aliphatic	any of a large class of organic compounds whose	
	carbon atoms are joined together in straight or	
	branched open chains rather than in rings.	
amber	a heavy, full bodied, powdery, warm fragrance note.	
anti-inflammatory	medicines that relieve pain, swelling, stiffness, and	
	inflammation.	
aspirin	a kind of drug used to relieve pain and fever, by	
	blocking the production of hormone-like substances	
	known as prostoglandins	
ayurvedic	the ancient Hindu art of medicine and of prolonging	
	life	
bleaching	uniform coating of lime after ginger is being dried and	
-	limed for several days.	

blanching	blanching is a heat treatment process applied to fruit and vegetables prior to freezing, drying or canning like hot steaming, hot water boiling.
chromatography	resolution of a chemical mixture into its component compounds by passing it through a system that retards each compound to a varying degree.
comminution	process of grinding.
concrete	The mixture of volatile oil, waxes and colour that is obtained after an atomatic raw material such as flower petals are extracted with a highly volatile solvent.
condenser	a apparatus of which a change of a substance from the gaseous (vapor) to the liquid state can be observed
cortex	in botany, term generally applied to the outer soft tissues of the leaves, stems, and roots of plants.
decorticated	peeling of outer layer of a plant.
desirability function	A desirability function translates each response scale to a zero-to-one desirability scale in MINITAB software. The most desirable values of the response have desirability one. The least desirable values have desirability zero.
diffusion	the spontaneous migration of substances from regions where their concentration is high to regions where their concentration is low

distillation	process of heating a liquid until its more volatile constituents pass into the vapor phase, and then cooling the vapor to recover such constituents in liquid form by condensation.
distillate rate	volume divide by seconds of the more volatile liquid condensed
eddy diffusion	turbulent diffusion, characterized by motion of the fluid particle, which is irregular with respect to direction and time.
extraction	The method by which essential oils are separated from the plant using solvents which can then be removed by evaporation.
equilibrium	reversible chemical reactions in which the reactions involved are occurring in opposite directions at equal rates, so that no net change is observed.
evaporating temperature evaporation	the arithmetic mean of evaporator inlet and dew point change of a liquid into vapor at any temperature below its boiling point
halogen	any of the chemically active elements found in group VIIa of the periodic table .
hydrocarbon	any organic compound composed solely of the elements hydrogen and carbon.
homogeneous	process in which a mixture is made uniform throughout. Generally this procedure involves reducing the size of the particles of one component of the

mixture and dispersing them evenly throughout the other component.

hydro-distillation	the type of distillation in which the botanic material is completely immersed in water and the still is brought to the boil. This method protects the oils so extracted to a certain degree since the surrounding water acts as a barrier to prevent it from overheating.
laminar	When fluid flows smoothly without vortices or other turbulence, typically when a fluid is flowing this way it flows in straight lines at a constant velocity.
mean-free path	The mean free path of a particle in a medium is a measure of its probability of undergoing interactions of a given kind.
molar fraction	The ratio of the amount of substance (number of moles) of substance A to the total amount of substance in a mixture.
molecular distillation	by a short exposure of the distilled liquid to elevated temperatures, high vacuum with below than 0.001 mbar, in the distillation space and a small distance between the evaporator and the condenser
morphology	scientific study of the form and structure of animals and plants.
nonpolar solvents	of which carbon tetrachloride is an example, have molecules whose electric charges are equally distributed.

parenchyma	These are cells in a tissue or tissues in an organ that are concerned with function.
pharmacology	scientific study of drugs and their use in medicine. body, and of the mathematical relationships required to develop models to interpret such data.
polar solvent	of which water is an example, have molecules whose electric charges are unequally distributed, leaving one end of each molecule more positive than the other.
purification process	the process of removing impurities (as from oil or metals or solvent etc.)
refractive index	The behaviour of light entering a crystal that is fundamentally controlled by the crystal structure.
residence time	The average amount of time that an element or substance remains in the column at steady state conditions
recovery yield	The quantity of product obtained from a process or reaction
residual rate	The rate of the lees volatile component exiting the evaporator column
rhizomes	root-like stems with nodes which grow under or along the ground
separation efficiency	a measure of the short-path evaporator's performance during purification process

short-path distillation	a short exposure of the distilled liquid to elevated temperatures, high vacuum performed at pressures between 0.5 and 0.01 mbar in the distillation space and a small distance between the evaporator and the condenser,
steroids	any of a number of organic compounds naturally produced in the body, including certain hormones and vitamins.
steam distillation	This process involves the use of steam to percolate and vapourise out the essential oils from the plant material, with the subsequent condensation of steam and essential oil prior to their separation.
solvent	constituent of a solution that acts as a dissolving agent.
super critical fluid extraction	supercritically performed extraction method under relatively severe pressure and temperature conditions to remove all oleoresin components quickly and efficiently
turbulent	The irregular, chaotic flow of a fluid that results in random velocity fluctuations and in mixing.

