AN AUTOMATED STATISTICAL DOWNSCALING APPROACH FOR HYDROLOGICAL BASED CLIMATE CHANGE IN HUMID TROPICAL AREA

SAIF ALI TALIB

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil)

Faculty of Civil Engineering Universiti Teknologi Malaysia

JANUARY 2014

To my beloved Father, Mother, Wife

And Daughter

ACKNOWLEDGEMENT

I would like to thank my supervisor, Assoc. Prof. Dr. Sobri Harun, for the guidance, encouragement and advice he has provided me throughout my time as his student.

My deepest gratitude to my father and mother, without them I would not reach this far. I would also like to thank my wife for her patience and encouragement, without her I have could not accomplish my study.

ABSTRACT

Many Climate Models have been developed to assist scientist to forecast climate changes. The Automated Statistical Downscaling (ASD) model is considered a new recent model to perform this task. The aim of this study is to explore the applications of ASD model in the projection of the future climate changes in humid Global Climate Models (GCMs) provides climate impacts tropical region. information from higher resolution, but there are many impacts require climate information of a smaller resolution. Downscaling is a method to link global scaling prediction to regional prediction. NCEP and CGCM3.1 predictors are used to link these two scales. Multi Linear Regression approach in the ASD model is applied to calibrate NCEP predictors with rainfall data for the period 1961 to 1975 and the results shows that the three stations were calibrated with low RMSE values. The results are validated by using CGCM3.1 and NCEP data for the period 1976 to 1990. The geographic location of the predictors has an influence on the number of predictors available, since the selected station is located within a grid box near the equator making it affected by coriolis effect, limited set of predictors are available. A2 and A1B SRES emission scenarios are used for future projection scenarios for the periods 2011-2040, 2041-2070, and 2071-2100. Five statistical indices that are used namely: mean rainfall, Standard Deviation, 90th percentile, wet days and Consecutive Dry days has been evaluated. A2 and A1B scenarios results shows that certain months will experience an increase in rainfall in terms of intensity and frequency while other months will experience a significant decline.

ABSTRAK

Terdapat banyak Model Iklim telah dibangunkan untuk membantu ahli sains dalam ramalan perubahan iklim. Model Automated Statistical Downscaling (ASD) dianggap sebagai salah satu model baharu untuk menjalankan tugas ini . Tujuan kajian ini adalah untuk menerokai aplikasi model ASD dalam unjuran perubahan iklim pada masa akan datang di rantau tropika lembap. Model Iklim Global (GCMs) menyediakan maklumat kesan iklim daripada resolusi yang lebih tinggi, tetapi terdapat banyak kajian kesan memerlukan maklumat iklim resolusi yang lebih rendah. Downscaling adalah kaedah untuk menghubungkan ramalan bersisik global kepada ramalan serantau. Peramal NCEP dan CGCM3.1 digunakan untuk menghubungkan kedua-dua penimbang. Pendekatan Multi Linear Regression digunakan untuk menentukurkan peramal NCEP dengan data hujan bagi tempoh 1961 hingga 1975 dan keputusan kajian menunjukkan bahawa ketiga-tiga stesen telah ditentukur dengan nilai-nilai RMSE rendah. Keputusan kajian disahkan dengan menggunakan data CGCM3.1 dan NCEP bagi tempoh 1976 hingga 1990. Lokasi geografi peramal mempunyai pengaruh ke atas bilangan peramal yang sedia ada, kerana stesen yang dipilih terletak di dalam kotak grid berhampiran khatulistiwa yang menyebabkannya terjejas oleh kesan coriolis, hanya set peramal yang terhad boleh didapati. A2 dan A1B, senario pelepasan SRES digunakan untuk senario unjuran masa depan bagi tempoh 2011-2040, 2041-2070, dan 2071-2100. Lima indeks statistik yang telah dinilai iaitu: hujan min, sisihan piawai, persentil ke-90, hari basah dan hari kering berturut-turut. Keputusan senario A2 dan A1B menunjukkan bahawa bulan tertentu akan mengalami peningkatan dalam hujan dari segi intensiti dan kekerapan manakala bulan-bulan lain akan mengalami penurunan yang ketara.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	TITLE OF PROJECT	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xix
1	INTORDUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives of Study	3
	1.4 Scope of Study	3
	1.5 Importance of Study	4
	1.6 Project Outline	4
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 Climate Change	6
	2.2.1 Climate Change Effects	7
	2.3 General Circulation Model	8

