

SEQUENTIAL STRATEGY FOR SOFTWARE PROCESS MEASUREMENT

USING STATISTICAL PROCESS CONTROL

MUHAMMAD ABUBAKAR ALHASSAN

A dissertation submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

JANUARY 2014

iii

I strongly dedicated this dissertation to my beloved parents for their prayers and to

my governor Dr. Rabi’u Musa Kwankwaso for sponsoring my study.

iv

ACKNOWLEDGEMENT

First of all, I would like to express my utmost gratitude to Allah S.W.T for

His endless blessings and guidance throughout my entire research process and stay in

Malaysia, Alhamdlillah for everything. Then, sincere appreciation goes to my

supervisor Associate Professor, Dr. Dayang Norhayati Abang Jawawi for her

continued support, guidance, and patience throughout my research. Despite her tight

schedule, she always tried to make herself available. I’ve never seen anyone as

committed in nurturing their students like she is. I will always look up to her as my

academic role model.

Also, my endless gratitude goes to my parents for their strong support and

prayers. I would also like to express my sincere gratitude to my governor, Dr. Rabi’u

Musa Kwankwaso, for always providing me with sufficient financial support, may

Allah (S.W.T) rewards him abundantly. I will forever be grateful to my family, for

their undulating support, encouragement and prayers.

v

ABSTRACT

Software development process (SDP) and Software products are like two

sides of a coin. We cannot achieve one without another. Today, in our software

industries, monitoring software process is very challenging. Many problems of

software process monitoring are hampering the quality of our software products.

Several researchers in this area contributed their quota on addressing process

monitoring issues using quantitative techniques. In this study, we address the

problem of detecting software process deviations as a result of variations,

investigating the causes of variations in software process, and the problem of process

measurement. In addition, the study focus on code peer review process (CPRP). The

first two problems can be addressed using one of the powerful quantitative

techniques known as statistical process control (SPC). Also, control charts would be

used in this study as it has been proved to be one of the suitable tools of SPC in

monitoring process issues. As we know, the more defects we found during SDP, the

less quality of the software product. Therefore, this study considers defect density as

the metric to be use due to its significance in determining product quality. In order to

have good analysis, this study conduct a case study on both Capability Maturity

Model (CMM), lower and higher maturity levels software industries. On the other

hand, to handle the problem of process measurement, a Sequential Strategy for

Process Measure (SSPM) is proposed. This strategy is evaluated by Instrument for

Evaluating Software Measurement Repository (IESMR) and Normative Information

Model-based System Analysis and Design (NIMSAD) framework. Based on its

evaluation, the strategy is similar to IESMR but differ in selecting measures,

therefore it can be use for process measurement.

vi

ABSTRAK

Proses pembangunan perisian (SDP) dan produk perisian adalah seperti dua

belah duit syiling. Kita tidak boleh mencapai satu tanpa yang lain. Kini, dalam

industri perisian, pemantauan proses perisian adalah sangat mencabar. Banyak

masalah pemantauan perisian proses yang menghalang kualiti produk perisian.

Beberapa penyelidik dalam bidang ini menyumbang kuota mereka untuk menangani

isu-isu pemantauan proses dengan menggunakan teknik kuantitatif. Dalam kajian ini,

kami menangani masalah ketidakstabilan proses akibat daripada variasi, menyiasat

punca variasi pada proses, dan masalah pengukuran proses. Di samping itu, tumpuan

kajian adalah tertumpu kepada proses kajian kod rakan sebaya (CPRP). Dua masalah

pertama boleh diatasi dengan menggunakan salah satu teknik kuantitatif yang

berkuasa dikenali sebagai kawalan proses statistik (SPC). Juga, carta kawalan akan

digunakan dalam kajian ini kerana ia telah terbukti menjadi salah satu alat SPC yang

sesuai dalam memantau isu-isu proses. Seperti yang kita tahu, lebih banyak

kecacatan didapati dalam SDP, kualiti produk perisian menjadi berkurangan. Oleh

itu, kajian ini menganggap ketumpatan kecacatan sebagai metrik yang digunakan

kerana kepentingannya dalam menentukan kualiti produk. Dalam usaha untuk

mempunyai analisis yang baik, kajian ini menjalankan satu kajian kes di kedua-dua