LIST OF APPENDIXES

APPENDIX	TITLE	PAGE
А	Sample results by MINITAB: Response Surface Regression of feed temperature, evaporating temperature and distillate rate vs oleoresin	
В	concentration Sample results by MINITAB: Response Surface Optimisation of feed temperature, evaporating temperature and distillate rate	141 143

CHAPTER 1

INTRODUCTION

1.1 Research background

Since the time man started gathering and adding varieties in food, spices seem to have been used to make the food more appetizing: they add aroma and taste to the cereal or meat dishes. In the modern world today, spices and those aromatic herbs continue to be extensively used as a 'versatile' spice throughout India, the Middle East and the Far East in food preparation and also in alternative medicine. Ancient belief in the medicinal properties of ginger existed in Indian and oriental cultures where ginger was used alone or as a component in herbal remedies. In recent times there has been scientific research undertaken to test out the validity of the medicinal claims about ginger. There have been some exciting results from the experiments conducted by researchers worldwide with respect to the medicinal properties of ginger as new alternative for ordinary chemicals like steroids and aspirin (Katiyar, *et.al*,1996).

The rhizome of ginger (*Zingiber officinale Roscoe*) is widely cultivated in the tropic and semi-tropic regions of the world. The high moisture content of the ginger and low shelf life of raw ginger makes the transportation and marketing of ginger an expensive proposition (Bartley and Jacobs, 2000). Drying of ginger is not practiced in many ginger cultivar countries because of the adverse climatic conditions. Making of value added products which find market within the country as well as abroad is the only answer for the poor farmers of these countries (Kumar and Arumughan, 2000). Ginger oil is meant for the export market only and the demand within the country is marginal. A new entrepreneur will find it difficult to penetrate the international market but with the support of the governmental agencies can achieve some break through (Varghese, 1998). If proper promotional efforts are put in, the world demand can be totally met by these countries.

In order to obtain high quality ginger extract as an alternative chemicals, ginger as raw material needs to undergo thorough processing methods from sample preparations right to the quality assessment of its end product. Ginger extract preparations vary widely in their concentration and purity, depending on the source of the root, extraction methodology and formulation (Lawrence and Tobacco, 1984). The first step in oleoresin preparation is the extraction of dried, ground ginger with solvent, usually acetone or ethanol (Connell,1970). In 1999, Lewis, et.al, patented the method of making processed fresh herbs. They claimed that, edible salts such as sodium chloride assist in preventing the rapid discolouration and flavour change of herbs. Wu, *et.al* (2001) patented a method of preparing an extract from *Zingiber officinale*, which is potent in anti-inflammation and anti-platelet aggregation. They prepared a crude liquid from rhizomes of ginger by extraction with several steps of using organic solvents like alcohol and acetone.

In 1997, Kreuter and Steiner invented and patented a process for the preparation of a stable, homogeneous extract of plants. They used a 400 kg dried herbs sample mixed with 1600 kg ethanol and extraction was done at a temperature between 60-70°C. Solvent removal of the patented process was done under evaporation, reduced pressure and elevated temperature. Andrews and Basu (2000), patented a process of preparing a pharmaceutically-active extract of valerian root. The process comprises the steps of adding the roots to an alcoholic extraction solvent to form a mixture, wherein the alcoholic extraction solvent comprises of a mixture of 50% to 100% (v/v) in water and heating the mixture to 80°C for two hours.

