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ABSTRACT 

 

 

 

 

Hydroxyapatite (HA) is the main structural component of natural bone and 

due to its excellent biocompatibility and bioactivity it can be used in biomedical 

application as a coating layer for metallic implants to help formation of chemical 

bonding at HA/bone interface and work as a protective layer against ion release from 

a metallic prosthesis. In this study, HA bioactive coating was created using sol-gel 

method on the high carbon CoCrMo substrate. Although sol-gel is simple and cost 

effective method with capability to control chemical composition and able to coat on 

the complex-shape implants, massive cracks of HA sol-gel coated layer on implants 

are still the major issue. Cracks can be minimized by changing the viscosity, 

composition or variation in heat treatment procedure. In this study, Na3PO4 and 

CaCl2 were used as the main precursors in sol-gel preparation. The sol-gel was 

centrifuged at three different speeds (1500, 1750 and 2000 rpm). Coated specimens 

were sintered at 500°C, 600°C and 700°C for 20 minutes and 1 hour respectively. 

HA coated samples were analyzed under FESEM, XRD, AFM and electrochemical 

corrosion tests. The initial FESEM test revealed that the best centrifuging speed that 

results in a crack free HA coated layer at room temperature is 1750 rpm with 

viscosity of 1798 CP. The FESEM and XRD results also revealed that the best 

surface morphology with semi-crystalline microstructure belong to the sample 

sintered at 600°C for 20 min. Also it is concluded that sintering temperature above 

600°C for HA coating on Co-Cr based alloys results in cracks propagation. 

Moreover, in terms of surface roughness all coated and sintered samples except the 

one sintered at 500°C for 20 min, showed a good result as well. Finally, in terms of 

corrosion resistance the sample sintered at 600°C for 20 min showed the corrosion 

rate almost 3.5 times lesser than uncoated sample. 
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ABSTRAK 

 

 

 

 

Hydroxyapatite (HA) adalah komponen utama struktur semula jadi tulang dan 

disebabkan sifat biokompatibiliti dan bioaktivitinya yang sangat baik, ia boleh 

digunakan dalam aplikasi bioperubatan sebagai lapisan salutan untuk implan logam 

bagi membantu pembentukan ikatan kimia pada antara muka HA/tulang dan 

bertindak sebagai lapisan perlindung terhadap pelepasan ion daripada prostesis 

logam. Dalam kajian ini, salutan bioaktif HA telah dihasilkan dengan kaedah sol-gel 

ke atas substrat CoCrMo berkarbon tinggi. Walaupun kaedah sol-gel adalah kaedah 

yang mudah dan kos efektif serta berupaya untuk mengawal komposisi kimia, dan 

mampu menyalut salutan ke atas implan yang kompleks, namun keretakan lapisan 

sol-gel HA pada implan masih menjadi isu utama. Keretakan boleh diminimumkan 

dengan menukar kelikatan, komposisi atau variasi dalam prosedur rawatan haba. 

Na3PO4 dan CaCl2 telah digunakan sebagai prekursor utama dalam penyediaan sol-

gel. Sol-gel telah diputar pada 1500, 1750 dan 2000 rpm. Spesimen yang tersalut, 

disinter pada 500°C, 600°C dan 700°C, selama 20 minit dan 1 jam. Sampel yang 

disaluti HA telah dianalisa dengan FESEM, XRD, AFM dan ujian kakisan 

elektrokimia. Ujian awal FESEM mendapati kelajuan putaran yang terbaik adalah 

1750 rpm dengan kelikatan 1798 CP pada suhu bilik. Ia dapat menghasilkan lapisan 

salutan HA yang bebas dari keretakan. Keputusan FESEM dan XRD juga mendapati 

bahawa morfologi permukaan dan mikrostruktur semi-kristal terbaik ialah sampel 

yang dibakar pada 600°C selama 20 min. Kesimpulanya, suhu pembakaran melebihi 

600°C untuk menyalut HA ke atas Co-Cr berasaskan aloi menyebabakan keretakan. 