Model Kematangan Keupayaan (CMM), yang lebih rendah dan lebih tinggi tahap

kematangan industri perisian. Sebaliknya, untuk mengendalikan masalah pengukuran

proses, Strategi Jujukan Proses Langkah (SSPM) dicadangkan. Strategi ini dinilai

dengan Instrumen untuk Menilai Repositori Pengukuran Perisian (IESMR) dan

rangka kerja Analisis dan Reka bentuk sistem berasaskan Model Maklumat Normatif

(NIMSAD). Berdasarkan penilaiannya, strategi ini adalah sama dengan IESMR

tetapi berbeza dalam memilih langkah-langkah, oleh itu ia boleh digunakan untuk

pengukuran proses.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF ABBREVIATIONS xiv

1 INTRODUCTION

1.1 Overview 1

1.2 Problem Background 3

1.3 Problem Statement 5

1.4 Research Aim 6

1.4 Objectives of the Study 7

1.5 Research Scope 7

1.6 Significance of the Study 7

1.7 Dissertation Organization 8

2 LITERATURE REVIEW

2.1 Introduction 9

2.2 Software Development Process 10

viii

2.3 Standard Software Process Improvement Model 11

2.3.1 Capability Maturity Model 12

2.4 Variability in Software Process 14

2.5 Software Quality 15

2.5.1 Stability 15

2.5.2 Defect Density 16

2.6 Statistical Process Control 17

2.6.1 Control Charts 18

2.6.1.1 Control Charts for Attribute Data 21

2.6.1.1.1 The Percentage Chart (p-chart) 22

2.6.1.1.2 The Constant Chart (c-chart) 23

2..6.1.1.3 The Unit Chart (u-chart) 23

2.6.1.1.4 Individual Moving Range Chart
(XmR-chart) 26

2.6.1.1.5 The np-chart 28

2.6.2 Statistical Process Control Rules 28

2.7 Software Process Measurement 29

2.7.1 Instrument for Evaluating
Software Measurement
Repository (IESMR)

30

2.8 Related Work 32

2.8.1 Individual Moving Range chart 32

2.8.2 Constant Chart 34

2.8.3 Mean Value Chart Based on
Variable Data Control Chart 35

2.8.4 Percentage Chart 35

2.9 Summary 43

3 METHODOLOGY

3.1 Introduction 45

3.2 Theoretical Based including Primary Studies 47

3.3 Implementation of the Quantitative Technique 48

 3.3.1 Data collection from ISBSG 49

 3.3.2 Analyzind Data 51

ix

 3.3.3 Acting on Result 53

3.4 Summary 55

4 ANALYSIS OF CONTROL CHART IN CODE PEER

REVIEW PROCESS AT CMM LEVEL 2 AND LEVEL 5

 4.1 Preamble 56

 4.2 Control Chart 57

 4.2.1 Data Collection and Extraction 58

 4.2.2 Data Analysis 59

4.2.2.1 Analysis of u-chart and XmR-chart

in Class A data 59

4.2.2.2 Analysis of u-chart and XmR-chart

in Class B data 62

 4.2.2.4.1 Causes investigations 65

4.2.2.3 Analysis of u-chart and XmR-chart

in CMM level 5 71

 4.3 Discussions 75

 4.4 Summary 77

5 SEQUENTIAL STRATEGY FOR PROCESS

MEASUREMENT

 5.1 Introducttion 78

 5.2 Sequential Strategy for Process Measurement 79

5.2.1 Defining Organizational Goals and

Objectives 81

 5.2.2 Identifying Process Issues 83

 5.2.2.1 Product Quality 84

 5.2.3 Selecting and Defining Measures 84

 5.2.4 Integrating Measures with Software Process 88

 5.3 Evaluation of SSPM 89

 5.3.1 SSPM Evaluation using IESMR 90

5.3.2 Normative Information Model-based System

Analysis and Design (NIMSAD) 91

x

 5.4 Summary 95

6 RESEARCH CONCLUSIONS AND FUTURE WORK

 6.1 Introduction 96

 6.2 Research Conclusions 96

 6.3 Research Contribution 97

 6.4 Future Work 98

 REFERENCES 99

 APPENDIX A 103

 xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Types of Control Charts for Attribute and
Variable Data 20

