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ABSTRACT 

 

 

 

Machining process is defined as a process of material removal from a work 

piece in the form of chips. This process has improved significantly over the years to 

meet the field requirements. However, a major issue in the process is how to obtain 

accurate results of the machining performance measurement value at optimal point of 

cutting conditions. Machining performance for surface roughness has been widely 

discussed by researchers but determining the optimal solution for surface roughness 

remains as one of the most challenging problem due to the complexity of the 

modeling process. Thus, this research proposed a hybrid model combining Grey 

Relational Analysis (GRA) and Support Vector Machine (SVM) to predict surface 

roughness values for end milling and abrasive water jet (AWJ) machining processes. 

In the proposed hybrid Grey Relational-Support Vector Machine (GR-SVM) 

prediction model, GRA acts as a feature selection method in pre-processing process 

to eliminate irrelevant factors and SVM solves the regression functions in machining 

problems to determine the surface roughness value. Efficiency of the proposed 

prediction model was demonstrated by comparing the results of the hybrid model 

with the experimental data and results of conventional SVM prediction model based 

on correlation and Root Mean Square Error (RMSE) values. The results showed that 

the hybrid GR-SVM prediction model presented the most accurate results due to its 

ability to remove redundant features and irrelevant elements from the experimental 

datasets. These results have shown that the optimal solution of machining 

performance can be achieved by using the proposed hybrid GR-SVM prediction 

model. 
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ABSTRAK 

 

 

 

Process pemesinan ditakrifkan sebagai satu proses pembuangan bahan 

daripada bahan kerja dalam bentuk cip. Proses ini telah berkembang dengan pesat 

sejak beberapa tahun untuk memenuhi bidang keperluan. Walau bagaimanapun isu 

utama dalam proses ini ialah kaedah untuk mendapatkan keputusan yang tepat bagi 

nilai pengukuran prestasi pemesinan pada titik optimum syarat pemotongan. Prestasi 

pemesinan untuk kekasaran permukaan telah dibincangkan dengan meluas oleh para 

penyelidik tetapi menentukan penyelesaian optimum untuk kekasaran permukaan 

kekal sebagai salah satu masalah yang paling mencabar kerana kerumitan proses 

model. Oleh itu kajian ini mencadangkan satu model hibrid yang menggabungkan 

Analisis Hubungan Grey (GRA) dengan Sokongan Mesin Vektor (SVM) untuk 

meramalkan nilai kekasaran permukaan bagi proses pemesinan pengisaran hujung 

dan pelelas jet air (AWJ). Dalam model ramalan hibrid Hubungan Grey-Sokongan 

Mesin Vektor (GR-SVM), GRA bertindak sebagai kaedah pemilihan ciri dalam 

proses pra-pemprosesan untuk menghapuskan faktor-faktor tidak relevan sementara 

SVM pula menyelesaikan fungsi regresi dalam masalah pemesinan untuk 

menentukan nilai kekasaran permukaan. Kecekapan model ramalan yang 

dicadangkan ditunjukkan dengan membandingkan keputusan model hibrid dengan 

data eksperimen dan keputusan model ramalan SVM konvensional berdasarkan nilai-

nilai korelasi dan punca kuasa ralat kuasa dua (RMSE). Hasil kajian menunjukkan 

bahawa model ramalan hibrid GR-SVM memberikan keputusan yang paling tepat 

kerana kemampuannya untuk menghapuskan ciri-ciri berlebihan dan unsur-unsur 

yang tidak relevan daripada set data eksperimen. Keputusan ini menunjukkan 

bahawa penyelesaian prestasi pemesinan yang optimum dapat dicapai dengan 

menggunakan cadangan model ramalan hibrid GR-SVM. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

This chapter discusses the brief overview about the research conducted in this 

study. The topic includes background of the study, problem statement, objectives and 

scopes of the study. Research significant and contributions of the study are also 

discussed in this chapter.  

 

 

 

1.1 Background of the study 

 

 

As the demands of consumer economy grows rapidly, machining recently be 

the most important and widely used in manufacturing process instead of forming, 

molding, and casting processes. Generally, machining can be defined as a process of 

material removal from a workpiece in the form of chips. In the recent years, 

machining technology has been improved significantly to meet the requirements in 

different fields.  Basically, there are two types of machining process, namely 

conventional machining and modern machining (Zain et al., 2011a). Conventional 

machining consists of traditional process work piece removal in the form of chips 

such as turning, milling, grinding and boring while modern machining comes in 

terms of chemical items or advanced technologies such as abrasive water jet (AWJ), 
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electrochemical machining (ECM), electric beam machining (EBM) and 

photochemical machining (PCM).  

