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ABSTRACT 

 

 

 

The intermetallic alloys of γ-titanium aluminide are emerging as one of the most 

attractive alternative structural and machinery part materials for high and low 

temperature applications. One critical area of application is in hydrogen storage tank in 

chemical, oil and gas industries or in combustion engine when entail the use of hydrogen 

as a fuel. It has been widely reported by researchers that these materials exhibit 

environmental embrittlement in the presence of hydrogen, hence the diffusivity of 

hydrogen and the effect of hydrogen to the mechanical properties of γ-titanium 

aluminide is significant and technologically important. Therefore, in the present 

research, an investigation had been carried out to determine what causes the hydrogen 

attack and dealuminification. Control microstructure and phases through heat treatment 

by heating to 12000C for 30 minutes and cooled in three different ways (i.e. water-

quenched, air-cooled and furnace-cooled), and addition of a third alloying element 

namely chromium become the focus of this research. Samples were subjected to 

corrosion attack under cathodically charged with galvanostatic mode for 6, 24 and 48 

hours. Hydrogen diffusion coefficient (D) was calculated based on Fick’s second Law 

and these results were compared with that obtained from micro-Vickers hardness 

profiling data. The corroded and uncorroded samples were analyzed by using x-ray 

diffraction (XRD), scanning electron microscopy (SEM) and secondary ion mass 

spectroscopy (SIMS). It was found that α2-Ti3Al or lamellae phases are more prone to 

hydrogen attack than γ-TiAl phases but γ-TiAl is more susceptible to dealuminification. 

Slowly cooled (furnace-cooled) Ti-Al exhibited the least hydrogen attack due to its low 

hydrogen diffusion coefficient. However the effect of heat treatment on 

dealuminification is insignificant. When γ-titanium aluminides were alloyed with 

chromium, their resistance towards hydrogen attack and dealuminification increased. 
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ABSTRAK 

 

 

Aloi antara logam γ-titanium aluminida adalah salah satu bahan alternatif 

menarik yang membangun dengan pesat sebagai bahan struktur dan mesin pada suhu 

tinggi dan rendah. Aplikasi yang kritikal adalah pada tangki stor hidrogen bagi industri 

kimia, petrokimia dan sumber asli atau pada enjin pembakaran ketika penggunaan 

hidrogen sebagai sumber bahan api telah menyebabkan aloi titanium aluminida 

mengalami kerapuhan hidrogen. Oleh itu, keresapan hidrogen dan kesan hidrogen 

terhadap sifat mekanik γ-titanium aluminida adalah amat penting. Maka dalam 

penyelidikan ini, kajian telah dilakukan untuk menentukan kesan serangan hidrogen dan 

penyahaluminum. Kawalan mikrostruktur dan fasa melalui rawatan haba dengan 

memanaskan sehingga 1200οC selama 30 minit dan didinginkan dengan 3 kaedah yg 

berbeza (iaitu lindap kejut menggunakan air, pendinginan pada suhu udara dan 

pendinginan dalam relau), dan penambahan unsur aloian ketiga iatu kromium adalah 

menjadi tumpuan penyelidikan ini. Sampel dikakiskan dengan mencas katodik 

menggunakan mod Galvanostatik selama 6, 24 dan 48 jam. Pekali resapan hidrogen (D) 

dihitung melalui Hukum Kedua Fick’s dan hasilnya dibandingkan dengan pekali resapan 

yang diperolehi daripada  profil kekerasan mikro Vickers. Sampel sebelum dan selepas 

kakisan telah dianalisis menggunakan pembelauan sinar-x (XRD), mikroskop elektron 

(SEM) dan spektroskopi jisim ion sekunder (SIMS). Hasil daripada kajian ini, didapati 

fasa lamela atau α2-Ti3Al lebih cenderung untuk mengalami serangan hidrogen jika 

dibandingkan dengan fasa γ-TiAl. Manakala fasa γ-TiAl lebih cenderung mengalami 

penyahaluminum. Sampel titanium aluminida yang dirawat haba secara pendinginan 

perlahan (pendinginan dalam relau) menunjukkan paling sedikit serangan hidrogen 

disebabkan pekali resapan hidrogen yang rendah. Walau bagaimanapun rawatan haba 

tidak menunjukkan kesan ketara terhadap penyahaluminum. Apabila γ-titanium 

aluminida dialoikan dengan kromium, ketahanannya terhadap serangan hidrogen dan 

penyahaluminum meningkat. 
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INTRODUCTION 

 

 

 

 

1.1.      Background of The Research 
 

 

Since titanium was first discovered in 1790 and was mass-produced in the 

early 1950’s [Mangonon, 1999], the development and research on titanium and its 

alloys have been well developed. Until now, scientists and engineers had discovered 

new advanced material: gamma titanium-aluminide, well known as “γ-TiAl”. γ-TiAl 

based alloys with compositions ranging from 45 to 50 at.%Al,  is an intermetallic 

compound consist of Ti3Al (α2-phase) and Ti-Al (γ-phase) with low density, high 

Young’s Moduli, good creep and oxidation resistance up to 900oC (creep limit) 

