
MATHEMATICAL MODELLING OF MASS TRANSFER

IN MULTI-STAGE ROTATING DISC CONTACTOR COLUMN

NORMAH MAAN

UNIVERSITI TEKNOLOGI MALAYSIA



MATHEMATICAL MODELLING OF MASS TRANSFER

IN A MULTI-STAGE ROTATING DISC CONTACTOR COLUMN

NORMAH MAAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

Faculty of Science

Universiti Teknologi Malaysia

OCTOBER 2005



iii

To

my beloved husband, Zainidi and

my loving daughters, Nur Ezzaty and Nur Amira

and

especially my loving

and supportive parents, Hj. Maan and Hjh. Eashah



iv

ACKNOWLEDGEMENT

First of all, I thank ALLAH (SWT), the Lord Almighty, for giving me the

health, strength and ability to write this thesis.

I wish to express my deepest gratitude to my supervisor, Assoc. Prof. Dr.

Jamalludin Bin Talib, who suggested the research topic and directed the research.

I thank him for his enduring patience. My special thanks are also due to my co-

supervisor, Dr. Khairil Anuar Arshad, and to Assoc. Prof. Dr. Tahir Bin Ahmad for

contributing ideas, discussing research plans, and encouragement.

I am forever indebted to my employer Universiti Teknologi Malaysia (UTM) for

granting me the study leave and providing the facilities for my research.

Finally, I am grateful for the help in different ways from a number of individuals.

Among them are Dr. Rohanin, Dr. Zaitul, Pn. Sabariah and other friends.



v

ABSTRACT

In this study, the development of an improved forward and inverse models

for the mass transfer process in the Rotating Disc Contactor (RDC) column were

carried out. The existing mass transfer model with constant boundary condition does

not accurately represent the mass transfer process. Thus, a time-varying boundary

condition was formulated and consequently the new fractional approach to equilibrium

was derived. This derivation initiated the formulation of the modified quadratic

driving force, called Time-dependent Quadratic Driving Force (TQDF). Based on this

formulation, a Mass Transfer of A Single Drop (MTASD) Algorithm was designed,

followed by a more realistic Mass Transfer of Multiple Drops (MTMD) Algorithm

which was later refined to become another algorithm named the Mass Transfer Steady

State (MTSS) Algorithm. The improved forward models, consisting of a system of

multivariate equations, successfully calculate the amount of mass transfer from the

continuous phase to the dispersed phase and was validated by the simulation results.

The multivariate system is further simplified as the Multiple Input Multiple Output

(MIMO) system of a functional from a space of functions to a plane. This system

serves as the basis for the inverse models of the mass transfer process in which fuzzy

approach was used in solving the problems. In particular, two dimensional fuzzy number

concept and the pyramidal membership functions were adopted along with the use of

a triangular plane as the induced output parameter. A series of algorithms in solving

the inverse problem were then developed corresponding to the forward models. This

eventually brought the study to the implementation of the Inverse Single Drop Multi-

stage (ISDMS)-2D Fuzzy Algorithm on the Mass Transfer of Multiple Drops in Multi-

stage System. This new modelling approach gives useful information and provides a

faster tool for decision-makers in determining the optimal input parameter for mass

transfer in the RDC column.
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ABSTRAK

Dalam kajian ini, pembentukan model ke depan yang lebih baik dan model

songsangan bagi proses peralihan jisim di dalam Turus Pengekstrakan Cakera Berputar

(RDC) telah dijalankan. Model yang sedia ada dengan syarat sempadan tetap tidak

mewakili proses peralihan jisim dengan tepat. Dengan itu, syarat sempadan yang

merupakan suatu fungsi masa berubah telah dirumuskan dan seterusnya pendekatan

pecahan untuk keseimbangan yang baru diterbitkan. Penerbitan ini telah memulakan

perumusan daya pacu kuadratik ubahsuai, yang dipanggil daya pacu kuadratik

bersandaran masa (TQDF). Berdasarkan perumusan ini, satu Algoritma Peralihan

Jisim untuk Sebutir Titisan (MTASD) telah direkabentuk , diikuti oleh satu algoritma

