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ABSTRACT 

 

 

 

 

The present study focuses on the effect of CO2-plasticization and membrane 

configuration on the performance of asymmetric polysulfone hollow fiber membrane 

for CO2/CH4 separation. Heat treatment method to suppress plasticization effect and 

membrane module configurations in series and cascades arrangement for the 

CO2/CH4 gas separation was investigated. The membranes were prepared using 

polysulfone (Udel P1700) and tested using pure CO2 and CH4 and CO2/CH4 gas 

mixture. Gas permeation experiments were conducted for single, two and three-stage 

configurations. The produced membranes were characterized by pure gas permeation 

experiments, density measurement, Differential Scanning Calorimetry (DSC), 

Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). In 

pure gas permeation experiment for both untreated and treated membranes, the 

pressure-normalized flux of CO2 decreases with increasing of the membrane stages. 

In addition, the selectivities of the asymmetric polysulfone hollow fiber membrane 

showed a more constant trend with increasing feed pressure. Treated membrane 

exhibited lower pressure-normalized flux than untreated membranes due to skin layer 

densification which increases the gas transport resistance which lead to the reduction 

in the CO2 pressure-normalized flux values. Among all configurations studied, two-

stage series configuration showed the most constant trend of selectivity values. The 

selectivity is slightly below the intrinsic selectivity. However, three-stage cascade 

configuration produced the highest CO2/CH4 selectivity especially when tested at 

low feed pressure range. Some of the selectivity even surpasses the intrinsic 

selectivity of polysulfone. Effect of stage cut on feed pressure showed an increasing 

trend with increasing of CO2 and CH4 feed pressure in all configurations. This is due 

to the increase of the permeation driving force, which causes the passage of larger 

amounts of more permeable gas through the membrane. This study showed that, 

three-stage cascade configuration exhibited the smallest stage cut values than other 

module configurations. Hence, cascade configuration produces higher purity of CO2 

in the permeate stream. In mixed gas permeation experiment, increasing trend of CO2 

pressure-normalized flux was also observed but exhibited lower value due to 

competition among the penetrant species. As a result, the selectivity and the stage cut 

achieved are also lower in values. As a conclusion, the results of this work served as 

a platform in determining the most suitable module configuration to be used for gas 

separation processes.  
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ABSTRAK 

 

 

 

 

Fokus utama kajian ini adalah ke atas kesan pemplastikan teraruh CO2 dan 

konfigurasi membran terhadap prestasi membran gentian geronggang asimetrik 

polisulfona bagi pemisahan gas CO2/CH4. Kaedah rawatan pemanasan untuk 

merencat kesan pemplastikan dan modul konfigurasi membran secara bersiri dan 

menirus untuk pemisahan gas CO2/CH4 turut dikaji. Membran disediakan 

menggunakan polisulfona (Udel P1700) dan diuji menggunakan gas tulen CO2 dan 

CH4 serta campuran gas CO2/CH4. Ujikaji penelapan gas dijalankan untuk 

konfigurasi satu, dua dan tiga tahap.  Membran yang dihasilkan diciri dengan ujian 

penelapan gas, pengukuran ketumpatan, Mikroskop Elektron Imbasan (SEM), 

Permeteran Kalori Pengimbasan Kebezaan (DSC) dan Analisis Termogravimetrik 

(TGA).  Dalam ujian penelapan gas tulen bagi kedua-dua membran yang tidak 

dirawat dan yang dirawat, fluk tekanan ternormal CO2 menurun dengan peningkatan 

bilangan membran. Tambahan pula, kememilihan membran gentian geronggang 

asimetrik polisulfona menunjukkan keadaan tetap dengan peningkatan tekanan 

masukan. Membran yang dirawat menunjukkan penurunan dalam fluk tekanan 

ternormal berbanding membran yang tidak dirawat disebabkan penebalan lapisan 

kulit membran yang meningkatkan rintangan pengangkutan gas yang membawa 

kepada penurunan nilai fluk tekanan ternormal CO2.  Di antara kesemua konfigurasi, 