2.2 Constants for Calculating Control Limits in
XmR chart 26

2.3 Control Limits for XmR chart 27

2.4 Comparison Analysis Table Based on SPC
Guidelines 37

2.5 Comparison Analysis Table Based on CMM-
SPC Guidelines 40

3.1 ISBSG Projects and their Country of Origin 50

4.1 Features of class A data 66

4.2 Features of class B data 67

4.3 Features of CMM level 5 data 74

5.1 Evaluation of SSPM using IESMR 90

5.2 comparison table for SSPM evaluation using
NIMSAD 92

 xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 CMM Maturity Levels 13

2.2 Control Chart Diagram 19

2.3 Comparative Analysis of Control Charts based
on a given data 21

2.4 Structure of IESMR 31

3.1 Research Process flow Chart 46

3.2 Steps in Implementing SPC in Software Process 48

3.3 Chart of ISBSG Projects and their Country of
Origin 51

3.4 Evaluating Process Stability Flow Chart 52

3.5 Process Control State Diagram 53

4.1 Analysis of u-chart in Class A Data 60

4.2(a) Xbar chart in Class A Data 61

4.2(b) mR chart in Class A Data 61

4.3 Analysis of u-chart in Class B Data 63

4.4(a) Xbar chart in Class B data 64

4.4(b) mR chart in Class B data 64

4.5 u-chart after Assignable Causes was Removed 70

4.6(a) Xbar chart after Assignable Causes was
Removed. 70

4.6(b) mR Chart after process anomaly was removed. 71

4.7 u-charts in CPRP at CMM Level 5 72

4.8(a) Xbar chart in CPRP at CMM Level 5 73

4.8(b) mR chart in CPRP at CMM Level 5 73

 xiii

5.1 Sequential Strategy for Process Measurement
(SSPM) 80

5.2 Measurement Indicators for Organizational
Goals 82

5.3 Step-by-step Procedure for Selecting Measures 85

5.4 Steps for Integrating Defined Measures with
Software Process. 88

5.5 NIMSAD Framework 92

 xiv

LIST OF ABBREVIATIONS

A2 QPM Assessment Approach for Quantitative Process Management

c-Chart Constant Chart

CL Control or Centre Line

CL Centre Line for Xbar chart

CMM Capability Maturity Model

CPRP Code Peer Review Process

DBMS Database Management System

DOGO Defining Organizational Goals

ERP Enterprise Resource Planning

HLD Half Logistic Distribution

HSE Hitachi Software Engineering

IESMR Instrument for Evaluating Software Measurement Repository

IMSP Integrating Measures with Software Process

IPI Investigating Process Issues

ISBSG International Software Benchmarking Standards Group

ISTQB International Software Testing Qualifications board

LCL lower control Limit

LNPL Lower Natural Process Limit for Xbar chart

MMLE Modified Maximum Likelihood Estimation

NHPP Non-Homogeneous Poisson Process

NIMSAD Normative Information Model-based System Analysis and
Design

p-Chart Percentage Chart

SDLC Software Development Life Cycle

SDM Selecting and Defining Measures

SDP Software Development Process

 xv

SLOC Source Lines of Code

SSPM Sequential Strategy for Process Measurement

u-Chart Unit chart

UCL Upper Control Limit

UNPL Upper Natural Process Limit for Xbar chart

XmR-Chart Individual Moving Range Chart

CHAPTER 1

INTRODUCTION

1.1 Overview

Software development life cycle (SDLC) can be simply defined as the

sequence of stages or phases of developing software. These phases are arranged in

cycle process in which the output of one phase is input to another in a cyclic manner.

Similarly, there are many standard SDLC models that are used by software

developers or engineers for developing software systems (Fuggetta, 2000). Waterfall

model, spiral model, V-shape model are few examples of SDLC models. In addition

to these models, new models of SDLC such as iterative evolutionary and agile exist

in order to improve software quality products.