In 1990, Spiro, et.al. (2000), extracted the ginger oleoresins with supercritical fluids (SCF) which proceeds through three stages; washing, fast extraction and slow extraction. They assumed that the extraction is completed at the end of the fast extraction stage, which required six hours. However, oleoresins extracted with supercritical fluids have a higher price because of higher quality and less variations in the final products despite having extreme operating pressure (up to 127 bar) compared to those extracted with organic solvents. In 1997, Balladin used pilot plant extraction to extract oleoresin from ginger. The solvent used followed its designated route to the vertically oriented water cooled 20 litres leaching vessel. The process continued for 10 hours until the majority of the oleoresin was extracted, determined by the transparent appearance of the extracting solvent. In this research, short path distillation is the main focus in final purification of ginger oleoresin extraction. Short-path distillation or molecular distillation is generally acknowledged to be the safest method to separate and purify thermally unstable compounds and substances having low volatility (Lutisan and Cvengros, 1995) The number of applications for short path distillation is relatively high Baker and Olejniczak (1997). For instance, short path distillation has been used in solvent removal and reducing the pigmentation process of paprika oleoresin for years (Albers, 2001). By using short path distillation, the solvent traces can be removed up to 10 ppm. In 1996, a company named after a Norwegian pharmacist Peter Moller, developed a new process using short path distillation for extracting the oil from cod liver, which can increase the omega 3 acid up to 60% (Kukla, 1997). In flavour enhancement process, Mehnert (1997) patented methods and composition to fractionate the milk fats and fatty acids into mixture of chain lengths and bond saturations under the conditions of 190°C, at 0.003 mm Hg by using short path distillation.

Modelling the process of molecular distillation has been considered by several authors, focused mostly on organic and pure compounds, either binary or ternary mixture. However, studies on multi-component or complex organic mixtures such as the ginger oleoresin have never been documented. Bose and Palmer (1984) have given reasons for a separation efficiency decrease by distillation in jet tenzimeter using binary mixtures. This decrease is caused by temperature gradients in the distilled liquid mixture as a consequence of intense evaporation. Cvengros, et.al., (2001), developed a model for modelling various

design and operating conditions in a molecular evaporator, such as the fractionation in the evaporator with a divided condenser, the influence of feed temperature on the evaporator performance, the effect of an adiabatic separator in the distillation gap on the separation efficiency and the effect of inert gas pressure on the molecular distillation process, also using binary mixtures.

Three operational parameters which were studied in this research, namely feed temperature, evaporating temperature and feed rates, were optimised by a statistical software called MINITAB[®]. Comparative analysis between the optimised operational settings and theoretical model were then described by empirical and theoretical separation efficiency and recovery yield in chapter 3.

1.2 Objectives and scopes

The objective of this research was to identify the most influential operational parameters or combined parameters that affect the yield of ginger oleoresin collected in short-path distillation by using a statistical software, MINITAB[®], as a mean of final stage of ethanol removal.

Three important scopes have been identified in achieving the above mentioned objective:

- Using pilot scale extractor in ethanol extraction and partial ethanol removal of ginger oleoresin. For the final stage of ethanol removal, short-path distillation process was used.
- 2. Varying the feed temperature, feed rate and evaporating temperature on the shortpath evaporator performance, pairing the all the parameters involved to be optimised by MINITAB[®] with dried, mature, blanched and bleached ginger as the raw material.
- 3. To relate and analyse the findings of each combined operational parameters to the theory and empirical equations of separation efficiency and recovery yield.

1.3 Statement of problem

The affluent lifestyle has led to the increasing demand for health food. Scientific evidence support claims that prevention is better than cure (Morad, *et.al*, 2000). Numerous scientific findings are in support of healthier lifestyle through consuming natural ingredients to prevent and cure modern diseases. In order to accommodate the fast pace in modern life whilst maintaining the nutritious values in food, the health food market ranging from personal care products and health food is becoming the present norm of life (Schulick,1993). The Malaysian herbal market was estimated to be worth RM2.5 billion annually, with the

local herbal industry capturing only 5% to 10% of the market. Statistics in 1994 shows in terms of sales of herbal medicines by region, Europe topped the chart with sales of US\$6 billion, Asia US\$2.3 billion, Japan US\$2.1 billion and North America US1.5 billion. It is projected that the value of the global market for herbal products would reach US\$200 billion by 2008 (The Sun, 2001).

Due to the importance of exploiting the natural sources to enhance healthier lifestyle, cultivated herbs such as the *Zingiberaceae* family has become our main interest in this research in order to accomplish all the objectives mentioned. Most Zingiberaceae family species are fibrous rooted perennial which are cultivated in many tropical and subtropical area. There are about 18 genera with more than 160 species of *Zingiberaceae* in Peninsular Malaysia (Schulick, 1993). Among these species, *Zingiber Officinale* (also known as ginger) is widely used in food industry for flavouring purposes as well as foods and beverages and as fragrances in pharmaceutical and industrial products. Apart from the identification of constituents in the common species of ginger by some of our local chemists, there is no interest as yet to commercialise the findings (Morad, *et.al*, 2001).