yang lebih realistik algoritma Peralihan Jisim untuk Multi Titisan (MTMD) yang mana

kemudiannya, telah diperbaiki dan dinamakan Algoritma Peralihan Jisim Berkeadaan

Mantap (MTSS). Model ke depan yang telah diperbaiki, terdiri daripada satu sistem

persamaan berbilang pembolehubah yang mana kemudiannya dipermudahkan sebagai

sistem berbilang input berbilang output (MIMO) yang merupakan satu rangkap

dari satu ruang fungsi-fungsi kepada satu satah. Sistem ini merupakan satu asas

pembentukan model songsangan bagi proses peralihan jisim dan pendekatan kabur

telah digunakan untuk menyelesaikannya. Secara khususnya, konsep nombor kabur dua

matra dan fungsi keahlian piramid digunakan, diikuti dengan penggunaan satu satah

segitiga sebagai parameter output teraruh. Satu siri algoritma dalam menyelesaikan

masalah songsangan ini kemudiannya telah dibentuk berpadanan dengan model ke

depan masing-masing. Kajian ini akhirnya membawa kepada implementasi Algoritma

Songsangan Sebutir Titisan Multi-tingkat (ISDMS)-2D Kabur ke atas sistem peralihan

jisim Multi Butiran dalam Multi-tingkat. Untuk rumusan yang lebih definitif,

pedekatan baru pemodelan ini memberi maklumat yang berguna dan menyediakan

suatu alat yang cepat kepada pembuat-keputusan dalam menentukan parameter

optimum input untuk peralihan jisim dalam turus RDC.
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CHAPTER 1

INTRODUCTION

1.1 Preface

The study of liquid-liquid extraction has become a very important subject to be

discussed not just amongst chemical engineers but mathematicians as well. This type

of extraction is one of the important separation technology in the process industries

and is widely used in the chemical, biochemical and environmental fields. The principle

of liquid-liquid extraction process is the separation of components from a homogeneous

solution by using another solution which is known as a solvent [1, 2]. Normally, it is

used when separation by distillation is ineffective or very difficult. This is due to the

fact that certain liquids cannot withstand the high temperature of distillation.

There are many types of equipments used for the processes of liquid-liquid

extraction. The concern of this research is only with the column extractor type, namely

the Rotating Disc Contactor Column (RDC). Modelling the extraction processes

involved in the RDC column is the major interest in this work. Modelling can be

divided into two categories. One is the forward modelling and the other is the inverse

modelling.

From mathematical and physical point of view, it is generally easier to calculate

the “effect of a cause” or the outputs of the process than to estimate the “cause of

an effect” or the input of the process. In other words, we usually know how to use

mathematical and physical reasoning to describe what would be measured if conditions

were well posed. This type of calculation is called a forward problem. The resulting
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mathematical expressions can be used as a model and we call the process in obtaining

the values of outputs as forward modelling.

On the other hand, inverse problems are problems where the causes for a desired

or an observed effect are to be determined. Inverse problem come paired with direct

problems and of course the choice of which problem is called direct and which is called

inverse is, strictly speaking, arbitrary [3]. Before an inverse problem can be solved, we

first need to know how to solve the forward problem. Then the appropriate steps or

algorithms need to be determined in order to get the solution of the inverse model.

Apart from producing an improved mathematical model for the mass transfer

process, another concern of this research is to develop the inverse models that can

determine the value of the input parameters for a desired value of the output parameters

of the mass transfer process in the multi-stage RDC column.

1.2 Motivation

Several models have been developed for the modelling of RDC columns. The

modelling shows that the drop size distribution and the mass transfer processes are

important factors for the column performances. Since the behavior of the drop breakage

and the mass transfer process involve complex interactions between relevant parameters,

the need to get as close as possible to the reality of the processes is evident.

