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ABSTRACT 

 

 

 

 

 This project report is devoted to the modeling of the impact behavior of 

laminated composite plates, with a special emphasis on incorporating interfacial 

imperfection. In most analytical and numerical works on composite materials, a 

perfect interface between adjacent laminae is assumed which implies continuous 

displacements and tractions across laminate. In many cases of practical interest, 

however, the assumption of a perfect interface is inadequate. This project report aims 

at the finite element formulation for the effects of different imperfect bonding 

intensities on the response of a laminated plate subjected to a transverse low velocity 

impact using MATLAB. In this study, the imperfect bonding is incorporated into the 

formulation by introducing an imperfection factor, R, to the interface stiffness 

modeled using a well-defined virtually zero-thickness interface element. The 

kinematically consistent mass formulation is used to formulate the mass matrix and 

the impact force is evaluated using a simple linear model. Newmark beta method, an 

implicit method of direct integration, is used in the present study for the solution of 

the linear transient response of the plate. From analysis, it is found that the 

fundamental nondimesional frequency, absorbed energy and the central deflection 

increase with an increase in imperfection factor. Besides, the orientation of laminae 

is also observed to affect the impact behavior of the laminated composite plate. 
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ABSTRAK 

 

 

 

 

 Projek ini ditumpukan kepada pemodelan tingkah laku impak plat komposit 

berlapis, dengan penekanan khas pada ketidaksempurnaan antaramuka. Dalam 

kebanyakan kerja analitikal dan berangka bahan komposit, antaramuka yang 

sempurna di antara lamina bersebelahan telah diandaikan yang mana sesaran dan 

daya tarikan berterusan merentasi lamina telah ditunjukkan. Walaubagaimanapun, 

dalam kebanyakan kes yang mempunyai kepentingan praktikal, andaian antaramuka 

yang sempurna adalah tidak mencukupi. Tesis ini bertujuan untuk menghasilkan 

rumusan unsur terhingga bagi kesan kekuatan berbeza ikatan tak sempurna kepada 

tindakbalas plat berlapis apabila dikenakan impak halaju rendah melintang dengan 

menggunakan MATLAB. Dalam kajian ini, ikatan tak sempurna telah dimasukkan 

ke dalam rumusan dengan memperkenalkan faktor ketidaksempurnaan, R, kepada 

kekukuhan antaramuka yang dimodelkan dengan unsur antaramuka ketebalan sifar. 

Rumusan jisim konsisten secara kinematik telah digunakan untuk merumuskan 

matriks jisim dan daya impak telah dinilai menggunakan model linear mudah. 

Kaedah Newmark beta, satu kaedah implisit kamiran langsung, telah digunakan di 

dalam kajian ini untuk penyelesaian tindakbalas transien linear plat. Daripada 

analisis, kajian ini mendapati bahawa frekuensi asas tanpa-dimensi, tenaga diserap 

dan pesongan tengah meningkat dengan peningkatan dalam faktor 

ketidaksempurnaan. Selain itu, orientasi lamina juga telah didapati mempengaruhi 

tingkah laku impak plat komposit berlapis. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Fiber reinforced  composites are widely used as structural components in 

various fields such as aerospace, civil engineering, marine, automotive, wind power 

industry and others. They are mainly used in applications requiring high stiffness and 

strength as well as low weight. They consist of matrix and reinforcement. The 

reinforcements carry the loads and the stresses, whereby the matrix distributes the 

force and stress uniformly among the reinforcement and binds the reinforcement and 

also prevents the fibers from external damage. Composite materials are commonly 

used in structures that demand a high level of mechanical performance. Their high 

strength to weight and stiffness to weight ratios facilitates the development of lighter 

structures. Basically, the two main types of fiber-reinforced composite materials are 

short fiber-reinforced materials and continuous fiber-reinforced materials. The latter 

one is usually established as layers and assemblies of layers of fibrous composite 

materials are known as composite laminates. 
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Laminated composite structures offer a variety of potential advantages such 

as high stiffness and strength to weight ratios, corrosive resistance, excellent fatigue 

resistance, long durability and many other superior properties compared to the 

conventional metallic materials. However, composite materials are susceptible to 

damage from impact loading especially those normal to the plane of the laminate. 

The impact damage mode in laminated composites usually consists of local 

permanent deformations, fiber breakage, delamination and matrix cracking. The 

damage due to impact can cause large drops in the strength and stability of the 

structure. Therefore, their behavior under impact is a concern, since impacts do occur 

during manufacture, operation and repairing process.  

 

 

Impact on composites is a very complex phenomenon, for it is a function of 

many parameters. The response of laminated composites to an impact load depends 

on the impactor parameters, the material properties of the structure and the 

environmental conditions. The parameters of the impactor that significantly affect the 

response include the velocity, energy, shape, size, material properties and incidence 

angle. The structural parameters include shape, thickness, size, lamina type, material 

properties, density, layup sequence and boundary conditions. 

