

DESIGN OF A NEURAL NETWORK FOR FPGA IMPLEMENTATION

LIM EE RIC

UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN OF A NEURAL NETWORK FOR FPGA IMPLEMENTATION

LIM EE RIC

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Computer and Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2013

iii

Very often complex transfer functions are needed to be implemented in ASIC

for faster or real-time application. Other than implementing a transfer function

according to its equation or algorithm, prediction method can be used in certain

application where accuracy can be tolerated. In this project, application of neural

network as a predictor is studied. Focus will be placed on back-propagation feed-

forward neural network and its realization in hardware using Verilog Hardware

Descriptive Language (HDL). Hardware design challenges like hardware resource

utilization, throughput of various design approaches were explored. Main objective

of this project is to produce a high throughput reconfigurable back propagation

neural network hardware module that can be applied or integrated into bigger

hardware system. Altera Quartus II and ModelSim-Altera CAD tool was used as

logic synthesizing tool and hardware simulation tool, respectively, to achieve

abovementioned objective. MATLAB was also being used to model neural network

in software which served as a benchmark for hardware design. Multi-cycle design

approach successfully reduces resource utilization on hardware-intensive neural

network module, while pipelining the design helped to achieve a high-throughput

design. Utilization of RAM for reconfiguration purpose greatly reduced throughput

of the design due to the fact that only one weight or bias values are loaded in every

clock cycle.

ABSTRACT

iv

Seringkali persamaan matematik yang rumit perlu direalisasikan di ASIC

dengan tujuan untuk meningkatkan prestasi pengiraan. Sekiranya applikasi boleh

bertolak ansur dengan ketepatan yang tidak begitu tinggi, maka selain daripada

melaksanakan pengiraan matematik dengan mengukuti algoritmanya, kaedah

ramalan boleh digunakan. Dalam projek ini, rangkaian neural ataupun neural

network telah digunakan sebagai medium ramalan untk membuat ramalan bagi

sesetengah persamaan matematik yang rumit. Tumpuan telah diberikan kepada salah

satu jenis neural network yang biasa digunakan iaitu back-propagation neural

network dan tujuan projek ini adalah untuk menrealisasikan neural network ini

dengan merakabentuk neural network dengan Verilog HDL. Cabaran daripada projek

reka bentuk init seperti penggunaan sumber, prestasi reka bentuk telah dikaji.

Objective utama projek ini adalah untik meraka bentuk neural network yang

berprestasi tinggi and dapat menghasilkan pengiraan dalam masa yang singkat.

Aplikasi Altera Quartus II dan ModelSim-Altera CAD telah digunakan dalam proses

reka bentuk. Selain daripada itu, MATLAB juga digunakan untuk mengira and

mengimulasi ramalan neural network supaya jawapan daripada MATLAB boleh

digunakan sebagai rujukan kepada rake bentuk projek ini. Kaedah Multi-cycle telah

digunakan dalam projek ini untuk mengurangkan penggunaan sumbar reka bentuk.

Pipelining pula digunakan untuk meningkatkan prestasi reka bentuk supaya neural

network dapat manghasilkan jawapan yang lebih banyak dalam masa yang singkat.

ABSTRAK

v

CHAPTER TITLE PAGE

 DECLARATION ii

 ABSTRACT iii

 ABSTRAK iv

 TABLE OF CONTENTS v

 LIST OF TABLES vii

 LIST OF FIGURES viii

 LIST OF ABBREVIATIONS xi

 LIST OF APPENDICES xii

1 INTRODUCTION 1

 1.1 Problem Statement 1

 1.2 Objective 2

 1.3 Scope of Work 3

 1.4 Research Contribution 4

2 BACKGROUND AND LITERATURE REVIEW 5

 2.1 Fundamental of Neural Network 5

 2.2 Literature Review 9

 2.2.1 Neural Network Overall Architecture 9

 2.2.2 Implementation of Activation function 17

 2.2.3 Summary 20

3 PROJECT METHODOLOGY AND DESIGN TOOL 22

TABLE OF CONTENTS

vi

4 DESIGN IMPLEMENTATION

 4.1 Software Modeling 25

 4.2 Hardware Modeling 29

 4.2.1 Design 1: One-Cycle Design Approach 29

 4.2.2 Design 2: Multi-Cycle Design Approach without

pipelining

39

 4.2.3 Design 3: Multi-Cycle Design Approach with

pipelining

45

 4.2.4 Design 4: Reconfigurable Multi-Cycle Design

Approach with pipelining

49

5 DESIGN VERIFICATION AND PERFORMANCE

ANALYSIS

52

 5.1 Verification of MATLAB modeled network design 53

 5.2 Verification of Design 4 in hardware simulation 54

 5.3 Performance Analysis 59

6 CONCLUSION AND RECOMMENDATION 61

 6.1 Conclusion 61

 6.2 Future work recommendation 62

REFERENCES 64

Appendices A - G 66-117

vii

TABLE NO. TITLE PAGE

2.1 Various types of neural network with different structures 9

2.2 Minimum time needed for the prediction of one sample

between MATLAB software, DSP solution, and 2 design

settings.

