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ABSTRACT

Hydroxyapatite (HA) is the main structural component in natural bone. Due

to its excellent biocompatibility and bioactivity, it can be used for biomedical

application as a coating layer for metallic implants. It is reported that it helps the

formation of chemical bonding at the HA/bone interface. It also works as a protective

layer against ion release from a metallic prosthesis. In this project, HA bioactive

coatings were prepared via sol-gel method on Ti-Al-Nb substrate. Although sol-gel is

simple to control the chemical composition and able to coat on the complex-shape

implants, massive cracks of HA sol-gel coated layer on implants are still remain as a

major issue. Cracks can be minimized by changing the viscosity, composition or

variation in heat treatment procedure. In this research,Na3PO4 and CaCl2were used as

biocompatible additives for preparing the sol-gel. The sol-gel solution was

centrifuged at two different speeds (1000 and 3000 rpm) to remove excessive water

contents to a desired viscosity. Substrates were then dipped into sol-gel at 3 m/s for

20 sec and dried at room temperature for 72hrs. They were sintered at 500°C, 600°C

and 700°C for 15 and 45 minutes. It is found that increasing of sintering temperature

and time from 500ºC to 600ºC and from 15 to 45 minutes respectively, the hardness

value of sintered HA has increased significantly. However, there is a decrease in HA

hardness value when it was sintered at 700°C. Surface characteristics have been

analyzed by FESEM and AFM equipments. The AFM results show that surface

roughness of the Ti-Al-Nb coated with HA decreases when sintering temperature is

increased from 500oC to 600°C. However it is concluded that sintering temperature

above 600°C for HA coating on Ti-Al-Nb results in massive cracks and worse

surface roughness. Moreover, the effect of HA coated layer on corrosion behavior

of metallic substrates was evaluated which results better corrosion resistance of HA

coated Ti-Al-Nb substrate compare to uncoated substrate.
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ABSTRAK

Hydroxyapatite (HA) adalah komponen utama dalam struktur tulang
semulajadi. Oleh kerana kekuatan dari segi Bio-serasi dan bio-aktiviti, ia boleh
digunakan dalam pelbagai aplikasi bioperubatan seperti sebagai lapisan salutan untuk
implant logam. Banyak laporan menyatakan bahawa, ia dapat membantu
pembentukan ikatan kimia sebagai pengantara HA dengan tulang. Ia juga bertindak
sebagai lapisan pelindung terhadap pembebasan ion dari proses prosthesis logam.
Dalam projek ini, salutan bioaktif HA disediakan dengan kaedah rumusan gel pada
substrat Ti-Al-Nb. Walaupun sol-gel adalah mudah untuk mengawal komposisi
kimianya dan ia mampu menyaluti implant pada rekabentuk yang kompleks,
keretakan besar HA pada lapisan rumusan gel pada implant masih menjadi isu utama.
Keretakan dapat dikurangkan dengan mengubah kelikatan, kandungan atau
perubahan dalam prosedur rawatan haba. Dalam kajian ini, Na3PO4 dan CaCl2 telah
digunakan sebagai bahan tambahan bio-serasi untuk menyediakan rumusan gel.
Larutan rumusan gel (sol-gel) dipisahkan pada tiga kelajuan yang berbeza (1000 dan
3000 rpm) untuk mengeluarkan kandungan air berlebihan untuk menghasilkan
kelikatan yang dikehendaki. Substrat kemudiannya dicelup ke dalam sol-gel pada
3m/selama 20 saat dan dikeringkan pada suhu bilik selama 72 jam. Kemuadian
disinter pada 500℃, 600℃ dan 700℃ selama 15 dan 45 minit. Prosess ini
menunjukkan peningkatan suhu dan masa pensinteran dari 500℃ kepada 600℃ dan
dari 15 hingga 45 minit masing-masing, dapat meningkatkan nilai kekerasan HA
tersinter yang ketara. Walau bagaimanapun, terdapat penurunan dalam nilai
kekerasan HA ketika disinter pada suhu 700℃. Ciri-ciri kehalusan permukaan
dianalisa dengan menggunakan FESEM dan peralatan AFM. Keputusan analisa
diperoleh dari AFM menunjukkan bahawa nilai kehalusan permukaan salutan
Ti-Al-Nb dengan lapisan salutan HA menurun, pada suhu pensinteran meningkat
antara 500℃ ke 600℃. Justeru, dapat disimpulkan bahawa, keputusan proses pada
suhu pesinteran melebihi 600℃ untuk lapisan HA pada Ti-Al-Nb menyebabkan
keretakan ketara dan juga menyebabkan kehalusan permukaan bertambah teruk.
Tambahan , kesan lapisan salutan HA pada substrat logam dinilai dan didapati
bahawa substrat logam bersalut lapisan HA adalah lebih baik daripada substrat logam
tanpa salutan dari segi tindakbalas kakisan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Biomaterials are used in medical devices, particularly in those applications