Selain itu, dari segi kekasaran permukaan semua sampel tersalut dan tersinter kecuali 

yang disinter pada 500°C selama 20 min, menunjukkan hasil yang baik, akhir sekali 

dari segi ketahanan kakisan sampel disinter pada 600°C selama 20 min menunjukkan 

kadar kakisan hampir 3.5 kali lebih kecil daripada sampel yang tidak bersalut. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Biomaterial refers to any substance (other than a drug) or combination of 

substances, synthetic or natural in origin, which can be used for any period of time, 

as a whole or as a part of a system which treats, augments, or replaces any tissue, 

organ, or function of the body [1]. Performance of biomaterials is controlled by two 

characteristics of biofunctionality and biocompatibility. Biofunctionality defines the 

ability of the device to perform the required function and refers to mechanical 

properties of the biomaterial, whereas biocompatibility determines the compatibility 

of the material with the body [2]. 

 

A wide range of materials encompassing all the classical materials such as 

Metals (gold, tantalum, Ti6-Al4-V, 316L stainless steel, Co-Cr Alloys, titanium 

alloys), Ceramics (alumina, zirconia, carbon, titania, bioglass, hydroxyapatite(HA)), 

Composite (Silica/SR, CF/UHMWPE, CF/PTFE, HA/PE, CF/epoxy, CF/PEEK, 

CF/C, Al2O3/PTFE), Polymers, Ultra high molecular weight polyethylene 

(UHMWPE), Polyethylene (PE), Polyurethane (PU), Polytetrafuoroethylene (PTFE), 

Polyacetal (PA), Polymethylmethacrylate (PMMA), Polyethylene Terepthalate 
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(PET), Silicone Rubber (SR), Polyetheretherketone (PEEK), Poly lactic acid (PLA), 

and Polysulfone (PS) have been investigated as biomaterials.  

 

Researchers also classified materials into several types such as bioinert, 

bioactive, biostable, biodegradable and etc. In broad terms, inert (more strictly, 

nearly inert) materials prohibit or minimize tissue response. Active materials 

encourage bonding to surrounding tissue. Degradable or resorbable materials are 

incorporated into the surrounding tissue, or may even dissolve completely over a 

period of time. Metals are typically inert, ceramics may be inert, active or resorbable 

and polymers may be inert or resorbable [3]. Biomaterials must be nontoxic, 

noncarcinogenic, chemically inert, stable, and mechanically strong enough to 

withstand the repeated forces of a lifetime. 

 

The physical properties of the materials, their potential to corrode in the 

tissue environment, their surface configuration, tissue induction and their potential 

for eliciting inflammation or rejection response are all important factors on this area. 

The biomaterial discipline has evolved significantly over the past decades. The goal 

of biomaterial researches has been continued to develop implant materials that 

induce predictable, control-guided and rapid healing of the interfacial tissues both 

hard and soft [4]. Very important requirement for any material used in the human 

body is biocompatibility which is defined as the ‘‘ability of a material to perform 

with an appropriate host response in a specific application”, because it should not 

cause any adverse reaction in the body [5]. 

 

Mostly metallic biomaterials used as orthopedic prostheses in biomedical 

applications. Metallic biomaterials used in bone plate are neither bioactive nor 

biodegradable. However, they are the most common biomaterials for manufacturing 

medical devices such as hip joints, bone plates and dental implants because they have 

good mechanical properties such as Modulus of elasticity, Tensile strength, 

Compressive strength, Elongation Metallurgical properties, low cost and also they 

are easy to fabrication. Indeed, among metallic biomaterials, stainless steel, cobalt 

alloys and titanium alloys have the most applications in orthopedic issues [6]. 
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Among above-mentioned metallic biomaterials CoCrMo alloys are 

biocompatible materials and are widely used as orthopedic implant materials in 

clinical practice such as hip joint and knee replacement due to their superior 

mechanical properties, good wear- and corrosion-resistances. The biocompatibility of 

CoCrMo alloys are closely related to their good corrosion resistance due to the 

presence of an extremely thin passive oxide film that spontaneously forms on the 

alloy surface. XPS analysis reveals that its composition is predominantly Cr2O3 with 

some minor contribution from Co and Mo oxides. These films also form on the 

surfaces of other metallic biomaterials (stainless steels, titanium and its alloys) and 

serve as a barrier to corrosion processes in alloy systems [7]. 