11

2.3 Instruction definition 13

2.4 LUT for hyperbolic tangent function using proposed

compaction techniques in [11] 20

4.1 MATLAB Simulated weight and bias values for neurons in

Figure 27

4.2 RTL CS-Table for Finite State Machine in Design 1 30

4.3 Comparison between expected result and simulated result for

each neuron 34

4.4 LUT for hyperbolic tangent function 36

4.5 Weights and biases arrangement order in RAM 49

4.6 RTL CS-table for reconfigurable layer module in Design 4 51

5.1 Performance measurement summary for design 1 to design 4 60

LIST OF TABLES

viii

FIGURE NO. TITLE PAGE

2.1 Biological neurons. [4] 6

2.2 Basic neuron [4] 7

2.3 Various types of network structure [4] 8

2.4 Neuron implementation using multiply-accumulate 10

2.5 Architecture of Artificial Neural Network Processor

[8] 11

2.6 Proposed reconfigurable back-propagation neural

network (BPNN) architecture [9] 12

2.7 The proposed hardware architecture for resource

reduction by Gin-Der Wu, et al.[9] 14

2.8 Analysis and comparison between implementation

alternatives [4] 15

2.9 Block diagram of the logic implementation in the

FPGA 16

2.10 Neural Network on-line computing by FPGA

proposed by Wang in [14] 16

2.11 Piecewise Linear approximation functions [9] 18

2.12 Hardware Architecture of Piecewise Linear Function

[9] 18

2.13 Graph of tangent hyperbolic sigmoid function and its

seven-term Taylor series approximation 19

2.14 Full range of hyperbolic tangent function 19

3.1 Overall Project Methodology 22

3.2 Training methodology for MATLAB simulated

neural network 25

LIST OF FIGURES

ix

3.3 Block diagram of BPNN generated from MATLAB 26

3.4 Sample Memory Initialization File (.mif) 28

3.5 Neural Network Training report 28

4.1 Functional Block Diagram for Top level Integration

in Design 1 29

4.2 functional block diagram for DU in design 1 30

4.2 ASM-Chart for Top-level integration in Design #1 31

4.3 Simulation result for top level network design 32

4.4 Functional Block Diagram for neuron module in

Layer 1. 33

4.5 ASM-chart for neuron module 33

4.6 Simulation result for neuron modules 35

4.7 ASM-chart for Tangent Sigmoid Module via LUT

method 37

4.8 Simulation result for Tangent Sigmoid module 38

4.9 High level illustration on design 2 without pipelining 39

4.10 Top-level functional block diagram for design 2 40

4.11 ASM-Chart for Top-level integration in Design 2

(without pipelining) 40

4.12 Analogy on the working principle of "one neuron per

layer" approach 41

4.13 ASM-chart for Layer Module in Design 2 42

4.14 Functional Block Diagram for Layer Module in

Design 2 (without pipelining) 43

4.15 Hardware timing simulation for layer module

configured for Layer 1, 2 and 3 respectively. All test

benches passed. 44

4.16 High-level block diagram for Design 3- multi-cycle

design with pipelining 45

4.17 Pipelined timing diagram for Design #3 46

4.18 Timing diagram that explains the working principle

of pipelining in Design 3 46

4.19 ASM-chart for pipelined top-level Design 3 47

x

4.20 Functional Block Diagram for top-level pipelined

Design 3 48

4.21 Functional block diagram for reconfigurable Layer

module in Design 4 50

4.22 ASM-chart for Layer Module in Design 4 50

5.1 High-level test plan 52

5.2 MATLAB code for neural network software

modeling 53

5.3 Plots of neural network output and calculated output 54

5.4 Illustration on input files needed by test bench. 55

5.5 Verification Report Summary and output log

produced by test bench 55

5.6 Top-level timing simulation waveform. 56

5.7 Plot of outputs obtained from 3 different methods

over 40 test cases. 57

5.8 Plot of error percentage on MATLAB Simulation and

hardware simulation results compared to expected

result 58

xi

ANN - Artificial Neural Network

FPGA - Field Programmable Gate Array

ASIC - Application Specific Integrated Circuit

HDL - Hardware Descriptive Language

MATLAB - Matrix Laboratory

DSP - Digital Signal Processor

PC - Personal Computer, or Program Counter

CPU - Central Processing Unit

CU - Control Unit

LUT - Look-up table

GUI - Graphical User Interface

CPD - Critical Path Delay

MAC - Multiply-Accumulate Unit

DU - Data path unit

ASM-chart - Architectural State Machine Chart

FSM-D - Finite State Machine – Data path

BPNN - Back-propergation neural network

CS-Table - Control Sequence Table

LIST OF ABBREVIATIONS

xii

APPENDIX TITLE PAGE

A A. Verilog Code for Design 1 66

B B. Verilog Code for Design 2 74