konfigurasi dua tahap secara bersiri menunjukkan nilai kememilihan yang paling 

tetap. Kememilihan yang terhasil adalah sedikit rendah berbanding kememilihan 

intrinsik polisulfona. Walaubagaimanapun, konfigurasi tiga tahap secara menirus 

menunjukkan kememilihan CO2/CH4 yang tertinggi terutamanya apabila diuji pada 

julat tekanan masukan yang rendah. Terdapat juga kememilihan yang mengatasi 

kememilihan intrinsik polisulfona. Kesan keratan aras ke atas tekanan masukan 

meningkat dengan peningkatan tekanan masukan CO2 dan CH4 dalam semua 

konfigurasi. Ini adalah disebabkan peningkatan daya peresapan yang menyebabkan 

sejumlah besar gas yang mudah meresap merentasi membran. Kajian ini 

menunjukkan yang konfigurasi tiga-tahap secara menirus menunjukkan nilai keratan 

aras yang terkecil berbanding konfigurasi yang lain. Oleh itu, konfigurasi menirus 

menghasilkan ketulenan CO2 yang tinggi dalam aliran peresapan. Bagi ujikaji gas 

campuran, fluk tekanan ternormal CO2 didapati meningkat tetapi menunjukkan nilai 

yang lebih rendah disebabkan saingan di antara kumpulan gas. Hasilnya, nilai 

kememilihan dan keratan aras yang terhasil juga adalah rendah. Kesimpulannya, 

keputusan ujikaji ini bertindak sebagai satu cara untuk menentukan konfigurasi 

modul yang paling sesuai untuk kegunaan proses pemisahan gas.  
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Q - Volumetric flow rate (cm
3
 (STP) s

-1
 or mol s

-1
) 

Qi  - Total gas flux for permeant i 

Qp  - Permeate flow rate (cm/s) 

s - Second 

S - Stage cut 

SA  - Solubility coefficient  

R  - Gas constant 

T - Temperature (K) 

Tc - Critical temperature 

Tg - Glass transition temperature 

iv  - Mean molecular speed of permeant i  

V - Total molar volume of the monomer unit (cm
3
/mol) 

Ve - Equilibrium volume of densified glass 

Vg - Actual glassy specific volume 

Vw  - Van der Waals volume 

V0  - Volume occupied by the chains (cm
3
/mol) 

wt% - Weight percentage 

w/w - Weight per weight 

x  - CO2 mole fractions in the retentate stream 

xf  - CO2 mole fractions in the feed streams 
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y  - CO2 mole fraction in the permeate stream 
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δ  - Numerical factor for a particular system 
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ρ - Density of the film (g/cm
3
) 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Membrane for Gas Separation 

 

 

Membrane separation processes is a well-established technology.  The 

process essentially involves contacting one side of a semi-permeable gas separation 

membrane with a feed gas mixture containing at least the gas whose enrichment is 

desired, along with one or more other gases.  The membranes divide a separation 

chamber into a high-pressure side into which the feed gas mixture is fed at a low-

pressure side.  A pressure differential is maintained across the membrane under 

conditions such that at least one of the gases in the feed gas mixture selectively 

permeates through the membrane from the high-pressure side to the low-pressure 

side of the membrane.  Then the gas mixture which is relatively enriched in the first 

group of gases and depleted in the second different group of gases is removed from 

the low-pressure side of the membrane.  While, gas depleted in the first group of 

gases is removed from the high-pressure side of the membrane (Stern et al., 1997).  