that the device either is temporarily inserted or permanently implanted in the body.

The material selection requirements are determined by the specific device

application. For soft tissue device applications, the materials are typically implanted

into soft tissue to redefine the tissue. In orthopedic and dental applications, the

materials are components of structural implants to repair bony defects [1].

Polymers, metals, ceramics, and natural macromolecules are some examples

of different type of material which are manufactured to be suitable as a medical

device that comes into intimate contact with proteins, cells, tissues, and organ

systems. These days, composite materials are finding applications in orthopedic and

dental implants. Bioactive ceramic coatings for orthopedic and dental implant

applications have been used to encourage bony attachment. Stainless steel, titanium

(Ti) and its alloys, Co-Cr-Mo alloys are widely used as orthopedics and dental

implants. However, these materials have to be bio inertness and non-toxicity.

Hydroxyapatite (HA) and glass-ceramics (GC) are bioactive and are directly bonded
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to bone, whereas titanium (Ti) and its alloys which are bio inert do not bond directly

but has close contact with bone. These materials have already been used clinically,

indicating that they are biocompatible. Moreover, it is not clear which material is the

most favorable to the cells of the host tissue and what occurs in the cells and at the

material interface of bone-bonding and non-bonding materials [2].

Ti and its alloys have many advantages, such as excellent biocompatibility,

corrosion resistance, and desirable physical and mechanical properties. In addition,

high strength to weight ratio, good fracture toughness and low modulus are other

significant properties of Ti and its alloys. Biocompatibility is related to the behavior

of biomaterials in various contexts. The term refers to the ability of a material to

perform with an appropriate host response in a specific situation. The ambiguity of

the term reflects the ongoing development of insights into how biomaterials interact

with the human body and eventually how those interactions determine the clinical

success of a medical device [3].

The corrosion of biomaterials is a clinical issue. In spite of the recent

innovative metallurgical and technological advances and remarkable progress in the

design and development of surgical and dental materials, failures do occur.

Thermodynamic driving forces are one of the causes of corrosion (oxidation and

reduction) reactions. The thickness of the coating can be the other causes of

corrosions. Resistance to corrosion is critically important for a surgical material

because corrosion can lead to roughening of the surface, weakening of the restoration

and liberation of elements from the metal and alloys. Liberation of elements can

produce discoloration of adjacent soft tissues and allergic reactions in susceptible

patients [4].

Therefore metals which are using as a biomaterial in the human body should

have a high corrosion resistance. A general way to protect metals from corrosion is

coatings, by this way the desired properties of the substrate (mechanical strength) to

http://en.wikipedia.org/wiki/Biomaterials
http://en.wikipedia.org/wiki/Human_body
http://en.wikipedia.org/wiki/Medical_device
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be coated through the chemical modification of the coatings (biocompatibility) will

be obtained.

Bioactive materials, including bioactive glasses, bioactive glass-ceramics,

bioactive calcium phosphate ceramics and bioactive composites and coatings, bond

to living tissues. A bioactive material is a specific biological response at the interface

of the material which results in the formation of a bond between the tissues and the

material [5]. The implant-tissue interfacial reactions and bonding mechanisms of the

different bioactive materials are divided into two types of bioactivities,

osteoproductive bioactivity and osteoconductive bioactivity, due to different rates

and mechanisms of implant-tissue interactions [6].

A bioactive surface coating is capable to support bonding to

surrounding bone. One of the main mineral components of bone is HA and its

synthetic form is extensively used as biomaterials for reconstruction of the skeleton

due to the lack of local or systemic toxicity together with its

osteoconductive properties [6].

