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ABSTRACT 

 

 

 

Synthetic hydrology series is useful for evaluating the consequences of water 

supply management decisions and reservoir design. The main objective of this study 

is to identify and confirm the best model in flow and rainfall simulation. The study 

covers the application of aggregation and disaggregation methods for flow and 

rainfall stochastic simulation. In general, the application of various periodic models 

for the flow simulation was mostly successful. The application of disaggregation 

models was found to yield sufficient performance and competitive to the periodic 

models. It has been proven that the transformation does not always guarantee 

improvement in the candidate models performance. The Periodic Autoregressive of 

Order One (PAR (1)) model is the best performer for the monthly and annual flow 

simulation using periodic models for both untransformed and transformed series. The 

Valencia and Schaake (VLSH) model is the robust model from disaggregation group 

for the monthly and annual flow simulation. Simulation for monthly and annual 

rainfall series shows that the VLSH model is the best performer to produce sufficient 

results for both untransformed and transformed series. The results from this study are 

based on investigation from graphs and frequency analysis. The outcome of study has 

potential to assist the water engineers and consultant in making decisions for the 

operation of the water resources systems. It is suggested that the rainfall simulation 

should be applied in water resources planning because observed flow series are 

subjected to disturbance due to development.  
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ABSTRAK 

 

 

 

Siri hidrologi sintetik ialah satu kaedah yang berguna untuk menilai keputusan 

dalam pengurusan bekalan air dan rekabentuk empangan. Objektif utama kajian ini 

dibuat adalah untuk mengenalpasti dan menetapkan model yang terbaik dalam 

simulasi aliran sungai dan hujan. Kajian ini merangkumi aplikasi kaedah agregasi dan 

disagregasi untuk simulasi aliran sungai dan hujan. Secara amnya, aplikasi pelbagai 

model berkala untuk simulasi aliran sungai adalah baik. Aplikasi model-model 

disagregasi didapati menghasilkan pencapaian yang mencukupi dan kompetetif 

dengan model-model berkala. Ini dapat membuktikan transformasi tidak menjanjikan 

peningkatan dalam pencapaian model-model yang dipilih. Kalaan purata bergerak 

tertib satu (PAR (1)) merupakan pencapai yang terbaik untuk simulasi bulanan dan 

tahunan aliran sungai menggunakan model berkala untuk siri tanpa transformasi dan 

transformasi. Model Valencia dan Schaake (VLSH) ialah yang paling kuat daripada 

kumpulan disagregasi untuk simulasi bulanan dan tahunan aliran sungai. Simulasi 

untuk siri hujan bulanan dan tahunan menunjukkan model VLSH ialah pencapai yang 

terbaik untuk menghasilkan keputusan yang mencukupi untuk kedua-dua siri tanpa 

transformasi dan transformasi. Keputusan kajian ini berdasarkan pemerhatian ke atas 

graf-graf dan analisis frekuensi. Hasil kajian ini berpotensi untuk membantu jurutera-

jurutera air dan perunding dalam membuat keputusan untuk operasi sistem sumber air. 

Kajian ini juga mencadangkan penggunaan simulasi hujan untuk perancangan sumber 

air adalah pilihan yang terbaik kerana cerapan siri aliran sungai dipengaruhi oleh 

gangguan akibat pembangunan.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Hydrological data such as flows and rainfall are the basic information used for  

the design of water resources systems. Hence, the studies are needed regarding the 

relatively accuracy of the data required for various types of water resources planning 

and management. Therefore, modeling rainfall and flow series at a useful time and 

specified scale for different applications has been important problem in hydrology for 

the last 30 years (Sanso and Guenni, 1999). This situation needs one to select the most 

appropriate time interval of hydrological data for the design purposes because the 

characteristics (mostly statistical) behaviors between time interval is different to each 

other. Based on the literature review done by previous researchers, the overall 

statistical characteristics (such as standard deviation, skewness coefficient and lag-one 

correlation coefficient) decrease as the time interval increases. Long sequences of 

daily rainfall or flows are required increasingly, not only for hydrological purposes 

but also to provide inputs for models of crop growth, landfills, tailing dams, land 

disposal of liquid waste and other environmentally-sensitive projects (Buras, 1975). 

Rainfall and flows are generally measured at the daily time scale and this forms the 

basis for monthly and annual rainfall and flows series. The need for hourly data for 

hydrological applications, especially in flood studies, suggests the use of 

disaggregation model (Koutsoyannis and Onof, 2001). Meanwhile, observations taken 

in minutes or hours will exhibit temporal dependence will tend decrease and to be 



 

 

2

very small or non-existent of the annual scale. Beside of that, as the time interval is 

longer, the underlying time series becomes simpler to analyze and to model; 

conversely, as the sample time series is smaller, the amount of information contained 

in the sample is longer but the characteristics of the series become more complex and 

the corresponding statistical modeling are more difficult.  

