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ABSTRACT

Mesoporous molecular sieve Al-MCM-41 with Si/Al=20 and polymethacrylic
acid (PMAA) were used as supports for the immobilization of bulky iron(III)-
5,10,15,20-tetra-(4-pyridyl) porphyrin (Fe-TPyP). Metalloporphyrin of Fe(III) was
encapsulated inside the mesopores of the ordered structure of Al-MCM-41 by
sequential synthesis of Fe-TPyP via treatment of FeCl3 with 5,10,15,20-tetra-(4-
pyridyl) porphyrin (TPyP), followed by encapsulation of Fe-TPyP. Fe-TPyP
complexes were also successfully encapsulated into PMAA by polymerizing
methacrylic acid (MAA) with a cross-linker around the Fe-TPyP complexes. The
materials obtained were characterized by X-ray Diffraction (XRD), Fourier
Transform Infrared (FTIR), Ultraviolet Visible Diffuse Reflectance (UV-Vis DR),
Electron Spin Resonance (ESR), Luminescence and 13C CP/MAS NMR
spectroscopies, Thermogravimetric Analysis (TGA) and elemental analysis. The
powder XRD data confirmed that the ordered structure of mesoporous Al-MCM-41
remained intact after encapsulation process. Characterization of Fe-TPyP composite
with Al-MCM-41 and PMAA using FTIR, UV-Vis DR and ESR confirmed that the
structure of Fe-TPyP in inorganic and polymer supports is similar with bare
Fe-TPyP. The specific interaction of Fe-TPyP in Al-MCM-41 and/or PMAA was
studied by ESR, 13C CP/MAS NMR and Luminescence spectroscopies. The ESR
spectra of Fe-TPyP/Al-MCM-41 and Fe-TPyP/PMAA composites showed that there
is a shift towards a higher g-value confirming the interaction between Fe-TPyP and
supports is occurred. By quenching of the luminescence spectra of Fe-TPyP/PMAA
with various concentration of Fe-TPyP, it is evidenced that there is some interaction
between Fe-TPyP and PMAA. Further evidence of interaction was corroborated by
13C CP/MAS NMR spectra with show that the peak of carboxyl of PMAA is shifted
to higher magnetic field. Single-point BET surface area analysis was used to
determine specific surface area of the composites. It is revealed that the surface area
of Fe-TPyP/Al-MCM-41 composites is decreased with an increase in Fe-TPyP,
suggesting the encapsulation of the complex in the pores of Al-MCM-41 has been
achieved. With mesoporous molecular sieve (Al-MCM-41) and the polymer
(PMAA) as supports, the immobilized iron-porphyrin system has demonstrated
excellent activity for the single-step synthesis of phenol from benzene under mild
reaction conditions. The effect of reaction time, solvent, amount of Fe-TPyP loading,
temperature and the performance of the recovered catalysts have been studied. The
immobilized iron-porphyrin in PMAA (Fe-TPyP/PMAA) gives a higher activity
compared to Fe-TPyP supported on Al-MCM-41 (Fe-TPyP/Al-MCM-41). However,
the product selectivity of Fe-TPyP/PMAA is not as good as that of Fe-TPyP/
Al-MCM-41. Thus, it is reasonable to assume that the hydrophobic nature of
Fe-TPyP/PMAA would account for the high activity, while the rigid, ordered
structure of Fe-TPyP/Al-MCM-41 would contribute towards the high selectivity in
the single-step synthesis of phenol from benzene in the present study.
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ABSTRAK