However, these models of software development describe the software

development process in terms of requirement analysis, design, coding and testing

phases of SDLC. Each model has its strengths as well as weaknesses. Therefore, it

depends largely on the software organizations to select or choose the model that is

suitable for them to develop the appropriate and quality software product. But,

producing quality software is very challenging. In other words, it is not a very simple

activity.

2

Moreover, in order to develop good quality software product, we need to

investigate the process of developing the software (Fuggetta, 2000). This is because;

software process and software products are like two sides of a coin. We cannot

achieve quality software product without quality software process. Therefore, there is

a need to monitor and improve software development process. Based on the studies

of (Florac and Carleton, 1999), variations may be present during the activities of

software development process. This is because software process may have one or

more inputs as well as outputs, and these outputs have measurable entities or

attributes (Humphrey, 1989).

In the field of software engineering, we cannot control what is not measured.

As a result of this, many statistical techniques such statistical process control (SPC)

plays a very important role in managing and controlling these attributes. In other

words, control charts of SPC can help us to determine whether a process is under

control or not by calculating the control limits so as to visualize the process

behaviour over time. As a result of this, many researchers shared their experience on

implementing this quantitative technique within software domain.

 Even though SPC is used in manufacturing process; for example, (Mahesh

and Prabhuswamy, 2010) used SPC to reduce process variability in manufacturing

process. But, according to (Shewhart, 1930), SPC can be used in many other fields.

Since that time until today, there is increase interest by many researchers in using

SPC within software domain in order to improve software development process.

Recently, a study on the use of control chart to improve software development

process was conducted by (Pandain et al., 2013). Also, (SrinivasaRao et al., 2012)

conducted a study on assessing software reliability using SPC. However, SPC has

proven to be effective statistical method in not only software engineering area but

also, in many areas such as engineering and medicine.

3

However, this study focus on code peer review process (CPRP). This is

because; the process is one of the backbone software processes that play a vital role

in ensuring good quality software products. Stabilizing the CPRP to behave

consistently would enhance the quality of the software product. Also, the selected

metric is relevant to the process because they are all geared towards achieving

quality products.

1.2 Problem Background

As the use of software in our daily life is increasing day by day, the problem

of software quality is also increasing. According to (Dupuis, 2004), the Software

Engineering Body of Knowledge guide emphasizes that software quality is one of the

challenging issues in the field of software engineering. That is to say, developing

good quality software products that will meet business goals is very challenging.

Therefore, to achieve software quality, the process used to develop or produce the

software products should be considered (Olson et al., 1989). This implies that, the

quality of software depends largely on the quality of the process used to develop the

software. In line with this, effective monitoring and controlling software

development process is one of the successful paths for producing quality software

products.

However, monitoring and controlling software process is not a very simple

activity. Today, many researchers are working on software process improvements.

Recently, (Pandain et al., 2013), used control charts of SPC to improve software

process performance. During their study, they conducted a case study on Capability

Maturity Model (CMM) level 4 software industry in which they investigate the

industry’s software process behaviour. Similarly, (Satya Prasad et al., 2011),

proposed control mechanism (SPC) based on time between failures observations

using Half Logistic Distribution (HLD) and Modified Maximum Likelihood

Estimation (MMLE) to asses’ software reliability. They used SPC in inspection and

4

testing process. Also, they used HLD and MMLE to predict time between failures

and SPC as a method to control the predicted time of the process so as to produce

reliable quality software within budget and specified time. But, as we know, a

software process for one project may not be appropriate to another project. These

authors did not clearly specify the project that is suitable to use MMLE together with

SPC.

Similarly, additional effort was done by these researchers; (Nguyen et al.,

2012). In their study, they used SPC technique to detect software performance

regression. As we know, performance regression simply means that a new version of

software has worse performance than the previous version. To address this issue, the

authors proposed an approach to analyze performance counts across test runs using

control charts of SPC. Also, they used SPC in test and inspection process in which

their result shows that control charts can be used to identify performance regressions

in software systems.