In this research, feed temperature, evaporating temperature and feed rates were the three operational parameters experimented to optimise the operating conditions for the ethanol removal of ginger oleoresin. According to Cvengros *et.al.*, in 1999, practical experience over many years with the operation of molecular evaporators have shown that the optimum temperature of the entering liquid feed should not differ too much from the working temperature inside the evaporator. This results in evaporation at a non-reduced rate from the very first moment the distilled liquid gets onto the evaporation surface, without using the evaporation surface to post-heat liquid to the operation temperature caused by heating of the evaporator governed by the evaporating temperature, the feed rate and the initial preheating of feed. If the supply enters the machine at a lower temperature than the distillation temperature, a part of the surface is used to heat the solution to the later one, causing a temperature gradient. This temperature change also makes it very difficult to maintain a constant liquid flow unless an optimum feed rate is used. Nguyen and Goffic, in 1997

suggested that these factors: feed temperature, feed rate and evaporating temperature can only be estimated through experimental work.

By completing the optimisation of operational parameters using short- path distillation, it is anticipated that once optimised operational parameters of short path distillation have been established, ginger oleoresin mixtures can be extracted efficiently. In this way, Malaysia can develop our own standardised ginger products based on different combination of ginger.

1.4 Research Contribution

Based on the present knowledge on various type of ginger sample, the pre-processing methods and more importantly the experience of applying technologies in optimising final purification of ginger oleoresin, would serve to enhance the creativity development and transfer of advanced technology to local producers. It is anticipated that once these methods have been established, thermally instable constituents such as 6-gingerol can be extracted. Apart from that, it is believed that with the help from this recent technology, the local producers can actually formulate a better ingredients of natural based healing ailments since the raw materials are actually originated and widely cultivated in this part of the region. It would also be a great challenge for all of the cultivars of natural herbs in the tropical countries to be one of the great competitors generating high quality natural based product such as Zinaxin®(ginger extract which promotes joint health).

REFERENCES

A. Bose, H.J. Palmer. (1984). Ind.Chem.Fundam. 23. 406.

Albers, M. (2001). "Practical advice for short path distillation." UIC GMBH.1-15.

Andrews and M. J., Basu, A. (2002). "Process for the valerian root." (U.S. Patent 6383526).

- Baker, M.A. and Olejniczak, J.S. (1997) "Transactions of the 3rd International Vacuum Congress."Preamon Press, Oxford. 407.
- Bird, G. A. (1996). "Molecular gas dynamics" Clarendon Press, Oxford.eyer, K., Schwartz, J., Crater, D., Keyes, B., (1995) "Zingiber officinale (ginger) used to prevent 8-Mop associated nausea". DERMATOL NURS 7 (4): 242-244.
- Balladin, D.A., Headley, O., Chang Yen, I., Duncan, E.J., Mc Gaw, D.R. (1998). "Comparison of the histology of (I) fresh, (II) solar dried and (III) solar dried/steam distilled ginger (*Zingiber officinale* Roscoe) rhizome tissue prior to the extraction of its pungent principles." *Renewable Energy.* 17.207-211.
- Balladin, D.A. (1997). "Extraction and Evaluation of the Main Pungent Principles of Solar
 Dried West Indian Ginger (Zingiber officinale roscoe) Rhizome." *Renewable Energy*.
 17.125-130.

- Balladin, D.A., Chang Yen, I., McGaw, D.R. (1995). "Solar drying of West India Ginger (Zingiber Officinale Roscoe) Rhizome Using A Wire Basket Dryer." *Renewable Energy*. 7.409-418.
- Bartley J.P. & Jacobs A.L. (2000). "Effects of drying on flavour compounds in Australian grown ginger" *J.Sci.Food Agri.* **80**.209 -215.
- Bartley J.P. & Jacobs A.L. (1994). "Supercritical extraction of Australian grown ginger". J.Sci. Food Agri. 66. 365.
- Batistella,C.B., Maciel,M.,R.W. and Filho,R.M. (2000). "Rigorous modelling and simulation of molecular distillators: development of a simulator under conditions of non-ideality of the vapour phase." *Computers and Chem.Eng.* 24.1309-1315.
- Batistella,C.B., Maciel,M.,R.W.(1996). "Modelling, Simulation and Analysis of Molecular Distillators:Centrifugal and Falling Film. *Computers and Chem.Eng.***20**.19-24
- Banik, G. (1982). "Dental powder with natural ingredients. Can Chem. Abs. 133.
- Brunke, E.J. Progress in Essential Oil Research, Proceeding of the International Symposium of Essential Oil, September, 1985:18-21
- Chu-Chin Chen and Chi-Tang Ho, "Gas Chromatography analysis of thermal degradation products of gingerol compounds in steam-distilled oil from ginger (*Zingiber officinale Roscoe*)", J. Chromatogr., **387**, 499-504, 1987
- Connell,D.W.(1970). "The Chemistry of the Essential oil and Oleoresin of ginger(*Zingiber officinale* Roscoe)".*The flavour Industry*.677-693.

