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ABSTRACT 

 

 

 

This study examines numerically the uniaxial stability of triaxial weave fabric 

(TWF) composites employing finite element (FE) model with homogenized 

constitutive relation. TWF, which presents high specific-strength and stiffness due to 

its porous and lightweight properties, was previously modelled using solid elements 

or plybased approach, and thus making computation considerably complex and time-

consuming. To circumvent these issues, the current FE formulation is of geometrical 

nonlinearity employing Newton-Rhapson method where TWF unit cell is treated as a 

standalone non-conforming composite plate element making use of the homogenized 

ABD stiffness matrix, where Aij, Bij, and Dij indicate the extensional, coupling, and 

bending stiffness, respectively in which degree of freedom has been greatly reduced. 

By means of Matlab program, the currently formulated model has demonstrated good 

agreement with existing numerical and experimental results from literature in terms 

of elastic properties.  For the buckling analysis, four types of boundary conditions are 

explored: fully simply supported, fully-clamped, free-simply supported and free-

clamped. High dependencies of post-buckling patterns of compression load against 

both maximum and minimum deflections on numerous aspect ratios from 0.25 to 5 

are observed in TWF, from which a characteristic equation has been defined for 

practical convenience before the occurrence of post-buckling. Such equation is 

described on the basis of the critical buckling load, Nmax, and stiffness factor, S, the 

best characterization of which is expressed in a logarithmic manner. The study has 

recognized that the buckling characteristics correlate directly to TWF’s aspect ratios 

and level of rigidity imposed through the boundary conditions. 
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ABSTRAK 

 

 

 

 

Kajian ini menyelidik secara berangka kestabilan satu arah komposit fabrik tenunan 

tiga paksi menggunakan model unsur terhingga dengan hubungan juzuk seragam. 

Komposit fabrik tenunan tiga paksi yang menunjukkan kekuatan tentu dan 

kekukuhan yang tinggi daripada ciri-cirinya yang berliang dan ringan, telah 

dimodelkan sebelum ini dengan menggunakan unsur pepejal atau berasaskan 

pendekatan berlapis dan ini menjadikan pengiraannya kompleks dan memakan masa. 

Oleh itu,  unsur terhingga tak linear secara geometri telah dirumuskan menggunakan 

Kaedah Newton-Rhapson di mana sel unit komposit fabrik tenunan tiga paksi telah 

dianggap sebagai unsur plat komposit tak-selaras bersendiri menggunakan matriks 

kekukuhan ABD seragam di mana Aij, Bij, dan Dij masing-masing merupakan 

kekukuhan pemanjangan, gandingan dan lenturan di mana darjah kebebasan telah 

dikurangkan. Dengan menggunakan program Matlab, rumusan model kajian ini telah 

menunjukkan persetujuan yang baik dengan keputusan berangka dan eksperimen 

yang sedia ada daripada literatur dalam bentuk sifat-sifat elastik . Untuk analisis 

lengkokan, terdapat empat jenis keadaan sempadan yang diterokai: disokong mudah 

penuh, diapit penuh, bebas-disokong mudah dan bebas-diapit. Kebergantungan tinggi 

corak pasca lengkokan daya mampatan terhadap kedua-dua pesongan maksimum dan 

minimum kepada nisbah aspek daripada 0.25 kepada 5 telah diperhati, yang mana 

satu persamaan ciri telah dirumuskan sebelum berlakunya pasca lengkokan. 

Persamaan tersebut dihuraikan berdasarkan beban lengkokan kritikal, Nmax, dan 

faktor kekukuhan, S, di mana pencirian terbaik adalah dinyatakan dalam bentuk 

logaritma. Kajian ini telah mengenalpasti bahawa ciri-ciri lengkokan berhubungkait 

secara langsung terhadap nisbah aspek dan tahap kekukuhan komposit fabrik tenunan 

tiga paksi yang dikenakan melalui keadaan sempadan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study  

 

Textile composite materials have been applied in large scale in numerous 

engineering industries such as aerospace, marine, automobile, and sporting goods.  

Due to the demand of lighter at the same time high performance materials in these 

industries, the textile materials are seen to meet such requirements from material 

selection process.  Biaxial and triaxial fabric composites have been known as 

common type of materials used in the textile industry and have attracted researchers 

to study and investigate their unique mechanical characteristics since a few decades 

ago during which aerospace industry has just initiated its dominance in engineering 

field.  

 

Based on previous study, triaxial weave fabric (TWF) composite has shown 

more advantages and potential compared to biaxial weave fabric (BWF) composite in 

terms of single ply comparison.  Besides, TWF is often chosen as solution to 

problems particularly related to lightweight and shear-resistance requirements, both 

of which cannot be fulfilled by the conventional BWF. 
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Thus, the present study aims to investigate mechanical behavior of TWF by 

modeling a unit cell of TWF through homogenized approach such that problems such 

as time-consuming computation due to subtleties of its geometrical makeup, 

extensively discussed in literature, can be circumvent.  The idea of using TWF 

pattern has long been applied in manmade structures as shown in Figure 1.1.  For 

example, TWF pattern is applied on the racket and basket to gives a stiff surface and 

allow the structure to carry a heavy load.  In advanced technology, TWF is used as 

spring back reflectors of MSAT-2 spacecraft where one is folded at the top and 

another one is deployed at the bottom as shown in Figure 1.2.  Other than aerospace 

industry, TWF also has been used to make golf club shafts, solar panels, skis, fishing 

rods, and speaker cones. 