	2.3.1 A Brief History	8
	2.3.2 GCM Definition	10
	2.4 Downscaling	10
	2.4.1 Dynamical Downscaling	12
	2.4.2 Statistical Downscaling	14
	2.5 Methods of Statistical Downscaling	17
	2.5.1 Weather Classification	18
	2.5.2 Regression Models	10
	2.5.3 Weather Generators	20
	2.6 Summary	20
3	METHODOLOGY	22
	3.1 Introduction	22
	3.2 SDSM Overview	23
	3.3 Automated Statistical Downscaling ASD	25
	3.3.1 Regression Method	27
	3.3.2 Predictor Selection Method	28
	3.4 ASD Interface	31
	3.5 Data Input	33
	3.6 Summary	35
4	STUDY AREA AND DATA DESCRIPTION	37
	4.1 Introduction	37
	4.2 Pahang State in brief	37
	4.3 Data	39
	4.3.1 Local Rainfall Data	40
	4.3.2 Large Scale Predictor Variables	42
	4.3.2.1 NCEP/NCAR Reanalysis	42
	4.3.2.2 The Third Generation Coupled	43
	Global Climate Model CGCM3	
	4.3.2.3 Spatial and Temporal Coverage	44
	4.3.2.4 Grid Box Content	45
	4.4 SRES Emission Scenarios	49

viii

4.5 The complete Data Set	50
RESULTS AND DISCUSSION	52
5.1 Introduction	52
5.2 Preparing the Data Set	52
5.3 ASD Settings	55
5.4 Results	58
5.4.1 Calibration and validation using NCEP	58
Predictors	
5.4.1.1 Station No.1: Ulu Gali Raub	58
(3819056)	
5.4.1.2 Station No 2: Ldg. Benta	65
(4019063)	
5.4.1.3 Station No.3 : Teh Blue Valley	72
(4514031)	
5.4.2 Calibration and Validation using CGCM3.1	79
Predictors	
5.4.2.1 Station No 1: Ulu Gali Raub	79
(3819056)	
5.4.2.2 Station No. 2: Ldg. Benta	85
(4019063)	
5.4.2.3 Station No.3 : Teh Blue Valley	91
(4514031)	
5.4.3 Comparing NCEP and CGCM3.1 Current	97
Scenario	
5.4.4 Future Generation Scenario	99
5.4.4.1 Station No 1: Ulu Gali Raub	99
(3819056)	
5.4.4.2 Station No. 2: Ldg. Benta	108
(4019063)	
5.4.4.3 Station No.3 : Teh Blue Valley	117
(4514031)	
5.5 Discussion	124

5

ix

128

6	CONCLUSION AND RECOMMENDATIONS	125
	6.1 Conclusion	125
	6.2 Recommendations	127

REFERENCES

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	NCEP and CGCM3.1 Predictors and their representation	33
4.1	Selected Stations in Pahang State	41
4.2	Coordinates and box numbering for all continent windows, following the CGCM3 native Gaussian grid	44
4.3	Nomenclature of file names for CGCM3.1 and NCEP/NCAR	47
5.1	Root Mean Square Error(RMSE) for calibration and validation using NCEP for station 1, Ulu Gali Raub	59
5.2	Root Mean Square Error (RMSE) for calibration and validation using NCEP for station 2, Ldg Benta	66
5.3	Root Mean Square Error (RMSE) for calibration and validation using NCEP for station 3, Teh Blue Valley	73
5.4	Root Mean Square Error (RMSE) for calibration and validation using CGCM3.1 for station 1, Ulu Gali Raub	79
5.5	Root Mean Square Error (RMSE) for calibration and validation using CGCM3.1 for station 2, Ldg Benta	85
5.6	Root Mean Square Error (RMSE) for calibration and validation using CGCM3.1 for station 3, Teh Blue Valley	91
5.7	RMSE results by using NCEP and CGCM3.1 for	97

5.8	RMSE results by using NCEP and CGCM3.1 for	98
	station 2, Ldg. Benta	
5.9	RMSE results by using NCEP and CGCM3.1 for	98
	station 3, Teh Blue Valley	

