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ABSTRACT 

 

 

 

 Machining is defined as a process to remove material in the form of chips 

using single or multiple wedge-shaped cutting tools to produce the desired shape. 

This process has successfully produced a closer dimensional accuracy and surface 

finish to meet the industrial demands. However, it is difficult to find the optimal 

machining parameter values that yield the minimum surface roughness (Ra) values to 

meet technical specifications for end milling and laser assisted machining (LAM). 

Thus, this research proposed the integration of  Fuzzy Logic (FL) and Technique for 

Order Preference by Similarity to Ideal Situation (TOPSIS) to predict minimum Ra 

values and find the optimal machining parameters. In the proposed Fuzzy-TOPSIS 

model, initially FL is used to consider correct membership functions, linguistic terms 

and rules. Then, TOPSIS uses the weighted values obtained to handle instabilities in 

FL with advanced inference methods and rank the FL results by applying the 

obtained fuzzy intervals. The integration of Fuzzy-TOPSIS model has successfully 

reduced Ra values by 0.066µm for end milling and 0.112µm for LAM. Upon 

achieving the minimum values, a precise combination of optimal machining 

parameters can be obtained. These results reveal that the Fuzzy-TOPSIS model is 

capable of improving the quality of finished products during machining processes. 
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ABSTRAK 

 

 

 

 Pemesinan ditakrifkan sebagai satu proses untuk membuang bahan dalam 

bentuk cip menggunakan alat pemotong tunggal atau baji berbilang untuk 

menghasilkan bentuk yang dikehendaki. Proses ini telah berjaya menghasilkan 

ketepatan dimensi dengan lebih hampir dan kemasan permukaan bagi memenuhi 

permintaan industri. Walau bagaimanapun, ia adalah sukar untuk mencari nilai-nilai 

parameter pemesinan yang optimum bagi menghasilkan nilai-nilai minimum 

kekasaran permukaan (Ra) bagi memenuhi spesifikasi teknikal untuk pengisaran 

hujung dan pemesinan alur laser (LAM). Oleh itu, kajian ini mencadangkan integrasi 

antara Logik Kabur (FL) dan Teknik Keutamaan Persamaan Situasi Ideal (TOPSIS) 

untuk meramalkan nilai-nilai minimum Ra dan mencari parameter pemesinan yang 

optimum. Dalam model Fuzzy-TOPSIS yang dicadangkan ini, pada mulanya FL 

digunakan untuk mempertimbangkan fungsi keahlian yang betul, istilah linguistik 

dan peraturan. Kemudian, TOPSIS menggunakan nilai-nilai pemberat yang 

diperolehi untuk mengendalikan ketidakstabilan dalam FL dengan kaedah inferens 

maju dan menyusun keputusan FL dengan menggunakan selang kabur yang telah 

diperolehi. Integrasi model Fuzzy-TOPSIS telah berjaya mengurangkan nilai-nilai Ra 

sebanyak 0.066μm untuk pengisaran hujung dan 0.112μm untuk LAM. Setelah nilai 

minimum dicapai, ketepatan kombinasi parameter pemesinan yang optimum boleh 

diperolehi. Keputusan ini menunjukkan bahawa model Fuzzy-TOPSIS mampu 

meningkatkan kualiti produk siap semasa proses pemesinan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of study 

 

 

 In manufacturing, two main problems that engineers face in machining 

processes: First is to determine the machining parameters value that will produce the 

desired product quality and second is to maximize the capabilities of manufacturing 

performance using the existing resources (Benardos and Vosniakos 2003). 

Machining defined as a process to remove metal in the form of chips using single or 

multiple wedge-shaped cutting tools to produce the desired shape. There are two 

types of machining process namely conventional and modern machining processes. 

Machining process represented as a mathematical process in optimizing the process. 

The representation called as modeling.   