 

 

The application of membranes to gas separation problems has grown rapidly 

since the installation of the first industrial plants in the early 1980s.  Membranes 

have gained an important place in chemical process industries and are used in a 

broad range of applications.  The key property that is exploited is the ability of a 

membrane to control the permeation rate of a chemical species through the 

membrane.  Removal of CO2 is the only natural gas separation currently practiced on 

a large scale (more than 200 plants have been installed).  Most were installed by 

Grace (now Kavanaugh-GMS), Separex (UOP) and Cynara.  All of these plants used 
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cellulose acetate membranes in hollow fiber or spiral wound module form.  More 

recently, hollow fiber polyaramide (Medal) and polyimide (Ube) membranes have 

been introduced due to their higher selectivity (Baker, 2000).  A list of the principal 

gas separation markets, producers and membrane systems is given in Table 1.1.  

 

 

These market estimates are based on the new membrane equipment produced 

each year.  Currently, only eight or nine polymer materials that are listed above are 

used to make at least 90% of the total installed gas separation membrane base.  

Plasticization problems, aging phenomena, low process ability and high cost are the 

main reasons why only eight to nine different polymers are used in 90% of the 

commercial applications (Barsema, 2003).  The table shows that, to date, two thirds 

of the total gas separation market is in the separation of hydrogen from ammonia 

purge gas or syngas.  These are clean gas streams, generally free of components that 

might foul or plasticize the membrane, which means that hollow fiber modules work 

well.  However, the growing application areas are in natural gas treatment and in 

refining and petrochemical plants.  The gas streams often contain high levels of 

plasticizing and condensable vapors, which degrade membrane performance.   

 

 

Table 1.1: Principal gas separation markets, producers and membrane systems 

(Baker, 2000) 

Company Principal membrane 

material used 

Module type Principal markets/ 

Estimated annual sales 

Permea (Air Products) 

Medal (Air Liquide) 

Generon (MG industries) 

IMS (Praxair) 

 

Kvaerner 

Separex (UOP) 

Cynara (Natco) 

 

Parker-Hannifin 

Ube 

GKSS Licensees 

MTR 

Polysulfone 

Polyimide/Polyaramide 

Tetra bromo polycarbonate 

Polyimide 

 

Cellulose acetate  

Cellulose acetate 

Cellulose acetate 

 

Polyphenylene oxide 

Polyimide 

Silicone rubber 

Silicone rubber 

Hollow fiber 

Hollow fiber 

Hollow fiber 

Hollow fiber 

 

Spiral wound 

Spiral wound 

Hollow fiber 

 

Hollow fiber 

Hollow fiber 

Plate and frame 

Spiral wound 

Large gas companies; N2/air 

at US$75 million per year; 

and hydrogen separation at 

US$25 million per year.  

 

Mostly natural gas 

separations at US$30 million 

per year. 

 

Vapor/gas separation, air 

dehydration and other at 

US$25 million per year 
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Therefore, robust membrane modules, which are able to handle ‘upsets’, are required 

(Baker, 2001).  

 

 

Developing processes such as CO2 separation from natural gas, Volatile 

Organic Compound (VOC) separation from air and nitrogen and recovery of light 

hydrocarbons from refinery and petrochemical plant purge gases are performed on a 

commercial scale and in total several hundred plants have been installed.  Some 

predictions of the future for the membrane gas separation market are given in Table 

1.2.  It seems that the total market will grow, but perhaps not uniformly in all the 

areas that are shown.  Natural gas sales have reached about USD 30 million per year 

and should increase rapidly, perhaps reaching USD 90 million by 2010.  