 

 Lane (1980) suggested simulating the very short time period because at the 

short time interval weather persistence and season has an effect. Beside, Salas et al. 

(1980) proposed the aggregation model regarding to the basic form of the original on 

lower level time series. In fact, the need to preserve annual and seasonal time series 

properties inspired the development of simulation models (Salas, 1989; Grygier and 

Stedinger, 1991, Shah et al., 1996). The monthly and annual hydrological data have 

been used for the short and medium term planning and operation of water resource 

systems (Maheepala and Perera, 1996). 

 

 Despite the resolution of the time interval, the data quality and accuracy 

should also be taken into account. The data uncertainties and randomness that is one 

of the factors that stems from difficulties in estimating future demands for water 

developments. Shah et al. (1996) stated, there may be some situations where rainfall 

exhibits reasonable spatial uniformity (e.g. frontal storms over basins with gently 

varying topography), these tend to be the exception rather than the rule, particularly 

where a rainfall regime is dominated by convective storms or is subjected to 

pronounce orographic effects. This situation shows that by applying stochastic 

approach can currently provide the only effective route towards a hydrological 

description of rainfall in the absence of satisfactory mathematical and physical 

representatives of the laws governing its complexity (Stedinger and Taylor, 1982). 

The stochastic models of daily rainfall with annually varying parameters usually do 

not preserve the variance of monthly and annual precipitation (Buishand, 1977; 

Zucchini and Guttorp, 1991; Woolhiser et al., 1993; Boughton, 1999). This 

underestimation may be due to real long-term trends in rainfall, changes in the data 

collection techniques or in rain gauge exposure, model inadequacies, and/or the 

existence of large-scale atmospheric circulation patterns that do not exhibit annual 
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periodicities (Woolhiser, 1992). Hydrology and its process must also be affected by 

human activities and various disruptions in nature.  

 

Many hydrologists use the forecasting technique to design and 

implementations the water resources systems. The main objective of forecasting is to 

use the time series model fitted to a data set to obtain the most accurate estimate or 

prediction of the future unknown series. However, forecasting itself unable to test 

whether or not a class of time series models statistically preserves important historical 

statistics of the data sets to which the set of models is fitted (Box and Jenkins, 1976). 

One would quite naturally, like to employ models, which can account for the key 

statistical characteristics of hydrological time series. However, when a mathematical 

model can be employed for determining exactly of a system, the model is said to be 

deterministic. Deterministic models are designed and used for identifying and 

evaluating system performance in its uncertain environmental and it is a point of 

implicit stochastic models (Troch et al., 1993).  

 

 Stochastic modelings were preceded by structural analysis of temporal and 

spatial stochastic process such as the analysis of errors, trend types and composition, 

intermittency, periodicity and stochasticity (Hipel and McLeod, 1994). By 

considering stochastic hydrology it becomes the light of its application to simulation 

and optimization in water resources planning and operation. Furthermore, synthetic 

hydrology stays in fact the overall science of fitting stochastic models to hydrological 

series and using these models for simulation purposes. The goal of simulation is to 

employ the fitted model to generate a set of stochastically equivalent observation 

series, which could possibly occur in the future. Simulation or generation of samples 

may be very effective tool for experimentally finding the sampling frequency 

distributions of testing parameters and various other estimates (Yevjevich, 1989). The 

synthetic flow or rainfall data generation (or in short synthetic hydrology) was later 

suggests as the term operational hydrology would be more appropriate. It is because, 

synthetic hydrology can be useful in both analytical and simulation models.  
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 However, there is nothing about approximate methods that makes better use of 

the limited data and most such approximate methods have been demonstrated to be 

highly unreliable. There are many techniques, which can be used to adopt the limited 

data to simulation. By careful use of simulation models, data of poor quality can be 

checked, missing records completed and a considerable extension of the record can be 

made (Hipel et al., 1977b; Koch, 1985; Grygier and Stedinger, 1991). The most 

critical data for simulation are the flows and rainfall series and without both series it 

is impossible to carry on a study by any other reasonable adequate hydrologic 

technique and a simulation study. It will usually take no more time to develop the 

necessary data for simulation than it will require developing the estimates desired. 

Meanwhile, one simulation of rainfall or flows runs, it will provide an abundance of 

data, which can answer many hydrologic problems. As an example, if one wish to 

explain the effect of changing vegetal cover on the watershed, of increasing the 

amount of urban land use, or other possible land use changes, this is easily done with 

simulation (Chatfield, 1979). Using conventional methods, is would be difficult, if not 

impossible, to estimate the effect of such changes. In any case, if time and cost are 

measured against the quality and completeness of the results, simulation is far ahead 

of the conventional technique (Hipel and McLeod, 1994). In such case, Loucks et al. 