 

 

The need of modern machining or unconventional machining was firstly 

emphasized by Merchant in 1960 for the development of newer concepts in 

machining process (Panday and Shan, 1980). Due to the new advent technologies 

that thrive nowadays, the machining process continuously evolve from time to time 

as researcher have found and developed many new techniques and modern tool of 

machining. There are two fields that have been interest for researches in machining, 

which are modeling and optimization. According to Zain et al. (2011a), modeling in 

machining refers to the process of estimating the potential minimum or maximum 

value of machining performance while optimization refers to the process of 

estimating optimal solution of cutting condition that leads to the minimum or 

maximum machining value of machining performances. Various techniques were 

considered and carried out to model and optimize the machining performances. This 

study only focuses on modeling of machining performance. The primary purpose of 

the machining modeling is to estimate the minimum values (such as surface 

roughness, operation time, operation cost etc.) or maximum values (such as material 

removal rate, tool wear etc.) of machining performance measurements. 

 

 

It has been recognized that cutting force, power, torque, surface roughness, 

tool-wear, chip form, chip breakability, tool-life, surface integrity and part accuracy 

are the most common machining performances that evaluated by major measure 

(Jawahir et al., 2003). According to Yusup et al. (2012), surface roughness is the 

most machining performance that has been considered by the researchers for the past 

five years (2007-2011), due to the facts that surface roughness affects several 

functional attributes of the machining process (Wang, 2009). Practically, surface 

roughness plays an important role in wear resistance, tensile, ductility, and fatigue 

strength for machine parts (Wang and Chang, 2004). According to Caydas and 

Hascalik (2008), surface roughness is a technological quality measurement of a 

product and a factor that considerably affects the manufacturing cost. Consequently, 

modeling of surface roughness, which is the process of predicting the minimum 
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value of surface roughness, is a crucial part in machining process in order to meet the 

field requirements.  

 

 

Due to the uncertainty and complexity in modeling of surface roughness in 

machining process, computational approaches are being preferred apply by the 

researchers (Jawahir et al., 2003). Computational approaches have become a most 

potential research area and received a great deal of attention to the researchers to 

develop a model for giving an improved value of surface roughness measurement. It 

became exaggerate from time to time since it gave a best result to the researchers. 

According to Zain et al., (2011a), single-based computational approaches were 

managed to estimate the optimal process parameters, leading to the minimum value 

of surface roughness. Computational approaches include fuzzy logic (FL), artificial 

neural network (ANN), genetic algorithm (GA), particle swarm optimization (PSO), 

ant colony optimization (ACO), simulated annealing (SA), Artificial Intelligent 

System (AIS), Grey Relational Analysis (GRA), and support vector machine (SVM). 

Moreover, the evolutionary of modern technology has lead to the new approaches in 

modeling of machining performances.  

 

 

The evolutionary of computational approach has become an important 

problem solving methodology among researchers to improve the machining 

performances (Grosan and Abraham, 2007). This approach includes the hybridization 

process of single-based computational approach in order to get better performance in 

machining modeling. This study considers the hybridization of SVM and GRA, in 

estimating a better result for prediction of surface roughness value. Based on the 

literature, an attempt of hybridization of SVM and GRA has been made in predicting 

consumption of spare parts (Huang et al., 2010) and also agriculture field (Shi, 

2012). For the predicting of spare parts consumption, the influencing factors were 

selected by grey relational analysis and SVM regression was used as the prediction 

model of the spare parts consumption for the military aircrafts and for agriculture 

field, the production of China grain was predicted using the hybridization of SVM 

and GRA. Both prediction results show that the hybrid SVM and GRA gave high 

prediction performance with a small number of prediction errors.  
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However, there is still no attempt of hybridization SVM and GRA in 

machining area.  Thus, this study, which is modeling of surface roughness, is 

considered as a new contribution to the machining field. 

 

 

 

1.2 Problem Statement 

 

 

The success of machining process depends on the proper selection of cutting 

condition based on cost and quality factors. The major issue in machining process is 

how to obtain accurate result of machining performances, such as surface roughness 

values using various machining factors of cutting operations. Furthermore, the need 

for estimating the best machining performances with the most suitable cutting tools 

has been felt over the last few decades. These machining performances should be 

selected to optimize the economics of machining operations. For instance, selection 

of cutting condition of surface roughness in machining process still remains as one of 

the most challenging problems due to the complexity of the process. Traditionally, 

the selection of cutting condition in machining process is left to the machine 

operator. However, this process mostly depends on the machinist expertise and also 

gives a high cost. Moreover, in machining process, the cutting process was done 

continuously in order to get the target value despite the material can be used only 

once. So, this process will give highly cost with a lot of the wasted material used. In 

such cases, machinist experience plays a major rule but sometimes it is difficult to 

maintain the optimum values for each experiment (Aggawal and Singh, 2005).  