However, these authors; (Baldassarre et al., 2009) study the use of SPC for

software as systematic approach. They used SPC in specification and inspection

process. Also, they set many issues of software process monitoring and addressed the

issues using SPC. These authors suggested that software engineers can implement

SPC during process monitoring. At the end of their studies, they concluded that SPC

is a suitable statistical technique that can be used to address many problems of

process monitoring. But, there are many issues related to software process

monitoring such as the difficulty of identifying process deviations as well as their

causes.

In the studies of (Talib et al., 2010), they used different quantitative

techniques such as SPC in different phases of software development life cycle. These

authors did not consider the critical software processes that are suitable to use

statistical techniques. In addition, (Caivano, 2005) studied the use of SPC for

continues software process improvements. In his work, it is now necessary to

5

measure, and control software process for the purpose of finding process variations

and eliminating them.

Moreover, (Tuan et al., 2006) proposed a new model (ABC model) for

improving software development process. As we know, defects can be found during

requirement analysis or design phase of SDLC and sometimes during testing, one of

the major strengths of this important model is defects prevention. But, this model is

focused on process prediction. We can only predict what is under control. More work

can be done on monitoring software development process for good quality product.

However, based on the studies of (Baldassarre et al., 2009), software process

monitoring is still a challenging issue. Additional effort is required on monitoring

and controlling software process deviations and their causes. But, software process

monitoring is a complex activity and is still one of the issues that currently affects

software quality product. Nevertheless, the utilization of SPC in software process

monitoring is still an open issue. The problem of process measurement affects the

successful implementations of SPC. Difficulty of selecting appropriate metric; its

reliability as well as its selection for selected monitoring process characteristics.

Also, the high intensive human nature in software process can have a great impact on

SPC and monitoring effectiveness.

1.3 Problem Statement

Based on the work of (Baldassarre et al., 2009), monitoring software process

stability is still an open issue in the field of software engineering. There are some

issues such as; process performance deviation that affect software process, by

carefully monitoring these issues; we can improve the stability and capability of the

process. Therefore, in this section, we describe some problems which we plan to

address at the end of our study. These are as follows;

6

1. Problem of detecting software process deviations as a result of variations.

2. Problem of investigating the causes of variations in software process.

3. Problem of software process measurement for successful SPC

implementations

Historically, SPC was used by many of researchers within software

engineering domain and proved to be effective quantitative technique of process

monitoring and control. For example, (Lantzy, 1992) and (Burr and Owen, 1996),

demonstrate practical application of SPC in software setting in order to improve

product quality. However, SPC can help us to address the above mentioned problems

and evaluate whether the process is under control or not by using control charts.

When the process is affected with either special or assignable causes of variations,

control charts will play a vital role of identifying these causes through the use control

limits. On the other hand, when these causes exceed control limits, the process is said

to be unstable and the causes must be identify and eliminated. However, controlling

this process will improve software development process and contribute for the

production of good quality software products that will meet customer’s satisfaction

or requirements.

1.4 Research Aim

The main aim of this research is to justify and analyse the use of SPC in

software process monitoring and control. Also, to propose a strategy that would

support process measurement so as to achieve successful SPC implementations.

7

1.5 Objectives of the Study

In order to achieve the above mentioned aim, the objectives of this research

are as follows:

1. To analyse the use of SPC in CMM lower maturity software industries for

process monitoring and control.

2. To propose a strategy that would support software process measurements so

as to ensure successful SPC implementations

3. To evaluate the proposed strategy using instrument for evaluating software

measurement repository (IESMR) and NIMSAD framework.

1.6 Scope of the Study

In this research, we are going to see the effectiveness of using statistical

process control to improve software development process based upon the use of the

following:

• Control charts of SPC

• Code peer review process (CPRP)

• Defect density as the metric to be used

• A case study on CMM lower and higher maturity levels

1.7 Significance of the Study

The significance of this important research is to improve software

development process, based upon the use of SPC technique in order to ensure quality

software production for use in our industries or companies as well as our academic

8

environment. In other words, this research is very important in the sense that, it will

support CMM standard model of software process improvement for use in the

developing large and complex software systems.