(1981) stated that, the type of condensation and storage of data in the format models 

and estimated parameters are more useful rather than keeping the original data in 

master data files as is done at present with data bank storage for final backup and for 

verification purposes when needed. 

 

Based on the simulation methods, the basic disaggregation and aggregation 

models can be used to simulate and generate both data sequences. Disaggregation 

models are generally considered a very variable feature for flows and rainfall 

simulation (Salas et al., 1980). The earliest model such as Thomas-Fiering model 

(Thomas and Fiering, 1962), H-C model (Harms and Campbell, 1967) and Box-

Jenkins model (Box and Jenkins, 1976) seem to currently unsuitable for a fully 

simulation or generating use. The first well-accepted model was presented by 

Valencia and Schaake (1973) by developing the Valencia-Schaake technique (VLSH). 

Further studies, modification and applications of disaggregation model, have been 

made in the past year such as Mejia and Rouselle (MJRS) model (Mejia and Rouselle, 
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1976), Lane (LANE) model (Lane, 1980) and Grygier and Stedinger (SPIGOT) model 

(Grygier and Stedinger, 1991). Aggregation is a new study technique by which an 

assumption is made regarding the basic form of the original or lower level time series 

are calculated. Work also has been performed using Fourier series model (Yevjevich, 

1984). In order to model adequately the seasonally varying correlation structure and 

to preserve the stationary statistical properties within each season, one would have to 

consider the families of the periodic autoregressive (PAR) model (Salas et al., 1980) 

or periodic autoregressive and moving average (PARMA) model (Vecchia, 1985a). 

The application of these models has been attractive in simulation area mainly because, 

the form has an intuitive type of time dependence and they are simplest models to use.  

  

Recent development of using the alternative simulation models available led to 

developing many software packages. For instance well-known packages are IMSL, 

STATGRAPHICS, ITSM, SASS/ETS, SPSS and MATLAB. However, despite of the 

availability of such general-purpose programs, specialized software for simulation of 

hydrological time series have been attractive because of several reasons (i.e. HEC-4 

(U.S ARMY Corps. of Engineer, 1971), LAST (Lane and Frevert, 1988), SPIGOT 

(Grygier and Stedinger, 1991) and SAMS (Salas et al., 1996)).  

 

 Based on the above-mentioned fact, this study will focus on rainfall and flows 

simulation based on the disaggregation procedures using VLSH model, MJRS model, 

LANE model and SPIGOT model. Despite of that, the aggregation models in the class 

of PAR and PARMA models will be used for simulation the flows sequences. Two 

software packages namely SAMS and SPIGOT would be used to generate the 

historical flows and rainfall sequences. The effectiveness of models depends on the 

estimation of model parameters, fitting stage and diagnostic check. The model 

estimated stage needs to be checked in order to verify how well it represents the 

historical flow and rainfall series. The evaluation of the selected models are based on 

the preservation of statistical characteristics such as mean, standard deviation, 

skewness coefficient and lag one season to season correlation coefficient. It is 

therefore necessary to evaluate the validity of a model before it is used for such 

purposes.  
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1.2 Statement of Problems 

 

Rainfall and flow series are essential parameters for the water resources 

planning and management. However, the observed rainfall data have randomness, 

systematic (or inconsistency) and sampling errors based on the effects of anticipate 

climate change and historical flow data is due to the non-homogeneity (conceived as 

changes in nature by humans and natural disruptions). As this problem cannot, in 

general, be solved analytically, a simulation approach must be adopted in which a 

stochastic model of rainfall or flow is used to generate a long synthetic input series to 

the mathematical model; the required magnitude frequency relationship can then be 

estimated from the derived synthetic output series. One of the major problems in 

water resources design is the selection of the stochastic process to model the given 

flow or rainfall record. This involves using the historical rainfall and flow records to 

estimate the model parameters of an appropriate model, which may then be used to 

simulate the desired length of data series. Various types of stochastic models are 

available for use in engineering design, such as, aggregation and disaggregation 

models. For such a system, if simulation is conducted which used only the historical 

records as inputs data and is then used as a basis for decision. It is implied that the 

future history of the system will repeat the same pattern, which is hardly ever likely to 

be the case. Worse little idea of the risks, which will be encountered in making any 

decision, will be obtained. To avoid this situation, statistical models have been 

developed which generate synthetic records of flow or rainfall that are statistically 

similar to observed flow and rainfall records, that can be used in simulating the 

behavior of water resource systems. However, the generation of flow series required 

the totally undisturbed observed data sequences. In fact, this situation is quite 

impossible due to the above-mentioned problem. Due to this need, the rainfall 

simulation is carried out to overcome the possibility of the weakness in flow 

simulation. Despite, the simulated rainfall can be transformed to flow using the simple 

monthly linear rainfall-flow model and the rainfall simulation itself; will supply the 

synthetic rainfall data to the rainfall-runoff model. The need for the long-term 

planning of reservoir planning, management and design required the good model for 

synthetic data generation. However, to show the widespread applicability, the 

generated data series were evaluate from the preservation of the historical statistical 
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properties. The study on synthetic simulation will identify the right model to preserve 

the historical statistical characteristics. In addition, use of the simulation techniques 

offers the potential benefits to solve natural processes of rainfall and flow pattern 

based on the statistical characteristics. In reality, the flow and rainfall processes are 

random and uncertain. Therefore, the stochastic time series modeling is essential to 

model the random component in the system.  