Crank, J., (1986) "The Mathematics of Diffusion." Clarendon Press, Oxford.

- Cvengros, J., Lutisan, J., Micov, M. (2001)"Heat and Mass Transfer in the evaporating film of a molecular evaporator". *Chemical Engineering Journal*.**85**.225-234.
- Cvengros, J., Lutisan, J., Micov, M. (1999). "Feed temperature influence on the efficiency of a molecular evaporator". *Chemical Engineering Journal*. **78**.61-67.
- Cvengros, J., Lutisan, J., Micov, M, Pollak, S. (2000). "Film Wiping in the molecular evaporator." *Chem.Eng.Journal.***81.**9-14.

Erdwerg, K.J. (1983). "Molecular and short-path distillation". Chem. Ind. 9.342-345.

Fischer, W. and Bethge, D., (1992). "Short-path distillation." Inst. Chem. Eng. Symp. 128.403-414.

Gildemeister, K and Hoffmann, L (1999). "Herbs and Chemistry" Die Aetherischen Oele.

- Giri, J., Devi and S., Meeraran T.K. (1984). "Effect of ginger on serum cholesterol levels". S.Indian Journal of Nutrition .21. 433-436.
- Govindarajan, V. S. (1982). "Ginger- Chemistry, Technology & Quality Evaluation; Part 1". Critical Reviews in Food, Science and Nutrition.17. 1-96.

Guenther, E. (1952). "The Essential oils" New York.5.115.

Hiroe, K., Junko, U.and Nobuji, N. (1991). "Constituents of Zingiberaceae. I. Diarylheptanoids from the Rhizome of Ginger (Zingiber officinale ROSCOE)". Chem. Pharm. Bull. 39 (1): 120-122. Holtmann, S., Clarke, A.H., Scherer and H., Hohn, M. (1989) "The anti-motion sickness mechanism of ginger. A comparative study with placebo."*ACTA OTOLARYNGOL* (Stockh).108.168-174.

Humphrey, J.L., Keller, G. (1997). "Separation Process Technology" Mc Graw Hill, New York.

J.Varghese, (1998). The World of spices .Indian Spices.35.15-19.

- Katiyar, S.K., Agarwal and R., Mukhtar, H., (1996). "Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of *Zingiber officinale* rhizome." *Cancer Res.*, **56**.1023-1030.
- Kawala,Z. and Stephan,K.(1989). "Evaporation rate and separation factor of Molecular Distillation in a falling film Apparatus." *Chem.Eng.Tech.* **12.**406-413.
- Kikuzaki, H., Usuguchi, J. and Nakatani, N. (1991). "Constituents of Zingiberaceae.
 Diarylheptanoids from the Rhizomes of Ginger (*Zingiber officinale* Roscoe)." *Chem. Pharm. Bull.* **39**.120-122.
- Kreuter, M.H. and Steiner, R. (1997) "Process for the preparation of a stable, homogeneous, extract free or nearly free from secondary reaction products." (U.S. Patent 6207164).
- Kukla, N. (1997). "Distillation of cod liver oil." UIC GMBH.
- Kumar, M.M.S and Arumughan, C. (2000). "Technology of fresh ginger processing for ginger oil and oleoresin." Kandahar Institute of Technoloy.
- Larsen, K., Ibrahim, H., Khaw, S.H., and Saw,L.G. (1999). "Gingers of Peninsular Malaysia and Singapore." 1st Edition. Natural History Publication (Borneo) Sdn.Bhd.