Penapis molekul mesoliang Al-MCM-41 dengan nisbah Si/Al = 20 dan asid
polimetakrilik (PMAA) telah digunakan sebagai penyokong untuk pemegunan
kompleks ferum(III)-5, 10, 15, 20-tetra-(4-piridil) porfirin (Fe-TyP). Ferum-porfirin
telah dikapsulkan di dalam mesoliang Al-MCM-41 secara sintesis berturutan
Fe-TPyP melalui tindak balas FeCl3 dengan 5, 10, 15, 20-tetra-(4-piridil) porfirin
(TPyP), dan diikuti pengkapsulan Fe-TPyP. Kompleks Fe-TPyP juga telah berjaya
dikapsulkan ke dalam PMAA melalui proses pempolimeran asid metakrilik (MAA)
dengan perangkai silang di sekitar kompleks. Sampel yang terhasil dicirikan dengan
menggunakan kaedah XRD, spektroskopi FTIR, UV-Vis DR, ESR, pendarcahaya
dan 13C CP/MAS NMR, TGA dan analisis unsur. Data XRD menunjukkan bahawa
struktur mesoliang Al-MCM-41 yang teratur masih wujud setelah proses
pengkapsulan. Pencirian komposit Fe-TPyP dengan Al-MCM-41 dan PMAA dengan
kaedah FTIR, UV-Vis DR dan ESR, menunjukkan bahawa struktur Fe-TPyP di
dalam penyokong tak organik dan polimer adalah serupa dengan kompleks asal
Fe-TPyP. Interaksi spesifik Fe-TPyP dalam Al-MCM-41 dan/atau PMAA dikaji
dengan kaedah spektroskopi ESR, pendarcahaya dan 13C CP/MAS NMR. Spektrum
ESR bagi komposit Fe-TPyP/Al-MCM-41 dan Fe-TPyP/PMAA memperlihatkan
anjakan  ke arah nilai-g yang lebih tinggi, menunjukkan adanya interaksi antara
Fe-TPyP dan penyokong. Pelindapan spektrum pendarcahaya bagi Fe-TPyP/PMAA
dengan pelbagai kepekatan Fe-TPyP membuktikan terjadinya interaksi antara
Fe-TPyP dan PMAA. Bukti interaksi tersebut juga turut disokong dengan spektrum
13C CP/MAS NMR yang menunjukkan anjakan puncak karboksil bagi PMAA ke
medan magnet yang lebih tinggi. Analisis luas permukaan BET titik tunggal telah
digunakan untuk penentuan luas permukaan spesifik komposit. Luas permukaan
komposit Fe-TPyP/Al-MCM-41 didapati menurun dengan pertambahan kandungan
Fe-TPyP, menunjukkan bahawa Fe-TPyP telah terkapsulkan di dalam liang
Al-MCM-41. Sampel penapis molekul mesoliang (Al-MCM-41) dan polimer
(PMAA) sebagai penyokong, sistem ferum-porfirin yang dikapsulkan dalam
penyokong telah digunakan untuk sintesis langkah tunggal fenol dari benzena pada
keadaan tindak balas yang sederhana. Pengaruh masa tindak balas, pelarut, jumlah
kandungan Fe-TPyP, suhu dan penjanaan  semula mangkin bagi tindak balas tersebut
juga telah dikaji. Ferum-porfirin yang terkapsulkan di dalam PMAA (Fe-TPyP/
PMAA) menunjukkan keaktifan yang lebih tinggi berbanding Fe-TPyP/Al-MCM-41.
Manakala kepilihan hasil tindak balas menggunakan mangkin Fe-TPyP/PMAA
adalah tidak sebaik dengan Fe-TPyP/Al-MCM-41. Maka, adalah dianggapkan
bahawa sifat kehidrofobik Fe-TPyP/PMAA mungkin berperanan meningkatkan
keaktifan mangkin, manakala struktur tegar dan teratur Fe-TPyP/Al-MCM-41 pula
menghasilkan kepilihan yang tinggi dalam sintesis langkah tunggal fenol dari
benzena dalam kajian ini.
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CHAPTER 1

INTRODUCTION

1.1 Research Background and Problem Statement

Selective catalytic oxidation of hydrocarbons under mild conditions is of

academic interest and industrial importance [1]. In synthetic organic chemistry,

oxidation represents one of the most important methods for substrate

functionalization and functional group transformation. In the chemical industry,

oxygenated products of petroleum namely, alcohols, aldehydes or acids, are

important feedstocks for various industrial processes.

Traditionally, oxidation of hydrocarbons are performed with stoichiometric

amounts of inorganic oxidants such chromium chloride and potassium permanganate

[2]. The use of these oxidants for oxidation reaction leads to a big environmental

problem because of the generation of numerous amounts of by-products.

In recent years, as a result of increasing environmental constraints, “clean”

oxidants such as dioxygen (or air), hydrogen peroxide, and alkyl hydroperoxides,

which are inexpensive, is becoming more important both in industry and academia,

and chemical processes based on cleaner technologies are expected to increase

significantly in the next few years.
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In biological systems, nature has its unique way for doing selective O2

oxidation, which is accomplished by certain enzymatic systems. Some enzymes of

the mono- and dioxygenase types incorporate one or both oxygen atoms of O2

respectively into a substrate.