LIST OF FIGURES

FIGURE NO.	DESCRIPTION	PAGE
2.1	General Circulation Model scheme	11
2.2	Schematic Diagram illustrating statistical	14
	downscaling	
3.1	SDSM climate scenario generation	24
3.2	ASD Architecture	25
3.3	ASD user interface	32
3.4	Data input method	34
3.5	Parameters input	35
4.1	Pahang State in Malaysia	39
4.2	Location of the three selected stations in Pahang	41
4.3	CGCM3 global land/sea mask	45
4.4	visual representation of the method by which	49
	predictors are produced for both CGCM3 and	
	NCEP	
5.1	Example of Rainfall data input file.DAT	53
5.2	The ncepdata.txt and gcmdata.txt files	54
5.3	ASD user interface	55
5.4	ASD parameter settings	56
5.5	ASD main window settings	57
5.6	Monthly regression coefficients for station 1, Ulu	58
	Gali, Raub (3819056)	
5.7	Box plot and bar chart illustrating calibration and	60
	validation for mean rainfall for station 1	

5.8	Box plot and bar char illustrating STD for	61
	calibration and validation periods for station 1	
5.9	Box plot and bar chart illustrates calibration and	62
	validation for the 90 th percentile for station 1	
5.10	Box plot and bar chart representing wet days for	63
	calibration and validation periods for station 1	
5.11	Box plot and bar chart illustrating calibration and	64
	validation for CDD for station 1	
5.12	Monthly regression coefficient for station 2, Ldg.	65
	Benta (4019063)	
5.13	Box plot and bar chart representing mean rainfall	67
	for calibration and validation for station 2	
5.14	Box plot and bar chart representing STD results	68
	for calibration and validation for station 2	
5.15	Box plot and bar chart representing 90 th	69
	percentile for calibration and validation for	
	station 2	
5.16	Box plot and bar chart representing Wet Days for	70
	calibration and validation for station 2	
5.17	Box plot and bar chart representing CDD for	71
	calibration and validation for station 2	
5.18	Monthly regression coefficient for station 3, Teh	72
	Blue Valley (4514031)	
5.19	Box plot and bar chart representing mean rainfall	74
	for calibration and validation for station 3	
5.20	Box plot and bar chart representing STD for	75
	calibration and validation for station 3	
5.21	Box plot and bar chart representing 90 th	76
	percentile for calibration and validation for	
	station 3	
5.22	Box plot and bar chart representing monthly wet	77
	day for calibration and validation for station 3	

5.23	Box plot and bar chart representing monthly	78
	CDD for calibration and validation for station 3	
5.24	Box plot and bar chart representing monthly	80
	mean rainfall for calibration and validation for	
	station 1 using CGCM3.1	
5.25	Box plot and bar chart representing monthly STD	81
	for calibration and validation for station 1 using	
	CGCM3.1	
5.26	Box plot and bar chart representing monthly 90 th	82
	percentile for calibration and validation for	
	station 1using CGM3.1	
5.27	Box plot and bar chart representing monthly wet	83
	days for calibration and validation for station 1	
	using CGCM3.1	
5.28	Box plot and bar chart representing monthly	84
	CDD for calibration and validation for station 1	
	using CGCM3.1	
5.29	Box plot and bar chart representing monthly	86
	mean rainfall for calibration and validation for	
	station 2 using CGCM3.1	
5.30	Box plot and bar chart representing monthly STD	87
	for calibration and validation for station 2 using	
	CGCM3.1	
5.31	Box plot and bar chart representing monthly 90 th	88
	percentile for calibration and validation. for	
	station 2 using CGCM3.1	
5.32	Box plot and bar chart representing mean	89
	monthly wet days for calibration and validation	
	for station 2 using CGCM3.1	
5.33	Box plot and bar chart representing monthly	90
	CDD for calibration and validation for station 2	
	using CGCM3.1	

5.34	Box plot and bar chart representing daily mean	92
	rainfall for calibration and validation for station	
	3 using CGCM3.1	
5.35	Box plot and bar chart representing monthly STD	93
	for calibration and validation for station 3 using	
	CGCM3.1	
5.36	Box plot and bar chart representing monthly 90 th	94
	percentile for calibration and validation for	
	station 3 using CGCM3.1	
5.37	Box plot and bar chart representing monthly wet	95
	days for calibration and validation for station 3	
	using CGCM3.1.	
5.38	Box plot and bar chart representing monthly	96
	CDD for calibration and validation for station 3	
	using CGCM3.1.	
5.39	Future generation scenario of monthly mean	100
	rainfall using A2 scenario for station 1	
5.40	Future generation scenario of monthly mean	101
	rainfall using A1B scenario for station 1	
5.41	Future generation scenario of STD using A2	102
	scenario for station 1	
5.42	Future generation scenario of STD using A1B	103
	scenario for station 1	
5.43	Future generation scenario of 90 th percentile	104
	using A2 scenario for station 1	
5.44	Future generation scenario of 90 th percentile	105
	using A1B scenario for station 1	
5.45	Future generation scenario of wet days using A2	106
	scenario for station 1	
5.46	Future generation scenario of wet days using	107
	A1B scenario for station 1	
5.47	Future generation scenario of CDD using A2	107
	scenario for station 1	