Several researchers namely Korchinsky and Azimzadih[4], Talib[5],

Ghalehchian[6] and Arshad[7] had been working in this area. Korchinsky and

Azimzadih[4] introduced a stage wise model for mass transfer process, which was

furthered by Talib[5] and Ghalehchian[6]. The unsteady-state models developed by

Talib[5] are referred to as the IAMT (Initial Approach of Mass Transfer) and BAMT

(Boundary Approach of Mass Transfer). To get closer to reality, Ghalehchian[6] had

developed a new steady-state model of mass transfer by including the idea of axial

mixing into the simulation of the mass transfer process. Then Arshad[7] developed a

new steady state model for hydrodynamic process, which updates the current hold up

and drops velocities in every stage after certain time intervals until the system reaches

steady state.
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The mass transfer models are based on a radial diffusion equation with a

constant boundary condition. However a mass transfer model with varied boundary

condition has yet to be developed. The development of the model will enhance the

understanding of the real process. This is because in reality the concentration of the

drops in each compartment in the RDC column is not constant.

The mathematical simulation models of the processes in the RDC column are

very complex and need excessive computer time, particularly in predicting the values

of output parameters. The determination by trial and error of the input parameter

values in order to produce the desired output need excessive computer time and it will

be costly if the actual processes are involved. This type of problem is known as inverse

problem. Therefore, to overcome these difficulties, an alternative approach based on

fuzzy logic is considered.

Fuzzy logic is a well-known method for modelling such uncertain systems of

great complexity. They have been approved and demonstrated by many researchers in

other disciplines of study to have the capability of modelling a complicated system as

well as predicting the actual behavior of a system. So, this study will adopt this method

for assessing inverse modelling of the mass transfer process in the RDC column.

A few researchers for examples Ahmad et.al. [8, 9] and Ismail et. al. [10] have

been using this approach in their works. Ahmad developed an algorithm which was used

in determining the optimized electrical parameters of microstrip lines. The problem was

presented as multiple input single output (MISO) system of some algebraic equations.

Whilst, the problem involved in Ismail’s work is a multiple input multiple output

(MIMO) system of a crisp state-space equation. Both works used a one dimensional

fuzzy number concept and a triangular membership function.

The forward model of the mass transfer process in the RDC column consists of

Initial Boundary Value Problem (IBVP) of diffusion equation, a nonlinear and a few

of linear algebraic equations. The details of the equations will be found in Chapter 3

to 6. Thus the multivariate system modelled by these equations can be simplified as

MIMO system. In this work, a two dimensional fuzzy number concept will be used. A

pyramidal membership function will be also implemented in this work.
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1.3 Objectives of the Research

1. To investigate an equation that will be used as the boundary condition of the

IBVP.

2. To formulate a new fractional approach to equilibrium based on the IBVP of

time-dependent boundary condition.

3. To formulate a modified driving force based on the new fractional approach to

equilibrium.

4. To develop an algorithm for the mass transfer of a single drop in the multi-stage

RDC column.

5. To develop algorithms for the mass transfer of the multiple drops in the multi-

stage RDC column.

6. To establish a technique for assessing the inverse models of the corresponding

new forward mass transfer models.

1.4 Scope of Study

This study will be based on a radial diffusion equation with varied boundary

value problem for mass transfer process and a few algebraic equations governed by

experiments carried out by a previous researcher for the process of hydrodynamics in

the RDC column. The study will also be based on the experimental data obtained by

the researchers at the University of Bradford under contract to Separation Processes

Service, AEA Technology, Harwell.

In this study, the development of inverse model will be based on the concept

of fuzzy algorithm. In this development, the mathematical equations used in

mathematical forward modelling are also being considered. This model is a structure

based model.
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1.5 Significance of the Findings

This study achieves a new development of the forward model which will provide

a better simulation and hence get a better control system for the RDC column. This

study also give a significant contribution in the form of algorithms. These algorithms

are able to calculate the optimal solution of the inverse model for the mass transfer

process in the RDC column. The inverse model will give a new paradigm to the

decision maker or to the engineer in making decision to decide approximate values of

input concentrations of continuous and dispersed phases for desired values of output

concentrations of continuous and dispersed phases.

1.6 Thesis Organization

Chapter 2 gives a literature review on liquid-liquid extraction in general. It

is then followed by a review on the RDC columns including the important processes

involved. The theoretical details on the drop distribution, breakage phenomena and the

mass transfer process are also included. The existing forward mathematical modelling

by the most recent researchers are presented. These reviews are significantly used as a

background in order to develop a new mass transfer model; which will be described in

Chapter 3.

