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ABSTRACT 
 

 

 

 

Dealing with slender structural columns will make the use of classic elastic 

dynamic analysis of structures untrustworthy. This will emphasize the importance of 

developing a method for dynamic analysis of structures taking geometric 

nonlinearities into consideration. In order to achieve this the equations of motions are 

formulated, based on finite strain formula and virtual work method. To solve the 

equation of motion, the usual central difference method is used. The developed 

method is applied to two cases of columns with different slenderness ratio. The effect 

of introducing the nonlinear approach for different slenderness ratios of columns is 

investigated on natural frequency of the first three modes. Also, the relationship 

between the maximum displacement for a known time step and loading frequency is 

studied.  To find the suitable slenderness ratio threshold when the effect of 

nonlinearity becomes significant, the relationship between slenderness ratio and the 

maximum displacement ratio for a known loading frequency is studied. The results 

show that columns with higher ratio of axial loading over slenderness ratio provide a 

higher rate of decrease in natural frequencies. It is also found that the effect of taking 

geometric nonlinearity into consideration will be significant while dealing with 

higher slenderness ratio and smaller loading frequency. For a specific situation, these 

results are discussed and the slenderness ratio threshold is found equal to 110. It 

means that for slenderness ratios higher than 110 the effects of geometric 

nonlinearity becomes significant and should be taken into consideration. 
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ABSTRAK 
 

 

 

 

Dengan mengambil kira struktur tiang adalah langsing akan membuatkan 

penggunaan analisis elastik dinamik klasik tidak boleh dipercayai. Kepentingan 

membangunkan satu kaedah untuk analisis struktur dinamik dengan mengambil kira 

sifat geometri tak linear perlu ditekankan. Dalam usaha mencapai matlamat ini, 

formulasi persamaan pergerakan berjaya dibentuk menggunakan formula terikan 

terhingga dan kaedah kerja maya. Bagi menyelesaikan persamaan pergerakan, 

kaedah perbezaan pusat yang biasa adalah digunakan. Kaedah yang dibangunkan ini 

akan digunakan untuk dua kes tiang dengan nisbah kelangsingan yang berbeza. 

Kesan penggunaan analisis tak linear untuk tiang dengan nisbah kelangsingan yang 

berbeza dikaji terhadap frekuensi semulajadi daripada tiga mod pertama. Selain itu, 

hubungan antara anjakan maksimum untuk kenaikan masa yang diketahui dan 

kekerapan pembebanan turut dikaji. Bagi mendapatkan nisbah kelangsingan yang 

sesuai untuk kesan tak linear menjadi ketara, hubungan antara nisbah kelangsingan 

dan nisbah anjakan maksimum untuk kekerapan pembebanan diketahui juga 

diselidiki. Keputusan analisis menunjukkan bahawa tiang dengan nisbah beban paksi 

terhadap nisbah kelangsingan yang tinggi menghasilkan kadar penurunan frekuensi 

semulajadi yang tinggi. Kesan mengambil kira geometri tak linear ditemui sangat 

penting dalam mempertimbangkan nisbah kelangsingan tiang yang tinggi dan 

kekerapan pembebanan yang rendah. Bagi keadaan tertentu, keputusan ini dibincang 

dan nisbah kelangsingan yang ditentukan ditemui sebagai 110. Ini bermakna, nisbah 

kelangsingan melebihi 110 menghasilkan kesan geometri tak linear struktur yang 

ketara dan perlu diambil pertimbangan dalam analisis. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 

Most of the time, the problems in civil engineering behave in linear elastic 

fashion under service load. However, in some slender structures, this is not the case. 

