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ABSTRACT 

 

 

 

 

One of the major challenges in polymerization industry is the lack of online 

instruments to measure polymer end-used properties such as melt flow index 

(MFI). As an alternative to the online instruments and conventional laboratory 

tests, these properties can be estimated by using a model based-soft sensor. This 

research presents models for soft sensors to measure MFI in industrial 

polypropylene loop reactors by using the artificial neural network (ANN), hybrid 

FP-ANN (HNN) and stacked neural network (SNN) models. The ANN model of 

the two loop reactors was developed by employing the concept of Feed-Forward 

Back Propagation (FFBP) network architecture using Levenberg-Marquardt 

training method.  Serial hybrid FP-ANN (HNN) models were developed in this 

study. The error between actual MFI and simulation MFI from FP model was fed 

into the HNN model as one of the input variables.  To construct the stacked neural 

network (SNN) model, two layers were needed: 1) level-0 generalizer output 

comes from a number of diverse ANN models and 2) level-1 generalizer was 

developed using the results of level-0 generalizer with additional input variables. 

All models were developed and simulated in MATLAB 2009a environment. The 

simulation results of the MFI based on the ANN, HNN, and SNN models were 

compared and analyzed. The HNN model is the best model in predicting all range 

of MFI with the lowest root mean square error (RMSE) value, 0.010848, followed 

by ANN model (RMSE=0.019366) and SNN model (RMSE=0.059132).  When 

these three models (ANN, HNN, and SNN) were compared, the SNN model shows 

the lower RMSE for each type of MFI studied. 
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ABSTRAK 

 

 

 

 

Salah satu cabaran utama dalam industri pempolimeran ialah kekurangan 

instrumen dalam talian untuk mengukur sifat-sifat akhir polimer seperti indeks 

aliran lebur (MFI). Sebagai alternatif kepada instrumen dalam talian dan ujian 

makmal konvensional, sifat-sifat ini boleh dianggarkan menggunakan model 

berasaskan soft sensor. Kajian ini mempersembahkan model yang digunakan di 

dalam soft sensor untuk mengukur MFI di dalam reaktor gegelung industri 

pempolimeran propena menggunakan model Artificial Neural Network (ANN), 

model hibrid FP-ANN (HNN) dan model Stacked Neural Network (SNN). Model 

ANN bagi dua reaktor gegelung telah dibangunkan dengan menggunakan konsep 

Feed-Forward Back Propagation (FFBP) melalui kaedah latihan Levenberg-

Marquardt. Model HNN bersiri telah dibangunkan juga dalam kajian ini. Ralat 

antara MFI yang dijana oleh model FP dan nilai MFI yang sebenar digunakan 

sebagai salah satu masukan untuk model HNN. Untuk membangunkan model 

SNN, dua tahap diperlukan: 1) keluaran dari level-0 generalizer datang dari 

pelbagai jenis model ANN dan 2) generalizer level-1 dibangunkan menggunakan 

keputusan dari level-0 yang dibina. Kesemua model telah dibangunkan dan 

disimulasikan di dalam persekitaran MATLAB 2009a. Keputusan simulasi MFI 

dari model ANN, HNN, dan SNN dibandingkan dan dianalisis. Model HNN adalah 

model yang terbaik jika mengukur semua nilai MFI dengan nilai root mean square 

error (RMSE) sebanyak 0.010848, diikuti dengan model ANN (RMSE=0.019366) 

dan model SNN (RMSE=0.059132). Jika ketiga-tiga model (ANN, HNN dan SNN) 

ini dibandingkan, model SNN menunjukkan nilai RMSE yang rendah bagi 

mengukur setiap jenis MFI yang dikaji. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Project Background 

 

 

Product quality is an important feature in the globally competitive polymer 

industry (Jianli et. al, 2002).  With the skyrocketing cost of raw material and energy, 

stringent measures must be taken to meet quality requirements to remain 

competitive. According to Ray (1986), product quality is a much more complex issue 

in polymerization than in more conventional short reactions. Polymers are produced 

in various grades, according to customer needs. To meet customer requirements at an 

economically attractive cost, product quality measurement is therefore a necessity. 