To achieve Objective 6 of the research, the review on the inverse problem in

general, including the definition, the examples of real world problems, the classes of

the inverse problem and the steps involved in solving the problem are given. Whilst

Section 2.8 will provide the reviews on the Fuzzy Concepts. These concepts will be

applied in Chapters 5 and 6 to develop an algorithm for solving the corresponding

inverse problem.

Chapter 3 provides the formulation of the varied boundary function from the

experimental data in [5]. The details of the exact solution of the IBVP with the time

depending function boundary condition will be shown which is then followed by the

derivation of the new fractional approach to equilibrium. The comparison between the

new fractional approach to equilibrium and the one introduced in [11] will be made in

the last section of Chapter 3.
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Chapter 4 comprises the development of the forward models of the mass transfer

in the multi-stage RDC column. Prior to the development, the formulation of the

modified quadratic driving force which is called Time-dependent Quadratic Driving

Force(TQDF) will be given. Based on this formulation, a Mass Transfer of A Single

Drop Algorithm is designed and this is then followed by a more realistic Mass Transfer

of Multiple Drops Algorithm. An alternative method for calculating the mass transfer

of a Multi-Stage System will also be presented in the form of an algorithm named as

the Mass Transfer Steady State Algorithm.

Chapter 5 discusses the formulation of the inverse model for mass transfer

process in the RDC column. The mappings which represent the forward model involved

will also be given. Basically this chapter introduces an Inverse Single Drop Single Stage-

Fuzzy (ISDSS-Fuzzy) model which represents the mass transfer process of a single drop

in a single stage RDC column. This model is a base for the inverse model of the mass

transfer process in the real RDC column.

Chapter 6 provides the theoretical details which become the basis for

accomplishing the task of the thesis. The details are about the relation of two crisp

sets and this is followed by the relation of two fuzzy sets. We also include some

examples which can explain the concept more clearly. From fuzzy relation we extend

the concept of fuzzy number of dimension one to dimension two. Section 6.4 discusses

the development of the Inverse Model of Mass Transfer Process of a Single Drop in

a Single Stage RDC Column based on the two dimensional fuzzy number. We then

implement the algorithm to the mass transfer process in the multi-stage RDC column.

We then summarize the findings and suggest areas for further research in

Chapter 7.

1.7 Summary

In this introductory chapter, a short introduction on the liquid-liquid extraction

process particularly on the RDC column has been presented. The deficiency of the

existing mass transfer models in the multi-stage RDC column has also briefly discussed.

Next, come the research objectives and scope, and the contributions of the work
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described in the thesis. Finally, the outline of the thesis is presented.

The current chapter serves as a defining point of the thesis. It gives direction

and purpose to the research and the discussions presented here are the basis for the

work done in the subsequent chapters.
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controlled and adjusted such as that of rotor speed (Nr), dispersed phase flow

rate (Fd) and interfacial tension (γ). Although interfacial tension could not be

controlled directly but at least by varying this value will provide us with some

useful information. These three parameters are determined or fixed outside the

RDC column, but once they are applied to the modelling, it will give whatever

calculated value for the holdup. This is an inverse problem of type coefficient

inverse problem.

• Development of the intra-stage control system for the RDC column.

In this study the inverse problem in determining the value of the input parameter

for the desired value of output of 23-stage RDC column has been successfully

solved. Intra-stage control system is the control system inside the RDC column.

The inverse algorithm developed in this study only need the information of the

input and output parameters outside the RDC column. Whilst for the intra-

stage control, more information is needed in particular the information on the

concentrations of both liquids at certain stage or if possible at every stage in the

RDC column.

• Further investigation and development on the theory of two dimensional fuzzy

number in multi-stage systems.

• Development of the integrated model of the hydrodynamic and mass transfer

processes.

Parallel processing is suggested to be introduced in order to develop the integrated

model of the hydrodynamic and mass transfer processes. This integrated model

is hoped to give better simulation and better control system for the RDC column.
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