In this kind of structures, before reaching the ultimate state and failure, a great deal 

of nonlinearity is exhibited by the structures. This nonlinearity can arise because of 

material nonlinearity or geometric nonlinearity. Whatever the type, there are two 

approaches to include them: in the first approach nonlinear behavior will not be 

simulated in analysis stage and it will be taken into account through some methods in 

the design stage. The second approach will be to make an attempt to simulate 

nonlinear behavior of structures. The main aim of this process is to make a more 

reliable prediction of the nonlinear performance of the structure and improve the 

initial information given to design engineer. The same line of reasoning can be 

applied to dynamic analysis of structures. In some applications, for example slender 

structures in seismic regions, a combination of these two approaches is needed to 

make a reliable prediction of the behavior of structure under dynamic loading. It is 

necessary to mention that it is highly probable that dynamic loading will result in 
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more critical results. Therefore, combining these approaches is quite necessary for a 

suitable prediction of behavior of structure. 

1.2 Background of Study 

Geometric Nonlinearity arises when deformations are large enough to alter 

the distribution or orientation of applied loads, or the orientation of internal resisting 

forces and moments [1]. Some of the geometric effects include [2]: 

- Initial imperfections such as member camber and out-of-plumb erection of a 

frame. 

- The P-Δ effect, a destabilizing moment equal to a gravity load times the 

horizontal displacement it undergoes as a result of the lateral displacement of 

the supporting structure. 

- The P-δ effect, the influence of axial force on the flexural stiffness of an 

individual member 

Several modes of nonlinear elastic behavior are discussed in [2], i.e. (a) 

Bifurcation of the loading path with the system following an alternative path in post-

critical state. (b) Gradually increasing nonlinearity culminating in elastic instability 

at a limit point. (c) Increasing stiffness either from the onset of loading or following 

a period of gradual softening. 

As discussed before, dynamic analysis is about the solution of “Equation of 

Motion”. In simple systems with single degree of freedom, these equations can be 

solved in closed form. However, when the problem involves dealing with Multiple 

Degree of Freedom structures or continuous structures, this is no longer a possibility. 

In this case, a numerical approach (i.e. finite element method) will be used. This 

method, which is one of the most important developments in applied mechanics[3], 

is based on subdivision of problem scope into some “finite elements” connected to 

each other through “nodes”. Then, two degree of freedom will be assumed for each 

node. Next step will be to calculate stiffness matrix (and mass matrix for dynamic 
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analysis) for each element and assembling them into a structure stiffness (and mass) 

matrix. Several methods used to derive the mass matrix include particle mass 

lumping, consistent mass matrix, combination matrices, HRZ lumping, and optimal 

lumping[1]. Then, the nodal load vector should be found based on actual loading. 

Knowing the nodal load vector and structure stiffness matrix, the nodal displacement 

vector can be obtained. Knowing the nodal displacements and using the equations 

developed for each kind of member, the strains and stresses for each member can be 

found. There are several methods of formulation used in finite element related 

literature, including variational methods and weighted residual methods.  

Variational methods, including methods such as minimum potential energy 

and virtual work, are based on integral expressions called functional. The purpose of 

these methods is to find the values of d.o.f. which minimize these functionals. This 

will provide an strong basis for producing FE approximations. In structural 

mechanics, the most commonly used functional is that of potential energy[1]. The 

principle of minimum potential energy states that: 

“of all the geometrically possible shapes that a body can assume, the true one, 

corresponding to the satisfaction of stable equilibrium of the body, is identified by a 

minimum value of the total potential energy.”[4] 

In some problem areas, the potential function is not known or well known. 

Therefore, it is not possible to use the variational methods to generate FE 

approximations. In these cases, weighted residual methods, e.g. Galerkin method, 

will be used for this purpose. This method can be used for problems for which just 

the differential equation and boundry conditions are known. The methods available 

in this category are intended to select parameters in approximating trial functions so 

as to obtain the best approximation[1]. 

In Dynamic problems, the purpose of the study is to find the nodal 

displacements at different time increments. In other word, the problem should be 

discretized over time domain. The general method used for this purpose is called 

direct integration[4]. Direct integration refers to calculation of response history using 

step-by-step integration in time, without changing the form of dynamic equations, as 

is necessary in modal methods[1]. There are two main groups of direct integration: 

explicit, and implicit. An example of explicit methods is central difference method 
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which is based on expressions discussed in finite difference. Examples of implicit 

methods include Newmark-Beta method and Wilson-Theta method.  