However, not all variables can be measured directly. Due to the limitations of 

measurement device, it is often difficult to estimate important process variables such 

as product concentration and melt flow index (MFI). Polymer qualities often have to 

be evaluated in a time consuming and manpower intensive lab analysis. Thus, there 

is a need to find methods to estimate the product quality in real time. 
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Polymerization reactors are very well known for their complexity especially 

with regards to reactor design, polymerization recipes, uncertain reaction kinetics, 

and highly exothermic reaction, which lead to difficulty in product quality control. 

Developing suitable models are therefore necessary to estimate the essential 

variables necessary for measurement, control or optimization. For example, 

polypropylene (PP) which is normally produced in the loop reactors is one of the 

most complex process and varied because it involves the types of catalyst, the kind of 

reactor, and the effect of the recycle loop (M. Kim et al., 2005). The articles reported 

by Uvarov and Tsevetkova (1974), Lepski and Inkov (1977) and a number of other 

authors (Zacca and Ray, 1993; Debling et al., 1994; Soares, 2001; Jiang et al., 2002; 

Wei et al., 2002; Reginato et al., 2003; Luo et al., 2007; and Lucca et al., 2008) are 

some the significant researches in the polymerization modeling for loop reactors. 

 

 

The Himont Spheripol process is one of the most widely used polymerization 

process that produce polyolefin using the loop reactors. This process takes place in 

the loop reactors filled with liquid propylene. A small loop reactor is used to 

prepolymerize the catalyst; the main polymerization, for homopolymer or random 

copolymer, takes place in one or two loop reactors. For impact copolymer production 

a gas phase reactor is requested after the loop reactors. 

 

 

 The ability to produce polymer resins which meet customer quality demands 

is the primary aim of the polymer industry. To meet customer requirements at an 

economically attractive cost, product quality measurement is therefore a necessity.  

Soft sensor is one of the possible solutions where the values of the desired variables 

which cannot be measured are inferred from the measured variables using the 

process model. Development of inferential systems for polymer properties is a very 

active research area in polymerization reactor control (Chan et al., 1993; Chan and 

Nascimento, 1994; McAuley et al.,1990; McAuley and MacGregor, 1991; 

Kiparissides et al., 1993; Zabisky et al., 1992; Skagerberg et al., 1992, Gonzaga 

et.al., 2009 etc.).  
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According to R. Sharmin et. al.,(2006), the model used to estimate polymer 

properties can be roughly categorized into three groups: (1) mechanistic model 

developed from first principles (for example, Chan et al., 1993; McAuley et al.,1990, 

Kiparissides et al., 1993; Zabisky et al., 1992), (2) black-box model using neural 

networks (Bhat and McAvoy, 1990; Chan and Nascimento, 1994; Qin and McAvoy, 

1992; Rallo et al., 2002; Zhang et al., 1997, etc.), and (3) statistical model using 

multivariate statistical tools (Jaeckle and MacGregor, 1998; Kiparissides et al., 1993; 

MacGregor et al., 1994; Martin et al., 1999; Skagerberg et al., 1992). 

 

 

M. Kim et al., (2005) developed a soft sensor in polypropylene process based 

on hybrid modelling of novel clustering and black-box as well as mechanistic 

models. Meanwhile, T. Yiagopoulos et al., (2004) also developed a soft sensor with a 

neural network approach for monitoring polymer melt flow index (MFI) at the Basell 

Spheripol process.  

 

 

 

 

1.2 Problem Statement 

 

 

The major problem faced by the polymerization industry is that the resin 

characteristics that define polymer quality, such as melt flow index (MFI) and 

density cannot be measured on-line.  Properties, such as MFI, are difficult to measure 

and usually unavailable in real time since it requires close human intervention (R. 

Sharmin et al., 2006). They can only be measured off-line in the laboratory, which 

leads to difficulty in controlling product quality in polymerization processes because 

of the delay involved before the product quality is known.  Consequently, in most 

plants, MFI is measured only several times a day using a manual analytical test. 

Products which do not meet the specifications must either be sold off at a reduced 

price or wasted. This does not only cause loss of revenue, but also resources, such as 

raw material, production time and energy. 
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Therefore, an on-line product quality measurement, such as MFI, is essential 

in fulfilling customer requirements and preventing losses.  Since sensors are not 

available to measure MFI, developing a soft sensor is the next best alternative.  Soft 

sensors are inferential estimators, drawing conclusions from process observations 

when hardware sensors are unavailable or unsuitable. A suitable, fast and robust 

process model for the polymerization reactor is required so that the MFI can be 

estimated from the model. 