 

 

Considerable research has been performed concerning the response of 

laminated plates to impact load. There is a tendency to assume the bond between the 

laminates of a laminated plate is perfect, in practice, however, the bonding between 

layers is imperfect due to the existence of some micro-voids, micro-cracks, and other 

kinds of defects at the interface. Theoretically, this imperfect bonding in composite 

laminate causes discontinuous displacement across the interface which is also known 

as interlayer slip. The existence of this interlayer slip will thus contribute to the 

stiffness degradation of composite laminate since the components in bonded layer s 

are separated. Therefore, an accurate prediction of the behavior of a laminated 

composite plate requires the consideration of the effect of imperfect bonding rather 

than making an assumption that the bonding between layers is completely perfect.  
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1.2 Problem Statement 

 

 

 Laminated composites have been extensively used in different fields 

including civil engineering due to their inherent advantages, like high strength to 

stiffness ratio. In many cases, thin and large rectangular plates are subjected to 

impacts during the fabrication, operation, and repairing processes. The impact load 

may cause significant damage embedded within the materials of the laminated 

composite which can reduce the strength and stiffness of the materials depending on 

the extent of the damage.  Therefore, the knowledge of impact response in laminated 

composites is critically important for the application of the materials in structural 

design.  

 

 

There are conventional theories and refined theories of laminated composite 

materials.  In most of the theories, a perfect interface between adjacent laminae is 

assumed which implies continuous displacements and tractions across the laminates. 

Therefore, the interface properties and structures are eliminated, despite the fact that 

the behavior of composite materials is significantly affected by the properties of 

interfaces. However, the assumption of a perfect interface is not always sufficient. 

There are many ways in which the imperfection can exist in laminated plates. Such 

as the presence of interfacial damage caused by fatigue and environmental or 

interphase material which may be due to chemical interaction between the 

constituents. 

 

 

It is especially important to know how the interface imperfection affects the 

impact response of the laminated plate, whether it occurs as part of the intended use 

of structure or unintentional as a result of dropping or striking it with another object. 

Therefore, perfect bonding is an ideal condition of laminated composite plates but it 

is never a realistic condition since micro crack and cavities may be introduced into 

the bond in the process of manufacture or service. This might affect the stability of 

the structure during the service lifetime. Therefore, to avoid the local failure of bond 

or the whole collapse of structure, the effect of imperfect interfaces should be taken 

into consideration in design or analysis. 
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1.3  Objectives 

 

 

This study is concerned with the behavior of laminated composite plates 

when subjected to impact loading. The main objectives of this study can be 

summarized as follows: 

 

1) To formulate a laminated composite plate with an interface element by 

applying finite element method and develop the corresponding MATLAB 

code. 

2) To study the impact response of a laminated plate with different degrees of   

interface imperfection and fiber orientation. 

 

 

 

 

1.4 Scope of the Study 

 

 

The study focuses on the modeling of laminated composite plates with 

interface imperfection subjected to transverse impact loading using a commercial 

programming language, MATLAB. The interface imperfection considered is 

uniformly distributed over the interface. The materials of the rectangular plate 

considered are generally fiber and matrix with linear elastic material behavior. The 

unidirectional fiber in the lamina is E-Glass and the matrix material is Epoxy (3501-

6). The plate was considered as a combination of two laminae with the same 

boundary condition and thickness.  Kirchoff’s Classical Laminate Theory was 

adopted to model the flat, thin plate. Each of the nodes of laminate plate element 

consists of five degrees of freedoms, which are 3 displacement degrees of freedom 

and 2 rotational degrees of freedom. In this study, the stiffness matrix of the interface 

element is calculated by applying 2x2 Gauss quadrature rule. The impact event 

considered in this study is that of low velocity impact applied at the center of a plate 

with fully fixed boundaries. 
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1.5 Significance of the Study 

 

 

Fiber reinforced composites are finding increasing applications as primary 

structural components in many different fields. In some of the applications, 

composites are subjected to impact loads. In order, to design laminated composites 

for resistance to foreign object impact damage, an understanding of the dynamic 

response of composite structures under impact loading becomes a requirement. In 

most analytical and numerical work on composite materials, a perfect interface 

between adjacent lamina is assumed which implies continuous displacements and 

tractions across it. Therefore the interface properties and structures are eliminated, 

despite the fact that the behavior of composite materials is significantly influenced 

by the properties of interfaces. In many cases of interest, however, the assumption of 

a perfect interface is inadequate. 

 

 

An analysis with higher accuracy, relatively to the reality condition, is to be 

established to have better accuracy in structural performance prediction.  Therefore, 

the formulation for a laminate plate element should take into account the effect of 

imperfect bonding in the prediction of material behaviors of laminated composite 

plate. The presence of an imperfect interlaminar interface gives a more realistic 

description of all phenomena occurring at interlayer and the behavior of the 

laminated composite plate. 
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