A well-known monooxygenase, iron porphyrin-based cytochrome P-450, has

been the subject of intensive study [3] largely because of their ability to catalyze a

wide variety of oxidation transformations, such as alkenes epoxidation and alkanes

hydroxylation with molecular oxygen. The key steps in the catalytic cycle is

reductive activation of O2, whereby one oxygen atom is reduced to H2O and the other

oxygen atom becomes available to form a high-valent iron oxo species for the

oxidation process (see Scheme 1.1) [4]. In the last two decades, therefore, increasing

attention in catalytic oxidation has been focused on the reactivity and oxidation

properties of biomimetic systems based on Fe(II), Ru(II) and Mn(II)[5-7].

Scheme 1.1 Basic features of the cytochrome P-450 oxidation mechanism [4]
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Synthetic metalloporphyrins are widely used as homogeneous catalysts for

hydrocarbon oxidation, as well as model for cytochrome P-450 [8-9].

Metalloporphyrin complexes of iron [10], manganese [11] and ruthenium are known

to be active catalysts for alkenes epoxidation. There are, however, several

disadvantages in using metalloporphyrins as catalysts in homogeneous oxidation

processes. The difficulty in separating the catalysts from the product substantially

increases the cost of using homogeneous catalysis in commercial processes.

Heterogeneous catalysts, on the contrary, can be easily separated from the

reaction products simply by filtration. Yet most heterogeneous catalysts are less

selective in complex reactions. Therefore, it is highly desirable to develop materials

based on metalloporphyrin, which possess both the high selectivity of homogeneous

catalysts and the convenience of heterogeneous catalysts. One approach to achieve

this goal is to immobilize homogeneous catalysts on porous solid supports, which

simultaneously has the advantages of tuning the liquid phase oxidation from

homogeneous into heterogeneous.

Microporous materials with regular arrays of internal channels and uniform

pores such as zeolite [12] have been extensively studied as inorganic support.

Immobilization of metalloporphyrin catalysts on microporous zeolite appears to be a

good way to render these materials active for organic substrate oxidation.

Zeolites have large internal surfaces and specific sites available for active

metal substitution thus allowing the preparation of materials for selective processes.

Furthermore, the uniform pore sizes provide both size- and shape-selectivity towards

the reactant and product molecules. Based on isomorphous substitution approach a

number of materials of potential industrial usage have been developed. A typical

example is TS-1, a titanium modified silicalite that catalyses olefin epoxidation,

alcohol oxidation and phenol hydroxylation with 30% hydrogen peroxide [13]. In

addition, metalloporphyrin complex such as cis-Mn(bypy)3 [14] encapsulated in

zeolite Y have been reported to be active catalysts towards cyclohexene oxidation.
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Supporting metalloporphyrins on zeolite also provides a physical separation

of active sites, thus minimizing catalyst self-destruction and dimerization of

unhindered metalloporphyrins [15]. Although this approach has been demonstrated

to be very successful, the main problem is the pore sizes of zeolites are very small

(<13 Å) which limit their applications to reactions in which large molecules are

involved [16].

In 1992, Beck et al. [17] reported the preparation and characterization of a

new family of crystalline mesoporous molecular sieves, which are designated as

M41S. MCM-41 is a member of this family associated with unique pores (20-100 Å)

and large well-defined internal surface areas (>1000 m2 g-1). Due to the large pores

of these mesoporous molecular sieves, high molecular mass organic molecules can

easily gain access into the pores.

Transition metal complexes and organometallic compounds can be

immobilized onto the mesoporous MCM-41 supports by physical adsorption or

covalent linkage. Titanocene dichloride was anchored to MCM-41 by Maschmeyer

et al. [18]. Copper-salen and iron-salen complexes encapsulated in the channels of

Al-MCM-41 have been reported to be an active catalyst towards polymerization of

bisphenol-A at room temperature using hydrogen peroxide as oxidant and dioxane as

solvent [19]. More recently, much effort was focused on the immobilization of

metalloporphyrins onto the silica MCM-41 surface.

Che and co-workers [20] have immobilized a ruthenium porphyrin on

modified MCM-41. It was reported that the derived catalyst gives higher turnover

numbers (TON) in the epoxidation of olefins than the free ruthenium porphyrin. It is

interesting to note that in the oxidation of cis-stilbene with the modified MCM-41

material, the major product was trans-stibene oxide. In contrast, oxidation of cis-

stilbene catalyzed by free ruthenium porphyrin gave a 1:1 mixture of cis- and trans-

stilbene oxides. The high selectivity to give trans-stilbene oxide was attributed to the

steric constraint imposed by the uniform channels of the MCM-41 support. This

example demonstrated the potential of mesoporous MCM-41 materials as size and

shape selective catalysts.
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Stimulated by these works, we are interested in modifying the MCM-41

materials with metalloporphyrin as catalysts for selective oxidation reactions.