There are several works in analysis regarding geometric nonlinearity and 

dynamic analysis, separately. However, the number of previous works aimed to 

combine these two methods is quite limited. Aristizabal-Ochoa uses matrix method 

and modified stability approach to find the first and second-order stiffness matrices 

of a Timoshenko beam-column with semi-rigid connections [5]. Arboleda et al. 

determine the dynamic stiffness matrix and load vector for a Timoshenko beam-

column resting on a two parameter elastic foundation with generalized end 

conditions [6]. Kwak and Kim investigate the P-Δ effect in slender reinforced 

concrete columns. for this purpose, nonlinear dynamic analysis was used for 60 sets 

of horizontal and vertical earthquakes with different sets of slenderness and stability 

coefficient [7].  Cook et al. Describe plasticity and some conceptual procedures to 

deal with it. Non-linear Dynamic problems are addressed for cases in which the 

frequency of excitation exceeds roughly one-quarter of the structure’s lowest natural 

frequency of vibration [1]. Simsek and Kocaturk use the geometrically dynamic 

approach to analyze an eccentrically prestressed damped beam when it is under a 

concentrated moving harmonic load. The assumptions they used are as follows, 

- The Kelvin–Voigt model for the material 

- Euler–Bernoulli beam theory 

- The von-Karman’s nonlinear strain- displacement relationships 

- Using Newmark-Beta for solving the nonlinear equations of motion  

- Newton–Raphson for iteration person[8]. 

Simsek uses a nonlinear dynamic approach to analyze fuctionally graded 

beam. They used  Timoshenko beam theory[9].  

1.3 Problem Statement 

When dealing with slender columns, the results of linear dynamic analysis is 

not trustworthy anymore because, for matrix analysis, the stiffness matrix of 
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structure will be changed due to geometric nonlinearity; however, this effect is 

neglected in linear analysis. 

The procedure of determining the stiffness matrix of a structure with 

geometric non-linearity is a repetitious process based on the internal force of the 

member and methods such as Secant method and Newton-Raphson method. Using a 

dynamic approach will increase the complexity of analysis by introducing the 

response spectra, especially in under-damped cases.  So, the main problem will be 

how to alter the methods available so that they can describe the behavior of the 

structure over time. Dynamic analysis of columns is discussed thoroughly in 

literature review. However, taking the effects of Geometric Nonlinearity in dynamic 

analysis of columns is quite limited in studies. In this study, the effect of geometric 

nonlinearity will be examined in the results of dynamic analysis. 

1.4 Objectives of Study 

- Developing a method for Geometric Nonlinear Dynamic Analysis of 

Columns using Virtual Work Method and Finite Element Approach 

- Applying the Proposed Method to some case studies and discussing the effect 

of various variables, including slenderness ratio, loading frequency and 

vertical loading 

1.5 Scope of Study 

-This study deals with Elastic Material and Geometric Nonlinearity. 

- In this study, central difference method will be used for discretization over time. 
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1.6 Significance of study 

There are several factors which result in nonlinear behavior of frame 

structures, i.e. shear deflections, the shear component of the applied axial force as 

each member deflects, lateral deflections (P-Δ effect) along each element, and the 

effects of the flexural moments on the axial stiffness [5]. Non-linear behavior will 

result in additional bending moments, rotations, and displacements. These factors 

change the stiffness matrix, as well as buckling capacity of each element and the 

frame.   

Dynamic analysis of structures is based on the solution of the following 

differential equation, 

 

For solving these equations, the stiffness matrix should be determined. As 

discussed, nonlinear behavior of structure will result in change of stiffness matrix. In 

case of members with significant nonlinear effects, e.g. slender columns, the effect of 

this change should be taken into consideration when performing dynamic analysis; 

otherwise, the accuracy of the results will be lost. 

The results of this study will provide a strong theoretical foundation for 

developing an accurate method which can be integrated into design process.  It will 

improve our analysis and design results whenever P-delta effect is an issue and 

through that, it will improve the safety factor of our design. 
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