 

 

 

 

1.3 Research Objective  

 

 

The purpose of this research is to develop the Himont Spheripol Process 

model for propylene polymerization that can be a model as a soft sensor. The Himont 

Spheripol process model is developed to predict end-use product quality, melt flow 

index (MFI), by using the artificial neural network (ANN) model, hybrid neural 

network (HNN) model and stacked neural network (SNN) model.  

 

 

 

 

1.4       Research Scope 

 

 

The study in developing the models for a soft sensor for polypropylene loop 

reactors to produce homopolymer of Himont Spheripol Process has been identified as 

follows: 

 

 

a) Develop and simulate the different types of neural network models (ANN,HNN 

and SNN) for polyproplylene loop reactors in MATLAB 2009a environment 

using industrial data collected from polypropylene plant in Johor. 
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b) Use the models developed (ANN, HNN, and SNN model) to estimate the different 

grades of MFI.  

c) Validate the simulation results with MFI from industrial polypropylene plant data. 

d) Compare the performance of the models developed (ANN, HNN, and SNN 

model) in predicting the MFI values. 

 

 

 

 

1.5     Research Contribution 

 

 

Major contribution in this study is the development of the models (ANN, 

HNN and SNN model) for a soft sensor to measure melt flow index of propylene 

polymerization process in loop reactors. The development of a comprehensive 

mathematical model is an essential task in understanding the polymerization 

processes and translating the best of our knowledge about the interactions of 

different factors that affect the system. The developed, programmed and simulated 

process model for the soft sensors provides a basic study that can be used and 

improved in further study which related to bulk propylene polymerization, such as 

process optimization and process control. The process model also provides an 

understanding of the dynamic behaviour of propylene polymerization in loop 

reactors from an industry perspective. 

 

 

 Another contribution is to compare and determine the best models for a soft 

sensor that can be utilized in describing the propylene polymerization process. The 

models are very useful as a guide in industry to help the engineers and operators 

understand the process clearly for the purpose of plant monitoring and 

troubleshooting as well as operator training. 
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1.6 Summary of Chapter 1 

 

 

Producing polymer is a complex and difficult process. The polymer is 

produced in various grades according to customer requirement at an economically 

attractive cost. However, it is often difficult to estimate or measure important process 

variables such as melt flow index (MFI). MFI always often have to be evaluated in a 

time consuming and manpower intensive lab analysis. They can only be measured 

off-line in the laboratory, which leads to difficulty in controlling product quality in 

polymerization processes because of the delay involved before the MFI value is 

known.  Consequently, products which do not meet the specifications must either be 

sold off at a reduced price or wasted. This does not only cause loss of revenue, but 

also resources, such as raw material, production time and energy. Thus, there is a 

need to find methods to estimate the melt flow index in real time. Therefore, an on-

line MFI measurement is essential in fulfilling customer requirements and preventing 

losses. The purpose of this research is to develop the Himont Spheripol Process 

model for propylene polymerization that can be a model as a soft sensor. The Himont 

Spheripol process takes place in the loop reactors filled with liquid propylene. The 

Himont Spheripol process model is developed to predict end-use product quality, 

melt flow index (MFI), by using artificial neural network (ANN) model, hybrid 

neural network (HNN) model and stacked neural network (SNN) model. 

 

  



99 

 

99 
 

Zacca, J. J. & Ray, W. H. (1993).  Modelling of the liquid phase polymerization of 

olefins in loop reactors.  Chemical Engineering Science, 48 (22), 3743-3765. 

 

Zahedi, G., Elkamel, A., Lohi, A., Jahanmiri, A., & Rahimpor, M. R. (2005). Hybrid 

artificial neural network—First principle model formulation for the unsteady 

state simulation and analysis of a packed bed reactor for CO2 hydrogenation 

to methanol. Chemical Engineering Journal, 115(1–2), 113-120. 

 

Zhang, J., Martin, E.B., Morris, A.J., & Kiparissides, C., (1997).Inferential 

estimation of  polymer  quality  using  stacked  neural  networks.  Computers  

and  Chemical Engineering 21 (Suppl), S1025–S1030. 

 

Zhang, J. (2008). Batch-to-batch optimal control of a batch polymerisation process 

based on stacked neural network models. Chemical Engineering Science, 

63(5), 1273-1281. 

 

  