 

 

 Artificial Intelligence (AI) is the science and engineering of making 

intelligent computer programs, which related to the similar task of using computers 

to understand human intelligence. AI has produced a number of powerful tools, 

which are practical use in engineering to solve complex problems normally requiring 

human intelligence. AI consists of many branches, which are expert system (ES), 

Genetic algorithm (GA), fuzzy logic (FL), Artificial Neural Network (ANN), 

Simulated Annealing (SA), Ant colony optimization (ACO), Particle swarm 

optimization (PSO) and various hybrid systems. The prediction resulted from the AI 

approaches are more accurate than the non-AI ones (Tarng and Hwang 1995). In fact,  
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nowadays AI powerful tools are extensively used to model and control of machining 

processes (Markos et al. 1993). A review by Abellan-Nebot and Subiron (2010) 

showed the details of AI techniques in the machining monitoring system. Application 

of AI for predicting machining performance been reported by several studies 

previously. AI has been widely used by previous researchers successfully in 

atmospheric phenomenon, engineering, economics, military, medicine and marine. 

FL considered for prediction, selection, monitoring, control and optimization of 

machining process. 

 

 

 Modeling has been a research issue for decades ago. In the modeling, many 

techniques have been applies from conventional mathematical modeling until the AI 

techniques. Modeling processes in predicting the optimal solutions with a minimum 

value of machining performance can generally classified into two methods, which 

are conventional and computational techniques. Conventional technique such as 

regression, explicit models are developed required complex physical understanding 

of the modeling process while computational technique such as FL is created based 

on the rules that is easier to be implemented.  

 

 

 

1.2 Problem Statement 

 

 

 Prediction is very important in the application of the end milling and laser 

assisted machining process in order to produce the desired product. The desired 

product quality can be obtained and improved by predict the machining performance 

before the actual process begins. In machining process, the machining performance is 

an indicator to describe the quality of the manufactured product. The important factor 

of milling and laser assisted machining process in evaluating the quality of products 

is surface finish; where surface roughness (Ra) is used as indicator to determine the 

surface finish (Zain et al., 2010). The desired product quality might increase once the 

Ra value is decrease. SCHUNK is a medium-sized family company, a technology 

leader of choice and a global player all in one founded since 1945. Its global market 

leader in tool holding and work holding technology and is one of the most innovative 
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automation providers. Based on the SCHUNK report, surface roughness problems 

might give the three reasons, which are:- 

 

i. On polished, surfaces exists more contact points between the contact partners. 

Therefore the friction coefficient is slightly higher, the mechanical losses and 

the surface temperature are increased. 

ii. On smooth, polished, moving surfaces, the so called “stick-slip” effect can 

have much more dramatic consequences. This is a change of static friction 

and sliding friction. It is easy to imitate this phenomenon, by trying to slide a 

hand over a smooth glass surface. On moving surfaces, this effect creates 

vibrations with high frequencies but low amplitudes. 

iii. On rings which are polished and bright the graphite, one of the essential 

constituents of the skin, is poorly a braded from the brush or, if it is deposited 

on the metal at all, fails to adhere firmly. In a long-term run, this may result 

in ring attack.  

 

 

 Therefore, an effort has been taken into consideration to overcome the 

surface roughness problem by applying computational approach to obtain the 

minimum machining performance values rather than doing trial and error real 

experiments. Based on the previous researcher by Zain et al. (2010) it shows that the 

use of ANN gives a promising result in minimizing Ra in end milling compared to 

the experimental and regression modeling. In this study, FL model is developed in 

order to predict the machining performance in end milling and laser assisted 

machining processes. Therefore, the research question stated as: 

 

 

 How to predict the possible machining parameters values in compromising 

giving the minimum value of machining performance in end milling and laser 

assisted machining processes?    

 

 

 The discussion on FL as AI techniques to predict machining performance 

shows that the fuzzy components have contributed most in the prediction. 

Nevertheless, it must be investigated the ability and limitation of FL as discussed in 
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Chapter 2. Therefore, an enhancement of FL model with TOPSIS technique will be 

developed and compared with the real experimental results. TOPSIS technique has 

been chosen as one of the best grading methods of multi criteria decision making 

(MCDM) that is taken place in compromising subgroup of compensating models of 

decision making (Asgharpour 1999). Fuzzy is one of the various models of MCDM 

with fuzzy values (Ali et. al 2011). Due to characteristics of fuzzy numbers algebraic 

used such as multiple and division, scientists have tried to expand TOPSIS to Fuzzy-

TOPSIS to solve the decision-making problem. Therefore, the research question 

stated as:  

 

 

 How to enhance the fuzzy logic model in order to predict the minimum value 

of machining performance in end milling and laser assisted machining process? 