[ASM, 1994]. Due to their high properties, this γ-TiAl extent the capabilities of 

titanium-based alloys beyond that of conventional α-β titanium alloys and potentially 

viable to replace nickel-based super alloys in some application with a material 

having one-half the density [Zheng et al., 1995; Cheng et al., 1999; Nombela et al., 

2000]. This γ-TiAl have been considered attractive candidates for applications in 

advanced fields such as in aerospace: blades, body frames, compressor cases, discs; 

in  marine applications: turbocharger rotors, flywheel, turbine engine compressor 

component, and turbine engine exhaust system components; in automotive engine 

components and in chemicals and other applications: hydrogen storage tank, 
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chemical storage tank and medical profession. [Mangonon, 1999; ASM, 1994; 

Seagle and Wood, 1993; Huang and Chessnut, 1994; Kim and Dimiduk, 1991 and 

Maeland et al., 1999] . 

 

 

 The future of titanium aluminide intermetallics is bright and well developed 

deformation mechanisms theory can explain the relationship between mechanical 

properties and microstructure.  The fundamental understanding of phase stabilities is 

enabling the optimization of microstructure and properties. 

 

 

In normal air condition, γ-Titanium aluminide intermetallics are known to be 

highly resistant to atmospheric corrosion at room temperature. However, their 

tendency to oxidize to form Al2O3 preferentially to TiO2 exits only up to 850oC, 

which is known as high temperature corrosion [Kim and Dimiduk, 1991]. However, 

at room temperature γ-titanium aluminide is often subjected to hydrogen-damage 

mechanisms, although the surface oxide film forms barrier to hydrogen atom entry to 

metal lattice. It is already known that titanium alloys are susceptible to hydrogen to 

form hydride on the surface. Hydrogen causes embrittlement leading to the 

deterioration of the properties of the alloys [Sha and Mckinven, 2002]. Much effort 

has been made to quantify the hydrogen susceptibility and its effect to properties of 

titanium alloys. Takasi et al. [1994] noted that for Gamma TiAl alloy, the yield 

strength increased with increasing amount of hydride but the ultimate tensile 

strength, ductility and fracture toughness decreased [Takasi et al., 1994]. Therefore 

the amount of hydrogen that a titanium alloy can absorb during service is a major 

measure of the ability of the alloy to retain good properties [Sha and Mckinven, 

2002]. Also, some researchers found that hydride formed on the surface and the 

possibility that some hydrogen may occupy the interstitial sites in the alloy [Takasaki 

et al., 1994; Gao et al., 1993 and Sundaram et al., 2000].  

 

 

It was found that hydrogen attack is more likely to occur in α2 or lamellae 

phases rather than γ-TiAl phases. Control of microstructure and phases could be the 
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answer to this problem. Appropriate γ-titanium aluminide which is more resistant to 

environment embrittlement and has useful properties need to be investigated. The 

focus of this research is to investigate the influence of microstructure and an alloying 

element content in γ-titanium aluminide namely chromium to corrosion attack in the 

form of hydrogen attack or hydrogen embrittlement.  

 

 

1. 2. Objectives of the Research. 

 

 

 The objective of this research is to study the effect of microstructure variation 

by heat treatment process and chromium addition on γ-titanium aluminide resistance 

to hydrogen attack and dealuminification. 

 

 

1. 3. Scope of the Research. 

 

 

The scope of the research include:    

1. Investigation of the effect of microstructure of γ- titanium aluminide 

generated by heat treatment on corrosion attack in the form of hydrogen 

attack. 

2. Investigation of the influence of an alloying element, namely chromium, 

added to γ-titanium aluminide on corrosion in the form of hydrogen 

attack. 

3. Investigating the effect of microstructure and chromium content on 

corrosion kinetics; namely coefficient of diffusivity of hydrogen in γ-

titanium aluminide 

4. Investigating the hydride formed on the surface of titanium aluminides. 
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6.2 Recommendations for Future Work 

 

 

 Further research can be carried out to enhance the current research and the 

following are areas which are recommended for further investigation; 

1. In-depth investigation on the mechanical properties namely; tensile, fatigue 

and creep strength of γ-titanium aluminide after it is subjected to hydrogen 

attack and dealuminification. 

2. Metallurgical and microstructural study in other ternary titanium aluminides 

such as, Ti-48%Al-X%(Nb, V, Mo, Mn), and in-depth investigation on the 

effect of heat treatment to corrosion behavior of the ternary titanium 

aluminide. Understanding microstructural control through combination of 

heat treatment and addition of third alloying element which may produce 

better microstructures that more resistant to hydrogen attack and 

dealuminification.  

3. Study on the heat treated alloyed γ-titanium aluminide and its effect on 

corrosion    
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