C C. Verilog Code for Design 3 87

D D. Verilog Code for Design 4 102

E E. Memory Initialization File 112

F F. Input Files for Test bench 114

LIST OF APPENDICES

INTRODUCTION

Artificial Neural Network (ANN) with its non-linearity characteristic [6] is

very powerful in solving many complex computational problems. A series of

sequential layers consisting of several simple and similar computational blocks,

called neurons are working together in parallel to process output from a given set of

inputs, based on weights predicted during training phase. Therefore, even though

some complex functions or equations can be solved with the aid of software in

general-purpose processor, these problems can be tackled by neural network in a far

more optimized and cost-saving manner. This results in high-demand of neural

network module as part of a solution to a big problem.

In order take advantage of high-degree of parallelism, hardware

implementation of neural network, be it in FPGA or ASIC, often outperform when

comparing to general-purpose processor implementation [12]. This is simply because

ASIC or FPGA is custom, or semi-custom hardware device, that is optimized based

on the application of the network.

1.1 Problem Statement

A large number of hardware architectures have been proposed for the

implementation of Artificial Neural Network. Many of them are application specific.

For example, utilizing neural network for wind power generation [13], or using ANN

to predict a rainfall [3]. Most of the efforts on optimization of hardware ANN

architectures have been concentrated on the implementation of the recall phase or

CHAPTER 1

2

“use mode”, which is the functional mode of a trained network. The training is often

done off-board or off-chip with sophisticated software algorithm on a different

platform.

The second type of network is a re-configurable network, where the network

is generic or semi-generic for a range of application. This kind of network has far

more flexibility, especially to serve as off-the-shelf solution for plug-and-play

purposes. However, besides of maintaining the flexibility of re-configuring a

network, execution speed and hardware cost is often the major challenge a hardware

designer has to balance with, or at least, provide users with the flexibility to

determine whether to trade-off execution speed with hardware cost, or vice-versa.

A few architectures will be presented, analyzed, and the pros and cons being

compared in chapter 2.2 Literature Review. Challenges have been identified and key

points below are the summarized criteria to be adhered with throughout the entire

design project.

1) Reconfigurable network structure: parameterizing number of layers or

number of neurons for easier network construction, giving user a choice to

opt for sigmoid activation function or linear function, etc.

2) Resource optimized: Reduce resource utilization on a hardware-intensive

neural network.

3) Pipeline implementation: Neural network FPGA or ASIC applications usually

deal with real-time, high-volume input samples. Pipelining the architecture

can definitely take advantage.

1.2 Objective

The objective of this project is to design a reconfigurable high-throughput

computational module based on learning algorithm in a neural network on FPGA

with Verilog HDL. Besides architecting the building blocks needed to implement the

learning algorithm in a neural network, this project includes a series of exploration

on various design approach, including one-cycle design method where data flows

concurrently from input to output, or multi-cycle designs proper resource planning

will be done to reuse or share a specific set of hardware by introducing multi cycle

3

operation, or, in other words, serial data path. Performance of each design will be

analyzed and the outcome of the studies and analysis will then lay the foundation for

the hardware implementation in Verilog code.

1.3 Scope of Work

Back-propagation feed-forward network is the most popular [6] learning

algorithm among all and therefore, the focus of this project will be in creating a

back-propagation neural network, which uses a tangent sigmoid as an activation

function in its neurons. In addition, with the rule of “always keeping a network

simple and small [6]”, this project will only focus on a feed-forward neural network,

due to the fact that a feed-forward neural network is enough to solve most of the

problems.