Moreover, this study proposes a strategy that would play a vital role in

process measurement activities through its sequence of stages. When this strategy is

followed accordingly, we can achieve accurate process measurements for successful

SPC implementations.

1.8 Dissertation organization

 This research is made up of six chapters. In Chapter 1, we discussed about the

research introduction, problem background, problem statement and objectives of the

study. Similarly, Chapter 2 presents software development process, capability

maturity model, statistical process control as well as the literature review of the

study. In Chapter 3, we explained the research methodology in sequence of phases.

Moreover, Chapter 4 presents the result we obtained by utilizing control chart of SPC

(u-chart) in lower CMM maturity level (level 2) software industry.

 Furthermore, in Chapter 5, we discussed about the software process

investigation we carried out on CMM highest maturity level (optimization) using u-

chart control charts of SPC. Also, the sequential strategy for process measurement is

proposed and evaluated in chapter 5. However, Chapter 6 presents the study

contributions and future work.

99

REFERENCES

Baldassarre et al. (2009). Trustworthy Software Development Processes. (11-23).

Springer.

Barcellos et al. (2013). A strategy for preparing software organizations for statistical

process control. Journal of the Brazilian Computer Society. 1-29.

Barcellos et al. (2010). Evaluating the suitability of a measurement repository for

statistical process control. Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement. 27.

Burnstein (2003).Process Control and Optimization, Springer.

Burr and Owen (1996).Statistical methods for software quality: using metrics to

control process and product quality, Coriolis Group.

Caivano (2005). Continuous software process improvement through statistical

process control. Software Maintenance and Reengineering, 2005. CSMR

2005. Ninth European Conference on. 288-293.

Card (1994). Statistical process control for software? Software, IEEE. 11 (3.), 95-97.

Carleton et al. (1999). Panel Discussion: Can Statistical Process Control Be Usefully

Applied to Software? The 11th Software Engineering Process Group (SEPG)

Conference, Atlanta, Georgia. 8-11.

Deming and Edwards (1982).Quality, productivity, and competitive position,

Massachusetts Institute of Technology, Center for Advanced Engineering

Study Cambridge, MA.

Dupuis (2004). Software Engineering Body of Knowledge.

Eickelmann and Anant (2003). Statistical process control: what you don't measure

can hurt you! Software, IEEE. 20 (2.), 49-51.

Falbo and da Rocha (2012). Using a reference domain ontology for developing a

software measurement strategy for high maturity organizations. Enterprise

100

Distributed Object Computing Conference Workshops (EDOCW), 2012 IEEE

16th International. 114-123.

Florac and Carleton (1999).Measuring the software process: statistical process

control for software process improvement, Addison-Wesley Professional.

Florac et al. (2000). Statistical process control: analyzing space shuttle onboard

software process. Software, IEEE. 17 (4.), 97-106.

Florak et al. (1997). Practical software measurement: Measuring for process

management and improvement.

Fuggetta (2000). Software process: a roadmap. Proceedings of the Conference on the

Future of Software Engineering. 25-34.

Humphrey (1988). Characterizing the software process: a maturity framework.

Software, IEEE. 5 (2.), 73-79.

Humphrey (1989).Managing the Software Process (Hardcover), Addison-Wesley

Professional.

Jacob and Pillai (2003). Statistical process control to improve coding and code

review. Software, IEEE. 20 (3.), 50-55.

Jayaratna (1994).Understanding and evaluating methodologies: NIMSAD, a

systematic framework, McGraw-Hill, Inc.

Juran and Riley (1999).The quality improvement process, McGraw Hill New York,

NY.

Kan (2002).Metrics and models in software quality engineering, Addison-Wesley

Longman Publishing Co., Inc.

Komuro (2006). Experiences of applying SPC techniques to software development

processes. Proceedings of the 28th international conference on Software

engineering. 577-584.

Lantzy (1992). Application of statistical process control to the software process.

Proceedings of the ninth Washington Ada symposium on Ada: Empowering

software users and developers. 113-123.

Leau et al. (2012). Software Development Life Cycle AGILE vs Traditional

Approaches. 2012 International Conference on Information and Network

Technology (ICINT 2012) IPCSIT.