MCM-41 can serve as a support for the metalloporphyrin species by providing a

large surface area and uniform surface for catalytic reaction. The larger pore

dimensions would allow processing of bulky chemicals of interest.

In this research, iron porphyrin has been immobilized within ordered

mesoporous Al-MCM-41.  It is well known that iron porphyrin complexes is

effective catalyst for the conversion of olefins into trans-diols or trans-diol mono-

ethers by using H2O2 [21]. In order to tune the activity of the supported catalysts the

knowledge on the microenvironment of the immobilized complexes is essential.

However, there are few reports on correlation between the structure of the

immobilized catalysts and the catalytic activities. It is anticipated that immobilization

of the metalloporphyrins in inorganic or organic support will stabilize and/or modify

the catalytic performance by influencing the chemoselectivity, regioselectivity and

shape selectivity of the reaction.

Supported catalysts are also often plagued by leaching of the metal into

solution. Our approach to this problem is to radically change the nature of the

support. The even distribution of large, regular pores and extremely high surface area

that characterizes mesoporous molecular sieve MCM-41 makes them ideal supports.

This support has the added benefit that the silica structure has stability to chemical

reagents. Also, easy separation of the products from the separation medium, along

with the recovery and reuse of the expensive catalyst provide an attractive advantage

over homogeneous catalysts.

The key feature of the MCM-41, which separates it from currently used

zeolite support, is its extreme porosity. However, the MCM-41, an inorganic

material, is hydrophilic and rigid. In this research, we also propose a procedure to

immobilize iron porphyrin on the polymer support, namely polymethacrylic acid

(PMAA). One expects that the flexibility and hydrophobicity of the polymer as

support give certain advantages in oxidation of organic compounds. The production

of porous polymers containing large aromatic moieties or transition metal complexes

such as the iron porphyrin complexes is considered to be useful, since they are in
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high demand for a variety of applications ranging from catalysis, chromatography,

diagnostics and sensors [1]. To the best of our knowledge, iron porphyrin complexes

supported on PMAA has not yet been reported.

Phenol is produced globally on the scale of 17 billion pounds/year [22] due to

demand for bisphenol A (polycarbonate resins), phenolic resins, coprolactam (nylon

6.1), xylenols, aniline, alkylphenols and others. It is used in the manufacture of

plywood, construction, automotive and appliance industry. It is also used as a raw

material in the production of nylon and epoxy resins, disinfectant and slime-killing

agent.

Phenol has been mainly manufactured using the cumene method by which the

selectivity for the phenol is high. However, this cumene process consists of three

steps and produces acetone as a byproduct (Figure 1.1) [23]. The efficiency of the

three-step cumene process strongly depends on the price of the by-product acetone,

which is considerably varying.

Figure 1.1 Commercial routes to synthesize phenol from benzene (with cumene

as an intermediate) [23]

+
Phosporic acid

AlCl3
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O H

OH

+

O
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The cumene method has several significant shortcomings: it is a multistage

synthesis; the intermediate cumene hydroperoxide is explosive; there are ecological

problems and the production rate of the co-product acetone exceeds market demand.

Therefore, both industry and academia are intensively searching for new routes to

phenol based on direct benzene oxidation. The single-step synthesis of phenol from

benzene would be an alternative.

The single-step production of phenol by direct insertion of oxygen into the

benzene ring is an attractive and challenging method, not only from a practical point

of view but also from a synthetic chemical point of view, because the direct

oxygenation of the energetically stable benzene to produce phenol has been one of

the most difficult oxidation reactions [24].

The gas-phase oxidation of benzene to phenol by nitrous oxide has been

widely studied over Fe-ZSM-5 [25].  In the presence of Fe-ZSM-5, the selectivity of

benzene and N2O for phenol exceeded 98 and 95%, respectively, but the conversion

of benzene to phenol is very low. The oxidation of benzene to phenol over

H6PMo9V3O40 and palladium acetate in VPI-5 and MCM-41 has been reported in the

presence of molecular oxygen [26]. Over H6PMo9V3O40, after 4 hours at 130 oC the

benzene conversion is 15% and the selectivity for phenol is above 70%.

Phenol synthesis by liquid-phase oxidation of benzene with hydrogen

peroxide has been also studied using iron-heteropoly acid [27]. Furthermore,

Miyahara et al. has studied the liquid-phase oxidation of benzene to phenol catalyzed

by Cu catalysts supported on zeolites [28], and MCM-41 [29], and also supported

CuO catalysts (CuO-Al2O3) [24].  In the presence CuO-Al2O3, the phenol yield is

very low (< 1%) and the leaching of Cu is less than 10%.