Besides, generic implementation of a neural network will be as a macro

within a bigger design to solve specific problem, thus, learning or training algorithm

will not be included within the hardware, instead, can be done off-board with the

help of sophisticated simulation software like MATLAB. Only important parameters

like the structure of network (e.g. number of layers, number of neurons in each layer,

connection between layers, etc.) as well as the weights and biases for each neuron are

needed to be loaded into the hardware.

The network module will be catered only for Altera FPGA, using Altera

Quartus II as a compiler and simulator. In order to properly implement the network

in Altera Quartus II with Verilog HDL, a back-propagation first order neural network

has to be generated with sophisticated MATLAB Neural Network Toolbox; so that

this MATLAB generated simulation result can be taken as a reference for hardware

result verification in later design stage. MATLAB generated network will then

ported over to synthesizable Verilog code.

Network modules synthesized from Altera Quartus II will then be verified via

hardware simulation where ModelSim-Altera CAD tool is used. Test benches will be

develop according to features of each design in order to make sure maximum

coverage can be achieved. It is worth to note that only hardware simulation is

4

involved in this project, implementing the design on a FPGA board is out of scope of

this project.

In addition, focus will also be placed only on prediction application, knowing

the fact that neural network can also be applied in some other applications like

classification. The network module will be configured to predict a math equation as

discussed and tested in latter chapters.

1.4 Research Contribution

A reconfigurable back-propagation feed-forward network module is to be

created after completing the entire project. This network module can be integrated or

plug-and-play easily to any complex design in order to solve or predict some

complex algorithm.

Besides, a proper documentation will be produced after the entire project to

document the entire design progress, starting from literature study, up till design

verifications, before concluding the project. This documentation will serve as a

reference for users who wish to integrate this network module into their design, or

future developer who wish to enhance from this project, including implementing this

network module in FPGA board.

64

[1] Christos Stergiou, Dimitrios Siganos, “Neural Networks”, Imperial College

London.

[2] Ben Krose, Patrick van der Smagt (1996), “An Introduction to Neural

Network”, 8
th

 Ed University of Amsterdam Press, University of Amsterdam,

[3] Kumar Abhishek, Abhay Kumar et al. (2012) “A Rainfall Prediction Model

using Artificial Neural Network”, IEEE Control and System Graduate

Research.

[4] Robert Lange (2005), “Design of a Generic Neural Network FPGA-

Implementation.”, Professorship of Circuit and Systems Design, Faculty of

Elect. Engineering and IT, Chemnitz University of Technology.

[5] Mark Hudson Beale, et al. (2012), “Neural Network Toolbox™ User’s

Guide”, Mathworks, MATLAB.

[6] Bogdan M. Wilamowski, “Neural Network Architectures and Learning

Algorithms”, IEEE Industrial Electronics Magazine, 2009, 56-63

[7] Ng Bee Yee, (2012), “FPGA Implementation of Image Processing 2D

Convolution for Spatial Filter”, Faculty of Electrical Engineering, Universiti

Teknologi Malaysia, Johor.

[8] Ayman Youssef et al. (2012), “A reconfigurable, Generic and programmable

Feed Forward Neural-Network implementation in FPGA”, in 14th

International Conf. on Modeling and Simulation, 9.

[9] Gin-Der Wu, et al. (2011), “Reconfigurable Back Propagation Based Neural

Network Architecture”, in International Symposium on Integrated Circuits.

REFERENCES

65

[10] Mutlu Avci, Tulay Tildirim (2003), “Generation of Tangent hyperbolic

sigmoid function for microcontroller based sigital implementations of neural

network”, International XII. Turkish Symposium on Artificial Intelligence

and Neural Networks.

[11] Pramod Kumar Meher (2010), “An Optimized Lookup-Table for the

Evaluation of Sigmoid Function for Artificial Neural Networks”, IEEE.

[12] Ramon J. Aliaga, Rafael Gadea, et al. (2009), ”System-on-chip

Implementation of Neural network Training on FPGA”, Int. Journal On

Advances in Sysmtems and Measurements, vol 2

[13] Z.S Jiang, D.K Li, et al. (2010), “PID controller based on BP neural network

in the application of wind power generation and matlab simulation”,IEEE.

[14] Y.Wang, J. Du, Z. et al (2011), “FPGA Based Electronics for PET Detector

Modules with Neural network Position Estimators”, IEEE Trans. On Neucler

Sc., vol.58, no. 1, 34-42.