Hydroxyapatite (Ca5(PO4)3OH)2 is a form of calcium phosphate used in the

chromatographic separation of biomolecules. Sets of five calcium doublets (C-sites)

and pairs of –OH containing phosphate triplets (P-sites) are arranged in a repeating

geometric pattern. Repeating hexagonal structures can be seen in electron

micrographs of the material. Space-filling models and repeat structure from Raman

spectroscopy have also been constructed. Hydroxyapatite has unique separation

properties and unparalleled selectivity and resolution [7]. It often separates proteins

shown to be homogeneous by electro-phoretic and other chromatographic techniques.

Applications of hydroxyapatite chromatography include the purification of different

subclasses of monoclonal and polyclonal antibodies, antibodies that differ in light

chain composition, antibody fragments, isozymes, super coiled DNA from linear

duplexes, and single-stranded from double stranded DNA.
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Various HA (hydroxyapatite) coating techniques are available, such as plasma

spray, sputtering, electrolysis, sol-gel systems. These differ in terms of chemical and

physical properties of the formed layer consequently.

The sol-gel technique offers a low-temperature method for synthesizing

materials that are either totally inorganic in nature or both inorganic and organic. The

process, which is based on the hydrolysis and condensation reaction of organometallic

compounds in water solutions, offers many advantages for the fabrication of coatings,

including excellent control of the stoichiometry of precursor solutions, ease of

compositional modifications, customizable microstructure, ease of introducing various

functional groups or encapsulating sensing elements, relatively low annealing

temperatures, the possibility of coating deposition on large area substrates, and simple

and inexpensive equipment. Within the past several years, a number of developments

in precursor solutions, coating processes and equipment have made the sol-gel

technique even more widespread [8].

In this project HA coating on Ti-Al-Nb substrates with sol-gel technique is

obtained to optimize the biocompatibility and corrosion resistance of the implants.

Moreover, the HA layer is expected to develop the bioactivity during the initial stage

of following implantation.

1.2 Problem Statement

Titanium and its alloys as biomedical implants have to be bio inertness and

non-toxicity due to this fact that releasing of metal ions into the tissue can cause

inflammatory.  In spite of hydroxyapatite has been studied by many researchers for

improving osteoblast properties, but a crack free HA coating has not being reported

on Ti-Al based implant material. Corrosion behavior of a coated Ti-Al is also very
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limited available in the literature. In addition, surface characteristics of the coating

layer play an important role in the functioning of biomaterial. Therefore

characterization of the coating layer by different techniques is of great interest.

1.3 Objectives of the Research

Based on the Problem statement of the project, this study was mainly focused

on hydroxyapatite coating on Ti-Al-Nb substrate. The aims of this research are:

1. To determine the feasible parameters for a crack free HA coating on

Ti-Al-Nb substrate.

2. To analyze the surface integrity of the HA coated layer on Ti-Al-Nb

substrate.

3. To evaluate the effect of heat treatment on micro hardness of HA coated

substrates.

4. To compare the corrosion behavior of Ti-Al-Nb substrate before and after HA

sol-gel coated at crack free condition.
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1.4 Scopes of the Research

The scopes of this project were limited on the following:

1. Titanium Aluminum alloy was used as the substrate material.

2. Sol-gel method was employed for coating HA on the substrate.

3. Centrifuging sol-gel solution was varied from 1000 to 3000 rpm

4. Sintering temperature and soaking time of HA were varied from 500oC,

600oC and 700oC at 15 and 45 minutes respectively.

5. Potentiodynamic test with tafel graph was used to characterize corrosion

behavior.

1.5 Organization of thesis

The organization of thesis reports the content of each chapter.

Chapter 1 includes the introduction about research, problem statement, scope

and objective of research.

Chapter 2 includes the literature reviewed about the biomaterials differences,

preparation, useful coating methods, required characteristics, and different available

tests on the biomaterials.
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Chapter 3 is focused on the method of research which is used in this study, in

addition the equipments and facilities that is utilized in the research is introduced.

Chapter 4 relates to results and discussion about the Ti-Al-Nb coated with

Hydroxyapatite.

Finally the chapter 5 is discussed the conclusions and future research

opportunity suggestions of this research.
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