 

 

CO2 removal from natural gas has been practiced using cellulose acetate 

membranes for more than 10 years and the introduction of more selective polyimide 

membranes has begun and in time is likely to make membrane processes much more 

competitive with amine absorption.  In the area of CO2/CH4 separation membranes,  

 

 

Table 1.2: Predicted sales of membrane gas separation in the main target market 

(Baker, 2001) 

Membrane market (USD million, 2,000 dollars) 
Separation 

2000 2010 2020 

Nitrogen from air 

Oxygen from air 

Hydrogen  

Natural gas 

   CO2 

   NGL 

   N2/H2O 

Vapor/nitrogen 

Vapor/vapor 

Other 

Total 

75 

<1 

25 

 

30 

<1 

0 

10 

0 

15 

155 

100 

10 

60 

 

60 

20 

10 

30 

20 

30 

340 

125 

30 

150 

 

100 

50 

25 

60 

100 

100 

760 
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natural gas sweetening, the removal of CO2 in landfill gas recovery processes and 

CO2 removal from fractured wells as well as the removal of CO2 in enhanced oil 

recovery applications (EOR) are of interest (Staudt-Bickel and Koros, 1999).  CO2 

produced can be injected into adjacent oil fields to enhance oil recovery (Lonsdale, 

1982).  In order to achieve excellent performance in membrane processes, the 

process reliability needs to be enhanced to make CO2 removal technology the 

ultimate choice in a variety of processing conditions.  It is crucial to transport the 

field gas through the conventional pipeline without catastrophic corrosion problems.  

Hence, an efficient method to reduce the composition of CO2 gas is critically in need 

and membrane gas separation processes was found to be the best solution.  

 

 

Nowadays, there are wide varieties of acid gas removal technologies 

available.  Membrane separation processes have been shown to be very effective for 

natural gas processing.  An efficient separation of CO2 and hydrogen sulfide from 

natural gas can be achieved by selective permeation through polymer membranes 

(Lee et al., 1995).  However, membrane technologies have been chosen for 

applications that have large flows, have high CO2 contents or are in remote areas.  

The removal of CO2 from off gas and reinjection into the oil field is desirable but the 

recycle gas must have a CO2 purity of at least 95%.  This minimum level is necessary 

in order to maintain the solvent power of the CO2 (Dortmundt and Doshi, 1999).  

When the CO2 content of the feed was above 75% CO2, the separation could be 

achieved in a single membrane stage.  In this case, the compressor was no longer 

needed (Ho and Sirkar, 1992).  

 

 

Even though the separation of CO2/CH4 using polymeric membranes is 

growing rapidly, the plasticization of the membrane material is always a problem.  

This is due to the pressure-normalized flux of the slower gas which is facilitated by 

the highly soluble, faster gas.  This phenomenon is attributed to plasticization effects 

caused by the high CO2 solubility or interactions between CO2 and the polymer 

material.  As the membrane is plasticized the pressure-normalized flux increases 

significantly but the selectivity for gaseous mixtures decreases (Barsema et al., 

2003).  A good asymmetric membrane for natural gas separation can be achieved if it 

possesses the following material and performance characteristics: (1) inherently high 
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selectivity for CO2 and CH4 gas pair and (2) immunity to plasticization induced by 

CO2.  The CO2-induced plasticization usually causes a severe deterioration of 

membrane separation performance in the natural gas application loss (Cao et al., 

2003). 

 

 

An understanding of the plasticization phenomenon is crucial to develop and 

achieve a high performance membrane in order to make membrane separation 

application attractive.  Therefore, a thorough investigation of CO2-induced 

plasticization phenomenon must be carried out in order to reduce the extent of 

plasticization phenomena in glassy polymer membranes. 

 

 

 

 

1.2 Problem Statement 

 

 

The problem encountered in the CO2/CH4 separation was the swelling of the 

polymer matrix by the highly sorbed CO2, which resulted in an increase in CO2 

pressure-normalized flux.  This behavior is related to the so-called plasticization 

effects that occur during the separation process.  This phenomenon took place since 

CO2 that falls into the category of acid gas such as hydrogen sulfide (H2S) is 

commonly found in natural gas streams and hydrocarbon gases at levels as high as 

40% to 60% and sometimes up to 80% as hydrocarbon capacities decline, and up to a 

feed pressure of 60 atm.  These extreme operation conditions were the result of the 

swelling and plasticization of most membrane materials by the CO2 present in the 

feed stream (Ho and Sirkar, 1992, Scott, 1998, Staudt-Bickel and Koros, 1999).  In 

other words, degraded the membrane performance.  As a result, pressure-normalized 

flux of CH4 increases.  As it increases more than the pressure-normalized flux of 