- Lawrence, B.M. and Tobacco, R. (1984). "Major Tropical Spices-Ginger (Zingiber Officinale Roscoe)", J. Perfumer & Flavorist, 9,12-36.
- Mehnert, D.W.(1997). "Flavour enhancement in cultured dairy products." (U.S. Patent 5643621)
- Lewis V.M. and Lewis, D.A. (1995). "Processed fresh herbs and method of making".(U.S. Patent.5858446).
- Lutisan, J and Cvengros, J. (1995). "Effect of Inert Gas Pressure on the Molecular Distillation Process" *Separation of Science and Technology*, Department of Physical Chemistry, Slovakia. **30**.3375-3389.
- Merck & Co., Inc., Whitehouse Station, NJ, USA (1999)
- Moesa, B.M. and Ali, A.K. (1975). "Isolation of oil and oleoresin from ginger". MARDI.1-24.
- Morad, N. A., Sirat, H. M., Samuri, S. M., Rudin, H. R. M.and Desa, N. M.(2000). "Ginger oleoresin from *Zingiber oficinale roscoe*: Effect of sample preparation on yield and quality." *COSTAM*. 1-11.
- Morad, N. A., Samuri, S. M., Rudin, H. R. M.(2001). "Essential Oil extraction from ginger plants". Progress report May vote 72280.CLEAR UTM Kuala Lumpur.
- M. Spiro, M. Kandiah and. W. Price (1990). "Extraction of ginger rhizome: kinetic studies with dichloromethane, ethanol, 2-propanol and an acetone-water mixture" *International Journal* of Food Sciene and Technology. 25.157-167.
- M. Spiro, M. Kandiah and. W. Price (1989). "Extraction of ginger rhizome: kinetic studies with acetone" *International Journal of Food Sciene and Technology*. 24.589-600.

- M. Spiro and S.S. Chen (1994). "Kinetics of Solvents Extraction of Essential Oil from Rosemary Leaves". J. Flavour and Fragrance.9. 187-200.
- Nguyen, U., Anstee, M., Evans and David A. (1998). "Extraction and Fractionation of Spices Using Supercritical Fluid Carbon dioxide" 5th International Symposium on Supercritical Fluid Carbon Dioxide.1-8.
- Nguyen, A.D. and Le Goffic, F.(1997). "Limits of wiped film short-path distiller." *Chem.Eng.Sci.* **52**.16.2661-2666.
- Purseglove, J.W., Brown, E.G., Green C.L. and Robbins, S.R.J. (1981). "Spices." London: Longman. 2. 447-531.
- Reddy, A.C. and Lokesh, B.R.M (1992). "Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes." *MOL. CELL BIOCHEM.* 111 . 117-124.
- R.J. Lancashire, Ginger Root, University of West Indies, Jamaica, 2000
- Sable, W. and Warren, J.D.F. (1982). "Theory and practice of oleoresin extraction." *Proc. Of the Conf. On "Spices*". 189-19.
- Sankarikutty, M.M., Suimathykutty B., Nirmala M.A, Menon A., Padmakumari,K.P and Arumughan,C (1999). "Processing of fresh ginger A technological break through. Indian Perfumer" 43(3) 134-141.
- Schneider, A., (1998) "Birds and All Nature", Northwestern University, School of Pharmacy, **12**. 2-4.

- Schulick, P., (1993). "Common Spice or Wonder Drug? Ginger." Vermont, USA: Herbal Free Press, Brattleboro,. 5-35.
- Sharma S.K., Mulvaney S.J. and Rizvi S.S.H. (2000). "Food Process Engineering: theory and laboratory experiments". Cornell University Ithaca, New York.:John Wiley & Sons.
- Tanabe, M., Chen, Y.D., Saito and K.I., Kano, Y.(1993). "Cholesterol biosynthesis inhibitory component from Zingiber officinale Roscoe." *Chemical and Pharmaceutical Bulletin.***41**. 710-713.
- The Sun, Brighter Future For Herbal Industry, April 25th, 2001.
- Tiwari, K.K. (1995). "Extraction Technology Related to Food Processing." I Gaonkar, A.G. (Ed). Food Processing :Recent Developments. Amsterdam:Elsevier Science. 269-301.
- Toei, R., M. Okazaki and Asaeda (1971). J. Chem. Eng. Jpn.. 4.188.
- Winterton, D. and Richardson, K. (1995). "Extraction of ginger species". J. agric. Ahim.Sci., 22. 205.
- Wu, T.S., Kuo, S.C., Teng and C.M., Ko, F.N.(2001). "Methods of preparing an extract potent in anti-inflammation and anti-platelet aggregation from zingiber officinale". (U.S. Patent 6274177)
- Zakaria, M. and Ibrahim, H., (1986). "Phytochemical screening of some Malaysia species of Zingiberaceae. *Malaysian Journal of Science* 8.125-128.
- Zakaria, M and Ibrahim, H.(1987). "Essential oils from three Malaysian Zingiberaceae species". *Malaysian Journal of Science*. **9**:73-76