An attractive alternative route is the direct oxidation of benzene to phenol

using molecular oxygen and a suitable catalyst. A one-step process such as this

would require less energy and generate zero waste, while producing only phenol.

This reaction model of hydroxylation of benzene with oxygen is presented in Figure

1.2.
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OH

O2 / H2O2

Catalyst

Figure 1.2 Oxidations reaction of benzene to phenol with dioxygen

Recently, the best catalyst for benzene to phenol oxidation by nitrous oxide is

Fe-ZSM-5 zeolite, which provides nearly 100% benzene selectivity, but low

conversion of benzene [25]. The remarkable catalytic performance of this zeolite was

show to be related to the presence of iron and upon high temperature treatment. In

these systems, the reaction only occurs in the gas phase (ca. 300º) and there is no

report on single-step liquid phase oxidation of benzene to phenol in the literature. For

these reasons, in this research, we will study the single-step liquid phase oxidation of

benzene to phenol using iron(III)-porphyrin supported on Al-MCM-41 and

polymethacrylic acid (PMAA).

1.2  Research Objectives

 The main objectives of the research are:

i. To synthesize Al-MCM-41 and polymethacrylic acid (PMAA).

ii. To synthesize iron(III) tetra-(4-pyridyl)-porphyrin (Fe-TPyP)

complexes supported on mesoporous Al-MCM-41 and

polymethacrylic acid (PMAA) matrix.

iii. To investigate the physicochemical properties of Fe-TPyP

encapsulated in Al-MCM-41 and Fe-TPyP supported on polymer

matrix.

iv. To compare the performance of the hybrid catalysts of Fe-TPyP

supported on mesoporous Al-MCM-41 and polymethacrylic acid

(PMAA) in the single-step synthesis of phenol from benzene.
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1.3 Scope of Study

The scope of this research is to synthesize iron(III)-porphyrin encapsulated

Al-MCM-41 and iron(III)-porphyrin supported on polymethacrylic acid (PMAA), to

characterize these catalyst by XRD, FTIR, UV-Vis DR, ESR, Luminescence, and 13C

CP/MAS NMR spectroscopies along with Single-point BET surface area analysis,

AAS, TGA and SEM, to test the performance of these catalysts for the liquid phase

single-step oxidation of benzene to phenol and finally, to analyze the reaction

products using GC, GC-MS and HPLC techniques.
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1.4 Outline of Research

• Synthesis of iron(III)-porphyrin supported on mesoporous Al-MCM-41
(Fe-TPyP/Al-MCM-41)

• Synthesis of iron(III)-porphyrin supported on polymethacrylic acid
 (Fe-TPyP/PMAA)

Characterization of catalysts using FTIR and

UV-Vis DR spectroscopies.

• Synthesis of iron(III) tetra-(4-pyridyl)-porphyrin
(Fe-TPyP)

Characterization of catalysts by FTIR, XRD, UV-Vis DR, ESR, Luminescence

and 13C CP/MAS NMR spectroscopies along with AAS Single-point BET

Single-step synthesis of phenol from benzene

Analysis of reaction product by GC,
GC-MS, HPLC

No Yes
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1.5 Outline of Thesis

This thesis focuses on the development of hybrid catalyst systems with the

main aim at the preparation, characterization and catalytic application of iron(III)-

porphyrin (Fe-TPyP) supported on mesoporous molecular sieve Al-MCM-41 and

polymethacrylic acid (PMAA). This thesis is also organized into six chapters.

Chapter 1 describes the research background and problem statement, research

objectives, scope of the research, outline of research and outline of the thesis.

Chapter 2 presents some literature review on the chemistry of metallo-

porphyrin, mesoporous molecular sieve MCM-41, the polymer support, and the

liquid-phase oxidation of benzene to phenol.

Chapter 3 demonstrates that iron(III) tetra-(4-pyridyl)-porphyrin (Fe-TPyP)

may be encapsulated into the pores and channels of the mesoporous material

Al-MCM-41 by impregnation method, while Chapter 4 presents the preparation of

iron-porphyrin supported into polymethacrylic acid (PMAA) by direct

polymerization of iron(III) tetra-(4-pyridyl)-porphyrin (Fe-TPyP) with the monomer,

methacrylic acid (MAA).

Chapter 5 discusses the catalytic activity of these materials in the single-step

synthesis of phenol from benzene. Finally, Chapter 6 presents the conclusion of the

results obtained and provides recommendations for future research.
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