 

 

 

1.3 Objectives 

 

The objectives of this study are: 

i. To propose the application of aggregation and disaggregation models in 

the flow simulation and the application of disaggregation model in the 

rainfall simulation. 

ii. To investigate the performance of aggregation and disaggregation model 

in the flow simulation and the disaggregation model in the rainfall 

simulation. 

iii. To identify and confirm the best model in flow and rainfall simulation. 

 

 

 

1.4 Scope of Study 

 

The study covers the application of aggregation and disaggregation methods 

for flow simulation and the disaggregation models in the rainfall simulation. The 

aggregation model usually called as a seasonal series model follows a periodic 

autoregressive (PAR) and periodic autoregressive and moving average (PARMA) 

models. For disaggregation model, the well-known model namely, Valencia and 

Schaake (VLSH), Mejia and Rouselle (MJRS), Lane (LANE) and Grygier and 

Stedinger (SPIGOT) models are used for flow simulation. Meanwhile, the VLSH, 

MJRS and LANE models are used for rainfall simulation. The data analysis methods 

consist of time series plots and Box-Whisker plots. The development stages are 
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designed to decide the families of models to be considered for fitting to a flow and 

rainfall series. The overall methodology to fitting models consists of identification, 

estimation and diagnostic checking. At the identification stage the most suitable 

models to fit to the data can be selected by examining various types of graphs. If a 

transformation is required but this fact is not discovered at the identification stage, the 

need for a data transformation will probably detected at the diagnostic check of model 

development when properties of the residuals are examined. The data will be 

transformed using either Box-Cox; Logarithmic or Power transformation. Efficient 

estimates of the model parameters can be obtained at the estimation stage by 

employing the method of moments. Following this, the fitted models can be checked 

for possible inadequacies. The diagnostic checks were employed to ensure that the 

selected model adequately describes the flow and rainfall series under consideration 

by subjecting the model to a range of statistical tests. The results of generating 

monthly sequences will be investigated and compared the historical mean, standard 

deviation, lag one correlation coefficient and skewness coefficient to identify the best 

model. The best model is identified based on the model ability to preserve the 

statistical properties. The flow and rainfall gauging stations are based on four state 

namely; Negeri Sembilan, Melaka, Selangor and Johor. Despite of this, river basin 

and catchment area under studies are: Sg. Linggi basin, Sg. Triang basin, Sg. Muar 

basin, Sg. Selangor basin, Sg. Bernam basin, Sg. Melaka catchment and Sg. Johor 

basin. Four rainfall stations are under studies which two of them in the Sg. Selangor 

catchment area and the others in Sg. Melaka catchment and Sg. Segamat catchment. 

The duration of the monthly records range from less than 20 years to more than 40 

years for some stations.  

 

 

 

1.5 The Importance of Study 

 

The need for monthly and annual data for hydrological applications, especially 

in flood studies, suggests the use of aggregation and disaggretion model to use the 

available data information. In this way, the model would provide a continuous 

simulation tool for use for simulation studies and design. This study will present an 
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improved aggregation and disaggregation method for generation of alternative 

sequences of monthly and annual hydrologic data sequences. This study also proposed 

the significant advantage over the current models for such studies. The proposed 

model is therefore a valuable tool for flow and rainfall simulation studies, which 

abound Malaysia. Using the synthetic data then provides a broad base for 

development of proper water resources planning and management. The results of this 

study also provide a new tool for keeping the data in the form of models and 

estimated parameters rather than in original data.  

 

 

 

1.6 Research Hypothesis 

 

To achieve the goal the following hypothesis have been made; 

i. The applications of the VLSH model yield a better performance than the 

widely used disaggregation models for flow and rainfall simulation. 

ii. The modeling of periodic series is more complex than modeling the annual 

series because the former have the influence of the annual cycle which 

produces the periodic variations in some or all of the statistical 

characteristics of the series. 

iii. The preservation of historical statistical characteristics of rainfall 

simulation yields a better performance than flow simulation. 

iv. The transformation of rainfall and flow series to normal distribution does 

guarantee the best results in the rainfall and flow simulation. 
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