 

 

 

Figure 1.1: Triaxial pattern: (a) Racket (b) Rigid tensegrity (c) Sphere (d) Rattan ball 

(e) Asian basket and (f) Three way weave basket (Buckminster Fuller 

Virtual Institute, 2007; Kueh, 2007) 
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Figure 1.2: Spring back reflectors of MSAT-2 spacecraft (Courtesy of Canadian 

Space Agency) 

 

 

 

 

1.2 History of TWF 

 

 

TWF was discovered in the late 1950’s when Francis Rogallo, a NASA 

project engineer constructed a paraglider for the space program purposes (Kueh, 

2007).  During a wind tunnel test, the structure failed by the loss of aerodynamic 

shape of the tail section. Investigation was carried out by Norris Dow, one of 

Rogallo’s colleagues and discovered that the failure of tail section which was made 

of BWF was caused by the distortion of the material in off-axis directions. To 

remedy this problem, an extra direction of tows in BWF was suggested as a solution, 

making the material consists three sets of tows interlaced and intersected each other 

at 60° angles. In his opinion, this solution introduced better weaving method and 

gave interlacing strength due to friction created by intersecting yarns. Besides, the 

unique configuration of equilateral triangle made it more stable compared to 

rectangular. The design was patented and commercialized in US under N.F. 



 
 

4

Doweave, Inc. Figure 1.3 shows some of the designs patented by Dow (Kueh, 2007). 

The number ten indicates the open holes in weave, and x, y, and z indicate the three 

axial directions. 

 

 

 

 

 

 

 

 

F 

 

 

 

 

 

Figure 1.3: Some of TWF designs patented by Dow (1969) 

 

 

However, the enterprise was closed in the late 1970’s due to high industrial 

competition. The business then was taken over by Sakase Adtech Co. Ltd. of Fukui, 

Japan. This company is thus far known as the only manufacturer of TWF and 

managed by its founders, Sakai Brothers, Ryoji and Yoshiharu. 
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1.3 Statement of Problem 

 

 

Unlike the solid composite, especially unidirectional material, the TWF 

cannot be assumed as a flat composite because of the waviness of tow. The 

complexity of its geometry makes the behaviors of TWF difficult to predict. For a 

laminated composite, laminae when modeled in the standard finite element software 

are presented in a layered form. Hence, to model a composite material that is made 

up of several plies, a number of elements are needed through thickness. 

 

 

In previous work on woven fabrics, a repeating unit cell (RUC) was adopted 

in modeling, assuming a uniform repeating building block throughout the whole 

volume of composites. But the main concern was given to plied and thicker 

materials. The model was treated as a solid which contains only fibers and matrix, 

and also, the open voids exist in material were usually neglected. As a result, the 

built-in elements provided in the finite element software are more applicable for 

modeling flat laminated materials. These assumptions cannot be used for TWF 

because of the waviness of tow. Also, hexagonal voids spread across the volume 

have to be modeled properly. Such features can be noticed in Figure 1.4 which shows 

the unit cell of TWF with its dimension in mm, where the rectangular area within the 

dash lines shows the unit cell with the hexagonal hole of 1.8 mm high, covering 

about half of the area of unit cell. In addition, there exist efforts in modeling TWF 

using solid elements, the degree of freedom of which can be of high intensity. Due to 

this complexity, the formulation of the unit cell of TWF as a standalone planar 

element is highly important to ease the difficulty in modeling such a material in the 

commercial finite element software.  
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Figure 1.4: A unit cell of TWF (Kueh and Pellegrino, 2007) 

 

 

 

1.4 Objectives of Study 

 

 

The objectives of this research are: 

 

 

1. To formulate the TWF unit cell macromechanically adopting available 

constitutive relation by homogenization method based on micromechanics 

of curved composite and hence, treat the unit cell as a standalone finite 

element. 

2. To program the script of the formulation of the unit cell of TWF for linear 

and nonlinear analyses. 

3. To generate the general equation of buckling from the proposed model. 
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1.5 Scope of the Study 

 

 

This research is focused on the single-ply TWF composite. The fundamental 

of finite element formulation is used to generate a standalone element for the unit 

cell of TWF composite plate. 2D plate elements consisting five degrees of freedom 

per node are employed. In this research, the assumption of Kirchhoff hypothesis for 

thin plates is used in the formulation. Besides, a perfect bonding between tows is 

assumed in the formulation. Only the elastic mechanical behaviors are of concern in 

this study. Fracture of material is not considered. The Matlab software is used to 

program the finite element formulation. The linear and nonlinear analyses of 

buckling are conducted for numerous aspects ratios (0.25-5) and boundary 

conditions. As mentioned in the objectives, one of the purposes of the analyses is to 

produce some important parameters which can be used to represent the general 

characteristics of buckling of TWF. 

 

 

 

 

1.6 Significance of Research 

 

By establishing the formulation of standalone composite element for unit cell 

of TWF, it helps reduce the time-consuming and tedious process in the material 

modeling, which is to date computationally expensive due to solid element meshing. 

Considerably costly experimental method could be the main obstacle for composite 

analysts to make characterization of material. Hence, it is very useful to apply 

currently developed composite element adopting homogenized model and program 

script, which give choices and freedoms to composite analysts, in any structure that 

uses TWF as its reinforcing constituent. Furthermore, a list of characteristic terms 

that expresses the buckling of TWF for numerous cases can be used instantaneously 

to assess stability of this material without having to go through the lengthy nonlinear 

computation process.   
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