CO2, the selectivity decreases (Bos et al., 1998).  Since plasticization is a major 

problem that occurs in CO2/CH4 separation, it is necessary to develop a membrane 

that has less plasticization effect besides maintaining the separation performance at 

elevated pressure conditions.  
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1.3  Research Objectives 

 

 

 As stated above, the separation of CO2 from CH4 customarily takes place in 

the processes of natural gas treatment, enhanced oil recovery, landfill gas and also in 

digester gas upgrading and flue gas recovery in order to reduce pipeline corrosions 

induced by CO2 as well as to produce high-purity energy products.  Polymer 

membrane based technology is competitive for this kind of application in view of the 

following facts: (1) the high pressure of feed gas is a ready-made driving force for 

permeation and (2) CO2 is more permeable than CH4 in most membranes.  Thus, the 

enriched CH4 as the residual stream still retains at a high pressure for other 

operations without a significant pressure loss (Cao et al., 2003).  Many polymers 

used for the CO2/CH4 gas separation show the typical trend of a decreasing pressure-

normalized flux with increasing pressure at low feed pressures and an increasing 

pressure-normalized flux as the CO2 pressure is further elevated.  The increase of 

pressure-normalized flux with increasing pressure is cause by plasticization (Bos et 

al., 1998).  

 

 

From the literature, few researchers reported on asymmetric membrane film, 

in addition very few researchers report on plasticization in asymmetric hollow fiber 

membranes.  This phenomenon is mainly due to the fact that the dense selective layer 

of the hollow fibers is very thin and the inception of plasticization in the hollow 

fibers may occur at a very low feed pressure (Wang et al., 2002a).  Many researchers 

studied polyimide membranes.  However, polyimide trade off is not attractive to be 

used commercially and is expensive compared to polysulfone.  On the other hand, 

the trade-off for polysulfone is favorable for commercial applications.  This can help 

to reduce the cost of using membrane separation systems with condensable gases 

such as CO2.  

 

 

Developing a better membrane that has less plasticization effect besides 

maintaining the membrane performance is essential for the future application of 

membrane based gas separation.  Not much attention was given to overcoming the 

plasticization effect in hollow fiber membranes especially on polysulfone.  As such, 

it is necessary to reduce the effect caused by the dissolved CO2 that will alter the 
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polymer matrix, resulting in an increase in pressure-normalized fluxes and a 

reduction of selectivities.  From the discussion above, the objectives of this research 

are: 

 

 

1. To develop and characterize asymmetric polysulfone hollow fiber 

membranes. 

2. To study the effect of plasticization in asymmetric polysulfone hollow 

fiber membranes for CO2/CH4 gas separation systems.  

3. To determine the optimize operating conditions for suppression of 

plasticization in hollow fiber membranes for CO2/CH4 separation system.  

 

 

 

 

1.4 Scope of Thesis 

 

 

In order to achieve the objective as stated above, the following scopes of 

work are identified: 

 

 

1. Fabricating asymmetric polysulfone hollow fiber membrane and membrane 

modules for testing purposes.  

2. Designing and fabricating a high-pressure three-stage gas permeation testing 

system in order to determine the separation performance of the asymmetric 

polysulfone hollow fiber membranes.  

3. Investigating the plasticization effect using pure CO2 and CH4 as well as 

CO2/CH4 mixture permeation experiments.  

4. Performing a mild heat treatment process below polysulfone glass transition 

temperature in order to suppress CO2-plasticization. 

5. Conducting membrane characterizations using density measurement, 

Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry 

(DSC) and Thermogravimetric Analysis (TGA) that can provide an indirect 

evidence of plasticization. 
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