 

In spite of the good corrosion resistance of CoCrMo alloys, there is still a 

concern about metal ion release from orthopedic implants into the body fluids 

(serum, urine, etc.). Metals from orthopedic implant materials are released into 

surrounding tissue by various processes, including corrosion, wear and mechanically 

accelerated processes such as stress corrosion, corrosion fatigue and fretting 

corrosion. Such metal ions and wear debris, concentrated at the implant-tissue 

interface, may migrate through the tissue. Research shows that the metal release is 

associated with clinical implant failure, osteolysis, cutaneous allergic reactions and 

remote site accumulations [8]. One effective approach for preventing and/or reducing 

the potentially harmful metal ion release from orthopedic implant materials is coating 

the surfaces of these materials. 

 

A bioactive surface coating is capable to support bonding to surrounding 

bone. One of the best bioactive compounds which is suitable for coating metallic 

biomaterial implants is “Hydroxyapatite”. Hydroxyapatite (HA, Ca10(PO4 )6(OH)2) is 

the main structural component of natural bone, and used as an important material for 

bone and tooth implants in the biomaterial field. In order to achieve bioactivity for 

metal implants (e.g. Co alloys, Ti alloys or stainless steel) as bone substitutes, HA 

coating is usually introduced onto their surfaces. Porous HA coating on these metal 

substrates can be adopted as bone cements in reconstruction. HA has many biological 

profits such as direct bonding to bone and enhancement of new bone formation 

around it due to its chemical similarity with hard tissues. HA as a coating also can 

reduce the amount of ion release from the metallic substrate. Because HA has poor 
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mechanical properties and it is weak and brittle without any support, so it is applied 

as a coating on an inert metal with good bio-mechanical properties such as CoCrMo 

[9]. 

 

To date many essential techniques have been used in the preparation of HA 

coatings such as plasma spraying, magnetron sputtering, laser ablation, sol-gel, 

biomimetic, and electrochemical deposition [10]. Compared to other coating 

techniques, the sol-gel technique is one of the thin film methods provides some 

benefits over the others such as chemical homogeneity, fine grain structure, and low 

processing temperature. Moreover, compared to the other thin film methods, it is 

simple and cost efficient, as well as effective for the coating of complex-shaped 

implants. 

 

 

 

 

1.2 Problem Statement 

 

 

Massive cracks of HA sol-gel coated layer on implants are still a major issue 

due to releasing harmful ions from the body of implant which can result in adverse 

biological reactions in human body. Reduction of cracks can be done by controlling 

several parameters such as finding the most appropriate viscosity of sol-gel regarding 

to examine different range of centrifuging speed in the procedure of sol-gel 

preparation, obtaining the most suitable proportion of sol-gel precursors and finally 

applying different range of sintering time and temperature to get the best heat 

treatment procedure. 

 

For Co-Cr based alloy as a metallic biomaterial there are some disadvantages 

that result in some restrictions in their usage in biomedical applications such as its 

corrosion behavior in vivo which made concerns about metal ion release in human 

body and its biocompatibility and cell growth on its surface which has not been 

reported as good as titanium alloys. Nonetheless, these problems would be solved by 
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coating implants with biocompatible and corrosion resistant material like 

Hydroxyapatite (HA). 

 

Furthermore, there are very limited extensive studies investigating the effect 

of coating method and heat treatments on Co-Cr based substrates as compared to 

Titanium alloy substrates 

 

 

 

 

1.3 Objectives 

 

 

Based on problem statement, the main aims of this study are: 

 

1. To determine the feasible parameters for a crack free HA coating on Co-

Cr based substrate. 

2. To analyze the surface morphology of the HA coated layer on Co-Cr 

based substrate under different coating conditions. 

3. To compare the corrosion behavior of Co-Cr based substrate before and 

after HA sol-gel coating. 

 

 

 

 

1.4 Scopes of Study 

 

 

The scopes of this project are narrowed as follow: 

 

1. HC CoCrMo based alloy is used as the substrate material. 

2. Sol-gel method is employed for coating HA on the substrate. 

3. Na3PO4 and CaCl2 are used as the main precursors of sol-gel preparation. 
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4. Centrifuging speed of sol-gel solution is varied in three levels (1500, 1750 

and 2000 rpm). 

5. Sintering temperature and soaking time of HA coated samples are 500ºC, 

600ºC and 700ºC at 20 minutes and 1 hour, respectively. 
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