 

 

 This research is dedicate to the extension of the small data sets on prediction 

of laser-assisted quality by employing FL and TOPSIS, which has been conducted by 

Chang and Kuo (2007). The integration of Fuzzy-TOPSIS has been implemented and 

compared with real experimental results. In end milling and laser assisted machining 

data sets; it contains setting of the combination numbers for producing minimum 

machining performance. Therefore, the integration between FL and TOPSIS proved 

the efficiency of the proposed integrated Fuzzy-TOPSIS model to predict the 

minimum machining performance with the accurate combination numbers located in 

datasets. Based on this statement, the research question stated as:  

 

 

 How efficient the performance of integrated Fuzzy-TOPSIS model to predict 

minimum value machining performance in end milling and laser assisted machining 

processes compared to real experimental results? 

 

 

 

 

 

 



 5 

1.3 Objectives 

 

 

 The objectives of this study given as follows: 

 

(i) To develop fuzzy logic model for predicting the minimum surface roughness 

 values.  

(ii) To develop an enhancement integrated Fuzzy-TOPSIS model for predicting 

 the minimum surface roughness values. 

(iii) To assess the capability of the proposed integration model for estimating 

surface roughness values of the end milling and laser assisted machining 

processes. 

 

 

 

1.4 Scopes 

  

 

 The scopes of this research are: 

 

(i) This study considers two machining processes; End milling and Laser 

Assisted Machining (LAM). 

(ii) The experimental data sets based on the experiment conducted by Mohruni 

(2008) for End milling machining process while Chang and Kuo (2007) in the 

LAM process.  

(iii) Surface roughness, Ra is machining performance to be minimized for End 

milling and LAM process.  

(iv) Machining parameters of End milling process are Cutting Speed, Feed Rate, 

and Radial Rake Angle while Depth of Cut, Rotational speed, Feed and 

Pulsed Frequency are considered for LAM. 

(v) The results obtained by proposed FL and Integrated Fuzzy-TOPSIS 

prediction models are compared with the real experimental results conducted 

by Mohruni (2008) and Chang and Kuo (2007).  
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1.5 Significance of the study 

 

 

 This study is to investigate the performance of FL and integrated Fuzzy-

TOPSIS in modeling machining parameters for minimizing machining performance 

in both end milling and laser assisted machining process. To indicate the 

effectiveness of this computational approach, the proposed methods results compared 

with the real experimental results. From the literature review, there is no effort taken 

so far by researchers to apply integrated Fuzzy-TOPSIS for the machining prediction 

problems both in end milling and LAM process. So, it can be concluded that this 

study gives significance study in this domain area of machining.  

 

 

 

1.6 Contributions of the study 

 

 

 Several process parameters such as cutting speed, feed rate, and radial rake 

angle considered as the case study in the end milling process since their lack of 

exposure by other researchers with three combinations of these process parameters in 

order to predict Ra values. Based on Benardos and Vosnaikos (2003), cutting speed, 

feed rate, and depth of cut are machining parameters that mostly affected the Ra 

values especially in the end milling machining process. The integrated of Fuzzy-

TOPSIS has given a better prediction accuracy compared to FL model that 

contributed a better quality of machined-work piece. The minimum predicted 

machining performance in end milling and LAM shows the accurate combinations of 

machining parameters.  This contributes to a new knowledge of prediction machining 

process. 

 

 

 The small size of datasets is not the main issue of proposed model in 

obtaining a good prediction. FL and integrated Fuzzy-TOPSIS are still capable in 

generating accurate predicted value of surface roughness using a small number of 

datasets; end milling 24 datasets and LAM 9 datasets. The integrated Fuzzy-TOPSIS 
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has not discussed yet in any domain machining area especially in end milling and 

LAM processes, therefore, it stated as the contribution of the computational AI study.   

 

 

 

1.7 Summary 

 

 

 This chapter has clearly defined related to the idea of research 

implementation. The background of the study, problem statements, objectives, 

scopes, significance and contribution of the study has been exposed. In order to solve 

the problems of this study, literature review is discussed in the next chapter.  
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