Lynch and Cross (1992).Measure up!: The essential guide to measuring business

performance, Mandarin.

101

Mahesh and Prabhuswamy (2010). Process variability reduction through statistical

process control for quality improvement. International Journal for Quality

Research. 4 (3.), 193-203.

Martin et al. (1996). Process performance monitoring using multivariate statistical

process control. Control Theory and Applications, IEE Proceedings-. 132-

144.

Nandyal (2004).Cmmi, Tata McGraw-Hill Education.

Nguyen et al. (2012). Automated detection of performance regressions using

statistical process control techniques. Proceedings of the third joint

WOSP/SIPEW international conference on Performance Engineering. 299-

310.

Oakland (2008).Statistical process control, Routledge.

Olson et al. (1989). Conducting SEI (Software Engineering Institute)-Assisted

Software Process Assessments, DTIC Document.

Pall (1987).Quality Management, Prentice Hall PTR.

Pandain et al. (2013). CONTROL CHARTS FOR IMPROVING THE PROCESS

PERFORMANCE OF SOFTWARE DEVELOPMENT LIFE CYCLE.

International Journal of Research and Reviews in Applied Sciences. 14 (2.),

Park (1992). Software size measurement: A framework for counting source

statements, DTIC Document.

Paulk et al. (1993). Capability maturity model, version 1.1. Software, IEEE. 10 (4.),

18-27.

Paulk et al. (1995).The capability maturity model: Guidelines for improving the

software process, Addison-wesley Reading.

Radice (1998). Statistical process control for software projects. 10th Software

Engineering Process Group Conference. Chicago, Illinois.

Rao et al. (2012). Monitoring Software Reliability using Statistical Process Control

An Ordered Statistics Approach. arXiv preprint arXiv:1205.6440.

Ren et al. (2011). Research on software quality control method based on control

chart. Computing, Control and Industrial Engineering (CCIE), 2011 IEEE

2nd International Conference on. 274-277.

Rifkin (2001). What makes measuring software so hard? Software, IEEE. 18 (3.), 41-

45.

102

Sargut and Demirörs (2006). Utilization of statistical process control (SPC) in

emergent software organizations: pitfalls and suggestions. Software Quality

Journal. 14 (2.), 135-157.

Satya Prasad et al. (2011). Software Reliability Measuring using Modified Maximum

Likelihood Estimation and SPC. International Journal of Computer

Applications. 21 (7.), 1-5.

Senbergs and Misnevs (2006). Research of a Statistical Process Control in Software

Engineering Project. Transport and Telecommunication. 7 (1.), 70-75.

Senge (1994).The fifth discipline fieldbook, Random House Digital, Inc.

Shewhart (1930). Economic Quality Control of Manufactured Product1. Bell System

Technical Journal. 9 (2.), 364-389.

Spanos et al. (1992). Real-time statistical process control using tool data

[semiconductor manufacturing]. Semiconductor Manufacturing, IEEE

Transactions on. 5 (4.), 308-318.

SrinivasaRao et al. (2012). A Comparative Study of Assessing Software Reliability

using SPC: An MMLE Approach. International Journal of Computer

Applications. 50 (19.), 23-27.

Talib et al. (2010). Techniques for Quantitative Analysis of Software Quality

throughout the SDLC: The SWEBOK Guide Coverage. Software Engineering

Research, Management and Applications (SERA), 2010 Eighth ACIS

International Conference on. 321-328.

Tarhan and Demirors (2012). Apply Quantitative Management Now. Software,

IEEE. 29 (3.), 77-85.

Tuan et al. (2006). Using ABC Model for Software Process Improvement: A

Balanced Perspective. System Sciences, 2006. HICSS'06. Proceedings of the

39th Annual Hawaii International Conference on. 229c-229c.

Weber et al. (1991). Key practices of the capability maturity model, DTIC

Document.

Weller (2000). Practical applications of statistical process control [in software

development projects]. Software, IEEE. 17 (3.), 48-55.

Wheeler and Chambers (1992). Understanding statistical process control.

Zhang and Kim (2010). Monitoring software quality evolution for defects. Software,

IEEE. 27 (4.), 58-64.