5.48	Future generation scenario of CDD using A1B	108
	scenario for station 1	
5.49	Future generation scenario of monthly mean	109
	rainfall using A2 scenario for station 2	
5.50	Future generation scenario of monthly mean	110
	rainfall using A1B scenario for station 2	
5.51	Future generation scenario of STD using A2	111
	scenario for station 2	
5.52	Future generation scenario of STD using A1B	112
	scenario for station 2	
5.53	Future generation scenario of 90 th percentile	113
	using A2 scenario for station 2	
5.54	Future generation scenario of 90 th percentile	113
	using A1B scenario for station 2	
5.55	Future generation scenario of Wet Days using A2	114
	scenario for station 2	
5.56	Future generation scenario of Wet Days using	115
	A1B scenario for station 2	
5.57	Future generation scenario of CDD using A2	116
	scenario for station 2	
5.58	Future generation scenario of CDD using A1B	116
	scenario for station 2	
5.59	Future generation scenario of monthly mean	117
	rainfall using A2 for station 3	
5.60	Future generation scenario of monthly mean	118
	rainfall using A1B for station 3	
5.61	Future generation scenario of STD index using	119
	A2 for station 3	
5.62	Future generation scenario of STD index using	119
	A1B for station 3	
5.63	Future generation scenario of 90 th percentile	120
	index using A2 for station 3	

5.64	Future generation scenario of 90 th percentile	121
	index using A1B for station 3	
5.65	Future generation scenario of wet days index	122
	using A2 for station 3	
5.66	Future generation scenario of wet days index	122
	using A1B for station 3	
5.67	Future generation scenario of CDD index using	123
	A2 scenario for station 3	
5.68	Future generation scenario of CDD index using	124
	A1B scenario for station 3	

LIST OF SYMBOLS

ASD	Automated Statistical Downscaling
CDD	Consecutive Dry Days
GCM	Global Circulation Model
NCEP	National Center for Environmental Prediction

CHAPTER 1

INTRODUCTION

1.1 Introduction

The world climate is experiencing a dramatic change over the last century in terms if temperature, precipitation, ice melting and overall change in weather pattern due to the increasing human activities, which is a main contribution to the change. One example of these activities is a carbon emission. These changes affect the world's different aspects of life such as, economy, environmental impacts and health. In this regard, climate change is continually affecting the earth hydrological cycle, therefore researchers started to find methods to forecast these effect and/or the climatic status in order to find ways of adaption. There are many risks associated with the change of precipitation pattern, in some area the precipitation rate is suffering a major decline leading to draught whereas in some area is increasing creating floods.

One of the major approaches that assisted scientist to forecast changes is the development of atmospheric physics. At early of 20th century, several equations were brought up that predicts large-scale atmospheric motions. General Circulation models (GCMs) is the most advanced numerical modeling tool that simulates the varying effects of the global climate change due to the increasing green house gases.

concentration, this model is three dimensional grid over the glove with horizontal and vertical resolution that includes several variables like pressure, temperature, humidity, wind and water and ice. There are two types of GCMs, atmospheric and oceanic, but when coupled, the result is more complete.

GCMs provides climate change information at a coarser resolution that means many impacts are neglected and to incorporate these neglected impact a finer resolution in required and this can be achieved by downscaling. One of the methods of downscaling is statistical downscaling that has the ability to predict future climatic scenarios and to estimate changes in future hydrological pattern.

1.2 Problem Statement

Precipitation is one of the most difficult weather phenomena that can be predicted, since it depends on many physical processes and these vary from one place to another. There are two ways that climate models can simulate precipitation one by synoptic precipitation system which is the result of air vertical uplift caused pressure system, and the second is convective precipitation system, in which latent heat cause the vigorous uplift of air causing a more a local intense rainfall (Khairul 2011).