 

 

With the help of computational approaches in predicting machining 

performances, there is no machinist expertise will be used and the machining cost 

can be reduced. Hence, this study promotes the use of SVM computational approach 

in estimating surface roughness value of machining process. SVM becomes a new 

trend in recent research especially in modeling of machining performances, which is 

a relatively new computational learning method constructed based on the statistical 

learning theory classifier (Chiu and Guao, 2008). SVM has widely been used in 

modeling of various fields such as financial (Tay and Coa, 2001; Pai and Lin, 2005; 
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Min et al., 2006), health (Furey et al., 2000; Cai et al., 2001; Akay, 2009), and 

agriculture. Based on the structural risk minimization (SRM) principal, SVM can get 

decision-making rules and achieve small error for independent tests set and hence 

can solve the learning problems efficiently (Samantha et al., 2003).  

 

 

However, in some cases, the data in machining model may contain 

irrelevance and redundant feature that is used as input features in development of 

SVM model. This kind of data not only increased the training time, but it may lead to 

the overfitting problem that reduces the prediction performance. This irrelevance and 

redundant data also need to be eliminated from the input features in order to get a 

better prediction model. Conventional SVM approach does not have the ability to 

recognize this irrelevant element. So, there is a need of the model that is able to 

remove the unwanted data in order to improve the model performance. As a result, 

this research promotes the hybridization approach, hybrid GR-SVM, to estimate the 

minimum values of surface roughness so that the machining target can be achieved. 

GR-SVM is a hybridization model of SVM computational approach and also GRA 

approach. GRA is basically an analysis technique that has been proposed in Grey 

System Theory by Professor Deng Julong (Xuerui and Yuguang, 2004). GRA acts as 

feature selection approach which is able to selects a subset of relevant features, and 

also removes redundant and irrelevant features from the data to build robust learning 

models.  

 

 

In relation to the machining problem discussed above, three research question 

of this study are:  

 

i. How to predict potential values of the machining performances for giving a 

possible value of minimum surface roughness? 

ii.  How to modify the existing single-based computational approach model in 

order to give better results of surface roughness? 

iii. How to identify the effectiveness of proposed hybridization model? 
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1.3 Aim of the research 

 

 

The aim of the research is to identify the minimum value of surface 

roughness in end milling and AWJ machining processes using the proposed hybrid 

GR-SVM model. 

 

 

 

1.4 Objectives of the research 

 

 

The objectives of this study are: 

 

i. To develop conventional SVM model in predicting the minimum value of 

surface roughness. 

ii. To develop a new hybridization GR-SVM model for predicting minimum 

surface roughness value.  

iii. To evaluate and validate the performance of the proposed hybrid model in 

predicting minimum surface roughness value. 

 

 

 

1.5 Scope of the research 

 

 

The scopes of the study are: 

 

i. Two machining process, end-milling (conventional machining) and 

AWJ (modern machining) are considered. 

ii. The machining performance considered for both end-milling and 

AWJ is surface roughness (Ra). 

iii. Process parameters of end-milling are cutting speed (v), feed rate (f), 

and radial rake angle ( ). 
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iv. Process parameters of AWJ are traverse speed (V), waterjet pressure 

(P), standoff distance (h), abrasive grit size (d), and abrasive flow rate 

(m). 

v. Experimental data of end-milling conducted by Mohruni (2008). 

vi. Experimental data of AWJ conducted by Caydas and Hascalik (2008). 

 

 

 

1.6 Research significant 

 

 

This study is to develop and analyze the performance of proposed GR-SVM 

model, which is a hybridization of SVM and GRA approach in prediction of 

machining surface roughness value. In order to indicate the effectiveness of the 

proposed model, the final results are compared with the conventional SVM 

prediction model. With the development of proposed hybrid GR-SVM model, there 

is no expertise or machinist will be used in order to find the minimum surface 

roughness value hence the cost of the machining process can be reduced. 

 

 

 

1.7 Contributions of the study 

 

 

The contributions of this study can be divided into two parts, they are: 

 

i. Improvement of conventional SVM model. The proposed hybrid GR-

SVM model has potential to estimate the influential factors of process 

parameters to the surface roughness value. The influential factors of 

process parameters are ranked based on Grey Relational Grade (GRG) 

value obtained. Process parameter with the high GRG value is 

considered to give a high effect to surface roughness value.   

ii. Better quality of machined-work piece. The proposed hybrid model is 

expected to improve the prediction accuracy that leads to much 

minimum value of surface roughness.  
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1.8 Summary 

 

 

This chapter discussed several topics related to the idea of research 

implementation. Research background, problem statements, aims, objectives and 

scopes were precisely mentioned in this chapter. The contributions of the study also 

were highlighted.  
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