Due to the climate instability where floods or draughts are there recent phenomena, it is necessary to forecast rainfall for future decision making that regards water allocation, water storages, and water infrastructures or in one context, water resources management.

The first methods used to predict future climatic scenarios is statistical downscaling which is widely used in tropical regions including Malaysia and it has been used to evaluate changes in hydrological regimes (Khairul, 2011).

1.3 Objectives of Study

The aim of the study is to explore the applications of the Automated Statistical Downscaling (ASD) model in the projection of the future climate changes in humid tropical region. The objectives of the study are as following:

- 1) To calibrate rainfall data from selected stations in humid tropical area.
- To simulate rainfall by using ASD model that links local daily precipitation with large scale variables.
- To evaluate the hydrological characteristics of rainfall data simulated from ASD.

1.4 Scope of Study

The aim of this study is to simulate rainfall for three selected stations in Pahang region in Malaysia using existing data of precipitation as predictands by using Automated Statistical Downscaling ASD model for the three selected stations. Daily time series rainfall data obtained from Department of Drainage and Irrigation, Malaysia, at a single station (daily precipitation, maximum, minimum and total) and the Global Circulation Models CGCM3.1 obtained from DAI, Data Access integration/Canada that contains Gridded atmospheric variables were used in this model.

1.5 Importance of Study

Draughts and floods are one of the most phenomena resulting from climate change and these two events is a result of precipitation rate. It can be acknowledged from several studies that dry regions are suffering from further draughts while tropical regions are experiencing much rainfall rate. The rainfall stations are located in Pahang state in Malaysia and it falls in a tropical region where suffering from extensive rainfall. Therefore, the importance of this study is to project rainfall amount for the region and the results obtained would be helpful for decision makers and water managers.

1.6 Project Outline

This project consist of six chapters. Chapter one consist of the introduction, problem statement, objectives and scope of the study. Chapter two talks about climate change, General Circulation Models and downscaling methods. Chapter Three discuss the methodological approach of the study by using Automated Statistical Downscaling tool (ASD). Chapter four describes the study area, data description and data collection. Result discussion is elaborated in chapter five. Finally, chapter six is the conclusion remarks and recommendations.

REFERENCES

- Apipattanavis, S., Federico Bert, Guillermo Podesta, Balaji Rajagopalan.(2010). Linking weather generators and crop models for assessment of climate forecast outcomes. 150 (2010) 166–174
- Chen,S-Tusan, Pao-Shan Yu, Yi-Husan Tang.(2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis
- D'onofrio, A. J.-P. Boulanger. E.C.Segura(2009). CHAC: a weather pattern classification system for regional climate downscaling of daily precipitation
- DAI CGCM3 Predictors, 2008: 'Sets of Predictor Variables Derived from CGCM3 T47 and NCEP/NCAR Reanalysis'', version 1.2, Montreal, QC, Canada, 17 pp.
- Department of Statistics, Malaysia, Pahang at a glance, URL: <u>http://www.statistics.gov.my/portal/index.php?option=com_content&vie</u> <u>w=article&id=529&Itemid=111&lang=en&negeri=Pahang</u>
- Edward. Paul N., "A brief History of Atmospheric General Circulation Modeling " in David A. Randall, ed., General Circulation Model Development, past present and future : the proceedings of a symposium in Honor of Akio Arakawa (New York: Academic press,2000), 67-90
- Environment Canada, Note on SDSM and ASD predictors (large scale atmospheric variables), http://www.cccsn.ec.gc.ca/?page=pred-help

- Fernandez, A.Ferrero. J. Sanez, G. Ibarra-Berstegi, J. Fernandex(2009) Evaluation of statistical downscaling in short range precipitation forecasting
- Fenech. Adam, Neil comer and Bill Gough, Selecting A Global Cliamte Model for understanding future Projections of Climate Change.
- Fiseha B. M., Melasse A.M, Romano E., Volpi E. and Fiori A. (2012), Statistical Dwonscaling of precipitation and Temperature for the Upper Tiber Basin In Central Italy, International Journal of Water Scenic, 10.5772/52890
- Fujihara, Yoichi. Kenji Tanaka, Tsugihiro Watanabe, Takanori Nagano, Toshiaru Kojri. (2008). Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic Simulations
- Gachon. Philippe, Andrew Harding, Milka Radojevic, Elena Pison, and Van Tv Nguen, Downscaling Global and Regional Climate Models.
- Ghosh. Subimal, P.P. Mujumdar (2007), *Statistical downscaling of GCM simulations* to streamflow using relevance vector machine
- Guo. Jing, Hua Chen, Chong-Yu Xu, Shenglian Gue, Jiali Guo(2012), Predicton of Variability of precipitation in the Ynagtze River Basin under the climate change condition based on automated statistical downscaling. Springer, 26:157-176
- Haylock. Malcom R, Gavin C. Cawley, Colin Harpham, Rob, L. Wilby and Clare M.
 Goodess(2006), Downscaling heavy Precepitation over the UNITED
 KINGDOM: A comparison of Dynamical and Statistical methods and their future scenarios, international Journal of Climatology 26: 139-1416
- Hessami. Masoud, Philippe Gachon, Taha B.M.J. Quarda, Andre St-Hilaire (2008), Automated regression-based statistical downscaling tool, environmental Modelling & Software 813-834

- IPCC 2007a Climate change (2007). Impacts, Adaption and Vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change
- IPCC 2007b Climate change (2007). Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change.
- IPCC, IPCC special report (2000), emission scenarios/ summary for policy makers.
- Jeong. D.I., A. St-Hilaire, T.B.M. J. Quarda(2011), Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada, springer, 26:633-675
- Jeong. Dae II, Andere St- Hilaire, Taha B. M.J. Quarda, Philippe Gachon,(2012), CGCM3 predictors used for daily temperateure and precipitation downscaling in Southern Quebec, Canada, springer, 107:389-406
- Kalnay E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, E., Jenne, R. and Joseph, D. (1996). *The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteor. Soc.* 77: 437-471.
- Khairul. Anuar Mohamad (2011). An evaluation of statistical model for downscaling presipitation, Master of Engineering, University Teknology Malaysia, Skudai.
- Kistler. Robert, Eugenia Kalnay, William Collins, Suranjana Saha, Glenn White, John Woolen, muthuvel Ghelliah, Wesley Ezbisuzaki, Masao Kanamitsu, Vernon Kousky, Huug van den Dool, Roy Jenne and Michael Fiorino, The NCEP-NCAE 50-Year Reanalysis Montly Means CD-Rob and Documentation.

Maraun. D., F.Wetterhall, A. M. ireson, R.E. Chandler, E. J. Kendon, 6 M. Widmann,
S. Brienen, H. W. Rust, T. Sauter, M. Theme_l, V. K. C. Venema, K. P. Chun, C. M. Goodess, R. G. Jones, 6 C. Onof, M. Vrac, I. Thiele-Eich (2010). PRECIPITATION DOWNSCALING UNDER CLIMATE CHANGE.
RECENT DEVELOPMENTS TO BRIDGE THE GAP BETWEEN DYNAMICAL MODELS AND THE END USER

Mengelkamp. Heinz-Theo, Harmut Kapitza, Ulrich Pfluger (1997). Statisticaldynamical downscaling of wind climatologies

Nurul Adzura Ismail (2011), STATISTICAL DOWNSCALING FOR CLIMATE CHANGE IMPACT ASSESSMENT ON HYDROLOGY, Doctor of Philosophy, University Teknology Malaysia, Skudai.

Phil Blunsom, (2004). Hidden Markov Models

- Quintana. P. Segui, A. Ribes, E. Martin , F.Habets, J. Boe (2010). Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins
- Tareghian. Reza, Peter F. Rasmussen, (2013). Statistical downscaling of precipitation using quintile regression. Journal of Hydrology 487(2013) 122-135
- Timbal. B , E.Fernandez, Z.Li(2009). Generalization of a statistical downscaling model to provide local climate change projections for Australia
- Wilby. R.L, P.G. Whitehead ,A.J. Wade, D. Butterfield, R.J. Davis, G. Watts (2006). Integrated modeling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK
- Wilby, R. L. and T.M.L Wigely(2000). Precipitation predictors for downscaling :observed and general circulation model relationship. International journal of climatology 20(6):641-661

- Wilby. RL, SP Charles, E Zorita, B Timbal, P Whetton, LO Mearns(2004), Guidelines for use of climate scenarios developed from statistical downscaling methods.
- WMO ,World meteorological Organization, Statistical Depiction of Climate, URL: http://www.wmo.int/pages/themes/climate/statistical_depictions_of_clim ate.php

WMO, World Meteorological Organization. URL: <u>www.wmo.int</u>